
Beyond Mutual Information: a simple and
robust alternative

Eldad Haber1 and Jan Modersitzki2

1Department of Mathematics, Emory University, Atlanta USA
2Institute of Mathematics, University of Lübeck, 23560 Lübeck, Germany Email:
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Abstract. One of the remaining challenges in image registration arises
for multi-modal images taken from different imaging devices and/or
modalities. Starting in 1995, mutual information has shown to be a very
successful distance measure for multi-modal image registration. However,
as it is well-known, mutual information also has a number of drawbacks.
Here, we present an alternative image similarity measure which is also
capable to handle multi-modal images but better suited for optimiza-
tion. As we show, the alternative normalized gradient based approach
is deterministic, much simpler, easier to interpret, fast and straightfor-
ward to implement, faster to compute, and also much more suitable to
optimization.

1 Introduction

Image registration is one of today’s challenging medical image processing prob-
lems. The objective is to find a geometrical transformation that aligns points
in one view of an object with corresponding points in another view of the same
object or a similar one. An open challenges in image registration arises for multi-
modal images taken from different imaging devices and/or modalities; see Fig-
ure 1 for an example. In many applications, the relation between the gray values
of multi-modal images is complex and a functional dependency is generally miss-
ing. However, for the images under consideration, the gray value patterns are
typically not completely arbitrary or random. This observation motivated the
usage of mutual information (MI) as a distance measure between two images
[1,2]. Starting in 1995, mutual information has shown to be a successful dis-
tance measure for multi-modal image registration and is to be considered as the
state-of-the-art technique.

However, mutual information has a number of well-known drawbacks; cf.
e.g., [4,5]. Firstly, mutual information is highly non-convex and has typically
many local minima; see for example the discussion in [6, §6.6] and Section 2.
Therefore, the non-convexity and hence non-linearity of the registration prob-
lem is enhanced by the usage of mutual information. Secondly, as it has its
foundation in information theory, mutual information has a naturally discrete
nature. However, fast and efficient registration schemes rely on powerful opti-
mization techniques and thus on smooth functions. Thirdly, since mutual infor-
mation is defined via the typically unaccessible joint density of the gray value
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Fig. 1. Original BrainWeb [3] T1 (a) and T2 (b) weighted magnetic resonance images;
(c) the joint density approximation for R and T , (e) mutual information versus shift,
(d) the normalized gradient field for R and T , (f) normalized gradient field versus shift.

distribution, approximations of the density are required. These approximations
typically involve some very sensitive smoothing parameters (e.g. a binning size
or a Parzen window width). Fourthly, mutual information completely decouples
the gray value from the location information. Therefore judging the output of
the registration process is difficult. Finally, because of the previous difficulties,
there is not a unique or even common implementation for mutual information
and its derivatives. These difficulties had stem a vast amount of research into
mutual information registration, introducing many nuisance parameters to help
and bypass at least some of the difficulties; see, e.g, [4]. As a result, a practical
implementation of mutual information is highly non-trivial.

In this paper we investigate an alternative distance measure which is based on
normalized gradients using properties of differential geometry. As we show, the
alternative approach is deterministic, much simpler, easier to interpret, fast and
straightforward to implement, faster to compute, and also much more suitable
to optimization.

2 An illustrative example

To emphasize the difficulty explained above, we present an illustrative example.
Figure 1 shows a reference (a) and a template (b) image in different modalities.
Since the image modalities are different, a direct comparison of gray values is not
advisable and we hence study a mutual information based approach. Figure 1c)
displays an approximation to the joint density which is based on a kernel esti-



mator; see [7] for details. Note that the joint density is completely unrelated to
the spatial image content. We now slide the template image along the horizontal
axis. Figure 1e) shows the mutual information versus the shift ranging from -2
to 2 pixels. This figure clearly demonstrates that mutual information is a highly
non-convex function with respect to the shift parameter. In particular, the curve
suggests that there are many pronounced local minima which are closed in value
to the global minima.

Figure 1d) displays a typical visualization of our alternative distance between
R and T (discussed in the next section). Note that for the alternative distance
measure, image differences are related to spatial positions. Figure 1f) shows
the alternative distance measure versus the shift parameter. For this particular
example, it is obvious that the alternative measure is capable for multi-modal
registration and it is much better suited for optimization.

3 A simple and robust alternative to mutual information

Given a reference image R and a template image T , the goal of image registration
is to find a “reasonable ” transformation such that the “distance ” between the
reference image and a deformed template image is small. As described in [6], there
are basically two registration approaches. Since our interest is the discussion of
distance measures, we focus on so-called parametric image registration which is
easier to explain.

Given a distance measure D and some basis functions φ1, . . . ,φm, the regis-
tration problem is to find a minimizer γ of

f(γ) := D[R(x), T (φ(γ,x))], where φ(γ,x) =
∑m

k=1 γkφk(x). (1)

Our alternative multi-modal distance measure is based on observation that
two image are considered to be similar, if intensity changes occur at the same
locations. Intensity change can be detected via the image gradient. However,
since the magnitudes of changes might be related to the imaging devices, and
are not related to image differences, it is not advisatory to directly base a distance
measure on gradients. We thus consider a regularized normalized gradient field

nE(I,x) := ∇I(x)
‖∇I(x)‖E

, (2)

where, for x ∈ Rd we set ‖x‖E =
√∑d

!=1 x2
! + E2 and ∇I := (∂1I, . . . , ∂dI)#.

In regions where E is much larger than the gradients the maps nE(I,x) are
almost zero and therefore do not have a significant effect. However, in regions
where E is much smaller than the gradients, the regularized maps are close to
the non-regularized ones and these regions make a substantial difference in the
calculation of the distance measures. The parameter E therefore answers the
question, “what can be interpreted as a jump?”, and can be computed by the
following automatic choice:

E = η
V

∫
Ω |∇I(x)| dx, (3)



where η is the estimated noise level in the image and V is the volume of the
domain Ω; see also [8].

For two related points x in R and φ(x) in T or, equivalently, x in T ◦ φ, we
look at the vectors n(R,x) and n(T ◦ φ,x). These two vectors form an angle
θ(x). Since the gradient fields are normalized, the inner product (dot-product)
of the vectors is related to the cosine of this angle, while the norm of the outer
product (cross-product) is related to the sine. In order to align the two images,
we can either minimize the square of the sine or, equivalently, maximize the
square of the cosine.

This observation motivate the following distance measures, which are equiv-
alent from an optimization point of view:

Dc(T,R) = 1
2

∫
Ω dc(T,R) dx, dc(T,R) = ‖n(R,x) × n(T,x)‖2, (4)

Dd(T,R) = −1
2

∫

Ω
dd(T,R) dx, dd(T,R) = 〈n(R,x),n(T,x)〉2 . (5)

To find the image deformation we need to minimize f(γ) (cf. (1)) for Dc or Dd.
Since this function is twice differentiable with respect to γ, we are able to use a
Newton type method. Note that the distance measure has a least-squares from.
Therefore a natural optimization algorithm is the Gauß-Newton method.

4 Numerical Experiments

In the second example we use the images from Viola’s Ph.D thesis [2]. In the
original work a few thousands of iterations of stochastic optimization algorithm
where needed to achieve registration using MI as a distance measure. Here, we
have used a more efficient implementation of mutual information [7] to obtain
competitive results. We then compare the results of both registrations. The dif-
ference between the MI registration and the normalized gradient field (NGF)
registration was less than 0.25 of a pixel, thus we conclude that the methods
give virtually identical minima. However, to obtain the minima using MI we
needed to use a random search technique to probe the space. This technique re-
quires the estimation of many joint density distribution and therefore it is rather
slow. When probing the space we have found many local minima. Furthermore,
the local minima and the global minima tend to have roughly the same magni-
tude. The global minima has the value of about −9.250 × 10−2 while the guess
γ = 0 has the value of about −9.115 × 10−2. Thus the ”landscape” of the MI
function for this example is similar to the one plotted in Figure 1.

In comparison, our NGF algorithm used 15 iteration on the coarse grid which
is 22× 24 and 5 iterations on each finer grid. The registration was achieved in a
matter of seconds and no special space probing was needed to obtain the minima.
The value of the NGF function at γ = 0 was −4.63 × 101 while at the minima
its value was −2.16 × 102 thus our minima is much deeper compared with the
MI minima.
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Fig. 2. Experiments with Viola’s example; (a) reference R, (b) template T , (c) reg-
istered T , (d) overlay of T and R (202 pixels checkerboard presentation), (e) cross
product nT × nR, (f) joint density at the minimum.
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