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Image registration, in particular medical image registration, has been subject to extensive
studies in the past years. Its versatile and important applications have attracted researchers
from various branches, including numerical analysts. In this note, we not only give an
overview on some new and exiting approaches but also point out some of the mathemati-
cal challenges associated with these approaches. Moreover, we explain why variational based
methods to image registration naturally lead to large scaled and challenging optimization and
hence numerical linear algebra problems. We present various instructive examples and com-
ment on numerical schemes.
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1 Introduction

Image registration is one of today’s challenging image processing problems. The objective
is to find a geometrical transformation that aligns points in one view of an object with corre-
sponding points in another view of the same object or a similar one. Particularly in medical
imaging, there are many instances that demand for registration. Typical examples include the
treatment verification of pre- and post-intervention images, study of temporal series of im-
ages, and the monitoring of time evolution of an agent injection subject to a patient-motion.
Another important area is the need for combining information from multiple images acquired
using different modalities, sometimes also called fusion. Typical examples include the fusion
of computer tomography (CT) and magnetic resonance (MRI) images, of CT and positron
emission tomography (PET), or of CT and ultrasound images (US). Image registration is in-
evitable whenever images acquired from different subjects, at different times, or from differ-
ent scanners, need to be combined or compared for analysis or visualization. In the past two
decades computerized image registration has played an increasingly important role in medical
imaging (see, e.g., [4, 18, 34, 32, 44, 16, 27, 53, 35] and references therein).
A variety of different methods in order to solve the registration problem have been pro-

posed. Among these are variational approaches [5, 3, 10, 28, 9, 23], partial differential equa-
tion (PDE) based methods [5, 3, 11, 14], discrete graph methods such as min-flow [41] and
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4 Fischer & and Modersitzki: Image Registration

max-cut [1], stochastic approaches [5, 20], and dynamical programming [33, 49], to name just
a few.
Due to the manifoldness of approaches, it is almost impossible to give an exhaustive

overview on existing methods. Here, we decided to discuss the variational approach in more
detail. There are two reasons for this choice. First of all, we believe that the variational set-
ting is the most flexible framework and secondly, it leads to very many interesting numerical
problems, in particular in numerical linear algebra.

The paper is organized as follows. We start out with a section on examples which illustrate
the need for a flexible framework. This section is followed by a theoretical part, which shows
on how one may phrase the different application driven demands in terms of a variational
problem. In order to illustrate some of the numerical issues, we discuss in Section three in
greater detail a particular application: the monitoring of breast tumor growth. Finally, we
present some numerical examples which show that the presented schemes may be used to
advantage in a clinical environment.

2 Examples

The following examples illustrate a variety of different demands for images registration tech-
niques. The images have been provided by Philips Medical Systems (knee), Institute of Nu-
clear Medicine, RWTH Aachen (lung), University of Chicago (hands), and Lucas Center,
Stanford University (breast).
Example 2.1 (Knee) This three-dimensional test case indicates the need for schemes

which are able to deal with highly non-linear corrections fields. Also, this problem has about
3.2 million unknowns, which surely creates the need for state of the art numerical schemes.
Figure 1 shows CT scans of a human knee in a straight and a bent position. Part (a,b)

visualize the three-dimensional data set (128× 128× 64 voxel) and (d,e) corresponding two-
dimensional cross-sections (slice 40). The subplots (g) and (h) display the maximum intensity
projection (MIP) before (g) and after (h) registration. Here, the image difference has been
reduced to approximately 10%. This is also visible from the final registration result (c) and
(f), respectively.

Example 2.2 (Lung) The next example is concerned with multimodal images. Here, the
images display the same patient, but were acquired by different scanners. This example clearly
shows, that measuring the distance between multimodal images can be a tricky and delicate
matter.
Figure 2 shows a CT scan (a) and a PET image (b) of a human lung; Figure 2(c) shows

the PET image after registration. Although a qualitative measurement is by no means trivial,
the registered PET image appears to be much closer to the CT scan than the unregistered one.
It should be noted, that the colormap of the original images has been modified in order to
emphasize the differences.

Example 2.3 (Hand) Often it is desirable to guide the registration process by incorporat-
ing additional information like the location of particular anatomical landmarks. Also, depend-
ing on the specific application, it might be inevitable for the radiologist, to have a registration
result which does maintain a one-to-one correspondence between these landmarks.
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Fig. 1 Registration results for two 128 × 128 × 64 MRI scans of a human knee; 3D views of R (a),
T (b), and T registered (c); the generic slice 40 with grid for R (d), T (e), and T registered (f); maximum
intensity projections for |R− T | (g) and |R− T registered| (h).

Figure 3 shows a typical test example along this lines. Here, two modified X-rays of a
human hand (a,b) have been equipped with six particular anatomical landmarks. The subplot
(c) displays the final registration, where a one to one correspondence of the landmarks is
guaranteed.
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a. reference R b. template T c. registered template

Fig. 2 CT image of a human lung (a), PET images before (b) and after (c) registration (images
modified for visualization purposes).

a. reference R b. template T c. registered template

Fig. 3 Modified X-rays of a human hand with anatomical landmarks

Example 2.4 (Breast) An application of particular clinical interest is the registration of
pairs of images acquired before and after contrast administration. Here, the trouble is, that
some regions tend to enlarge due to the contrast uptake but not due to a possible patient move-
ment. An unconstrained registration technique then would be trapped by this enlargement,
which may result in misleading registration results.
The following figure shows a challenging example. Here, the overall goal is tumor mon-

itoring. Therefore a change of tissue volume can become critical even if it results in much
more pleasing visual results.
Figure 4 shows two two-dimensional slices of an MR scan of a female breast taken during

contrast agent uptake (a,b). The difference image (c) shows some suspicious regions, which
are easily identified since the images are registered. This example is discussed in detail in
Section 4.2, where also numerical results are shown.

3 The registration problem

The previous examples indicate the need for a broad and general mathematical model, capable
of dealing with a variety of situations, easy to modify and to extend. There are various ap-
proaches to achieve this goal. However, a discussion of all possible techniques is far beyond
the scope of this paper. Here, we focus on a model based on a variational approach. This is for
basically two reasons. First of all, the continuous setting enables one to use different image
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a. reference R b. template T c. difference

Fig. 4 MRI’s of a female breast, LEFT: during the wash-in phase, MIDDLE: during the wash-out
phase, and RIGHT: difference image.

resolutions or equivalently different discretizations, which are naturally linked by the underly-
ing continuous problem. Secondly, as we will see in a moment, the image registration problem
can be treated as an optimization problem. For the applications of interest, the problem is typ-
ically large scaled and in many applications also time critical. Therefore, a successful scheme
depends on efficient optimization techniques which generally rely on derivatives, which may
be hard to calculate in a discrete setting.

To begin with, we present some notations. Given a reference image R and a template
image T , the goal of image registration is to find a “reasonable ” transformation such that
the “distance ” between the reference image and the deformed template image is small. With
d ∈ N we denote the spatial dimension of the given images R , T : Rd → R, which are
assumed to be sufficiently smooth (see the discussion in Section 4.3.4). Thus, T (x) is the
gray value at a spatial position x. Moreover, without loss of generality, we assume that the
contents of the images are contained in a bounded domain Ω = (0, 1)d.
The goal is to find a deformation u : Rd → Rd such that the deformed image T [u], with

T [u](x) := T (x + u(x)), is “similar ” to R .

Next, we state our general registration model. Note, that the building blocks are easily
exchangeable and may be tuned with respect to the application in question.

Image registration: Given two images R and T , find a deformation u, such that

D[R , T ;u] +  S[u] +  Csoft[u] = min (1a)
subject to Chard[u](x) = 0 for all x ∈ ΩC . (1b)

Here, D denotes a typically intensity based distance measure, S a regularizer, Csoft some
soft constraints (penalization), and Chard some hard constraints. The number  > 0 is a
regularization parameter, the number  ≥ 0 a weighting factor, and the set ΩC is a subset
of the image domain. On the first glance it might appear peculiar, that we do distinguish
between hard- and soft constraints. Note, however, that the hard constraints are to be fulfilled
by the minimizer, whereas the soft constraints, depending on the parameter  , constitute a
relaxed version of the hard constraints. For example, when the application involves some
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user-prescribed landmarks, one may want to consider only soft constraints, as the landmarks
itself are located approximately and exhibit some uncertainty (see, also Example 3.3). On the
other hand, in tumor growth monitoring a hard volume preserving constraint is inevitable.
Existence and uniqueness of different realizations of the problem are discussed for exam-

ple in [8] and [35]. In this paper we focus on numerical issues. Additional building blocks
are discussed for example in [11, 38, 29, 31, 39, 15]. A typical explicit regularization is given
by restricting the wanted displacement to a certain space, for example such that the trans-
formation is affine linear or belongs to a certain spline space. For this so-called parametric
registration, see, e.g., [32, 35].
Choices for the building blocks D, S, and Chard,soft as well as the choices for parame-

ters are typically application dependent and normally involve an extended discussion with the
clinical partner. The following examples illustrate some specific applications and concretiza-
tions which have been proven satisfactorily. An objective validation technique for registration
results is yet to be found.
Example 3.1 (Knee – continued) We continue the knee Example 2.1. Here, the images

are three-dimensional, d = 3. The CT scans of the human knee have the same image modality.
Therefore our distance measure D is based on a direct comparison of image intensities (sum
of squared differences, SSD),

DSSD[R , T ;u] = 1
2

∫
Ω

(
T (x + u(x))− R(x)

)2 dx. (2)

As a regularizer, we used the elastic potential

Selas[u] = 1
2

∫
Ω

∥∥Belas[u]
∥∥2

Rd dx (3)

where

Belas[u] =
√

µ
(
(∇u1)" , . . . , (∇ud)" ,

√
2 +  / µ ∇ · u

)"
,

µ and  are the so-called Lamé-constants. This choice was motivated by the goal to ensure a
smooth (elastic) transition from the template to the reference image. Here, we do not introduce
additional constraints:  = 0, ΩC = ∅.
Example 3.2 (Lung – continued) Obviously a direct comparison of image intensities

is not advisable for Example 2.2. Here, we use mutual information as a distance measure.
Roughly speaking, mutual information measures the amount of information of R contained
in T ; see, e.g., [7, 50, 35] and references therein. Let the joint density of the gray value
distribution of R and T be denoted by  ,

 (R,T )(r, t) =
∫
Ω  {x | R(x) = r ∧ T (x) = t} dx, (4)

where  is the characteristic function, and the individual gray value distribution by

 R(r) =
∫

R  (R,T )(r, t) dt ,  T (t) =
∫

R  (R,T )(r, t) dr.

Then, mutual information is defined by

DMI[R , T ;u] =
∫

R2
 (R,T [u]) log2

 (R,T [u])

 R ·  T [u]
d(r, t).
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As a regularizer Scurv we use the curvature regularizer [14],

Scurv[u] = 1
2

∫
Ω ‖B

curv[u]‖2Rd dx

with

Bcurv[u] = ∆u = (∆u1 , . . . , ∆ud)" . (5)

This regularizer has been proven to produce very satisfying results, even when a large trans-
formation is necessary. No constraints are added.
Example 3.3 (Hand – continued) For Example 2.3, we use the SSD based distance mea-

sure (2) and the curvature regularizer (5). In contrast to the previous examples, we add addi-
tional hard constraints. Let tj and rj , j = 1, . . . , m, be some user prescribed landmarks. The
goal is to specify u such that

tj + u(tj) = rj , j = 1, . . . , m .

Using the d-dimensional point evaluation functional  x these constraints can also be phrased
as Cj [u] = rj +  tj [u]− tj , and hence the landmark constraints are given by

Clandmarks = (C1 , . . . , Cm)" , ΩC = Ω.

Note that these hard constraints imply that our transformation produces an exact one-to-one
correspondence of the landmarks. However, in many application is it impossible to determine
landmarks exactly; see, e.g. [40]. Therefore it is an interesting option to replace the hard
landmarks by soft landmarks, which may be phrased as

Csoft[u] = 1
2

m∑

j=1

(
tj + u(tj)− rj

)2
.

Example 3.4 (Breast – continued) Following [24], we use SSD (2) as a distance measure
and the elastic potential (3) as a regularizer for Example 2.4. Hard constraints enforce volume
preservation and are based on the determinant of the Jacobian of the transformation x+u(x),

CVP[u](x) = det(Id +∇u(x))− 1 = 0 for all x ∈ ΩC , (6)

where for simplicity ΩC = Ω. Note that the set ΩC could easily be based on a segmentation of
the image. For example, we could ask for volume preservation only for tissue and/or bones.
In this example, soft constraints

Csoft[u] =
∫
ΩC

(CVP[u])2 dx

are not advisable. Firstly, after an overall minimization of the registration problem, we cannot
expect Csoft[u∗] = 0 for the solution u∗. Secondly, and most importantly, even if Csoft[u∗]
is small, the integrant CVP[u∗] can be quite large in some small regions like, for example, a
tumor.
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4 Numerical schemes
Having introduced some typical applications, we will now turn our attention to the actual
implementation of a registration problem. To begin with, we discuss the breast example in
more detail. This application has also been studied in [39, 24]. Here, we highlight some
mathematical and implementation issues, which came up in the course of solving this com-
plex registration problem. Moreover, we present some concrete numerical results and some
performance measurements and conclude this section with remarks concerning the general
registration problem (1).

4.1 Numerics for the breast example
With D = DSSD (cf. (2)), S = Selas (cf. (3)),  = 0, C = CVP (cf. (6)), and ΩC = Ω, the
continuous registration problem reads

D[R , T ;u] +  S[u] = min (7a)
subject to C[u](x) = 0 for all x ∈ Ω. (7b)

Depending on the actual data, the choice of the regularization parameter  might be critical
for the success of the scheme. This issue will be briefly discussed in Section 4.5.
In the next subsections, we will highlight some of the details concerning a proper imple-

mentation of the above problem. For the ease of presentation, we restrict the discussion to the
two-dimensional case and refer to [24] for higher dimensions and for further details.

4.1.1 Discretization
Choosing a stable discretization method for an optimization problem with a differential con-
straint is a delicate matter. It is well known that such a discretization should fulfill the so-called
LBB conditions [2, 17]. Further complications arise in this case where we need to discretize
differential operators such as the divergence and the curl. A conservative compact discretiza-
tion schemes could be achieved by either mixed finite elements or by staggered grids. Here
we focus on staggered grids; see [24] for an extended discussion.

The discrete version of u is denoted by  u = ((  u1)" , (  u2)")", where  u1 is collected on
the!-grid and  u2 on the"-grid, respectively; see Figure 5. Note that it is common in imaging
to have the first coordinate top-down and the second left-right.
Partial derivatives are approximated be centered finite differences and thus normal deriva-

tive are naturally located at the cell center positions (•). For tangential direction we imposed
Neumann boundary conditions. Using the discrete analogs ∂h

j , ∇h
j , and ∇h· for the partial

differential operators ∂j , gradient ∇ , and divergence ∇· , the elastic potential Selas (3) is
discretized as

Sh(  u) = ‖B  u‖22 :=
 + µ

2
‖ ∇h ·  u‖2 +

µ
2

(‖ ∇h
1  u1‖2 + ‖ ∇h

2  u2‖2).

Upon differentiation with respect to  u, we obtain the Navier-Lamé operator

Sh
!u(  u) = (  + µ)(∇h· )" ∇h ·  u− µ∆h  u =: A  u,
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Fig. 5 Staggered grids (for four pixels), nodal !, cell centered •, face staggered grids (! in x1-,
" in x2-direction).

where∆h denotes the usual five point discrete vector Laplacian.
Since we aim for a differentiable objective function, we embed the image data into a

smooth spline space. With the projection operator Pj from the j th staggered grid (!, ")
to the cell centered grid (•), we set

T (  u) := T spline(  x1 + P1  u1 ,  x2 + P2  u2),

where T spline denotes the appropriate chosen spline approximation. Now, we are able to
safely compute the Jacobian of T via

T!u(  u) := ∂T
∂!u (  u) =

(
diag(P"1 ∂1T ), diag(P"2 ∂2T )

)
, (8)

where the partial derivatives ∂j T are evaluated at the spatial positions (  x1+P1  u1 ,  x2+P2  u2).
A discretization of DSSD is straightforward,

D(  u) := 1
2‖T (  u)− R‖22 and thus D!u(  u) = T!u(  u)"(T (  u)− R).

Discretizing the constraint C involves a polynomial in the derivatives of  u. With + denoting
the Hadamard (pointwise) multiplication, we use

C(  u) = ∂h
1  u1 + ∂h

2  u2 + ∂h
1  u1 + ∂h

2  u2 − (P ∂h
2  u1)+ (P ∂h

1  u2),

where P = P1P2 is a projector from the nodal to the cell centered grid. The derivatives C!u

are then calculated as follows,

C!u1(  u) =
(

I + diag(∂h
2  u2)

)
∂h
1 + diag(P ∂h

1  u2)P ∂h
2 , (9a)

C!u2(  u) =
(

I + diag(∂h
1  u1)

)
∂h
2 + diag(P ∂h

2  u1)P ∂h
1 . (9b)

4.1.2 Optimization
We are now ready to phrase the discrete analog of the image registration problem (7),

J(  u) := D(  u) +  S(  u) = min (10a)
subject to C(  u) = 0. (10b)
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12 Fischer & and Modersitzki: Image Registration

In order to solve this problem numerically, we use the SQP framework; see [36, 24] for a
detailed discussion. To this end, let  p be a cell-centered vector of Lagrange multipliers. The
Lagrangian of the problem then looks like

L(  u,  p) = D(  u) + α
2 ‖B  u‖2 + C(  u)"  p.

Differentiating with respect to  u and  p, we obtain the following discrete Euler-Lagrange
equations

0 = L!u(  u,  p) = D!u(  u) +  B"B  u + C!u(  u)"  p, (11a)
0 = L!p(  u,  p) = C(  u). (11b)

To solve this non-linear system numerically, we apply a Newton-type method. The idea is to
approximate the (1,1) block of the Hessian by

H :=  B"B + T"!u T!u , (12)

where T!u is defined in (8). Thus, the following linear system of equations
(

H C"
!u

C!u 0

) (
s!u

s!p

)
= −

(
L!u(  u,  p)
L!p(  u,  p)

)
=:

(
r
s

)
(13)

has to be solved at each iteration. The system (13) is a so-called Karush-Kuhn-Tucker (KKT)
system; it is symmetric but indefinite. Solving KKT systems is a well known challenge.
Similar systems arise for example in fluid dynamics (cf., e.g., [21, 48]) and the solution for
this case has been addressed by many authors; see, e.g., [48, 43, 47]. Here, we have used
MINRES [37] with a block diagonal preconditioner, as proposed in [43]. This preconditioner
may be written as

M =
(

H 0
0 Ŝ

)
,

where Ŝ is an approximation to the Schur complement S := C!u H−1 C"
!u . There exist many

options for a sound choice of Ŝ. Here, we use the approximation suggested in [43],

Ŝ
−1

= (C!u C"
!u )−1 C!u H C"

!u (C!u C"
!u )−1 . (14)

Note that (C!u C"
!u )−1 C!u is the pseudo-inverse ofC!u. The application of the preconditioner

only involves a multiplication of H−1 and Ŝ
−1
with a vector, which may be accomplished

by multigrid techniques as discussed in [23].

4.2 Results for the breast example
The above scheme has been implemented using MATLAB 6.5. The following computations
are performed on a DELL Inspiron 8600 notebook (1.4 GHz, 1GB RAM, 60G disk space)
under Windows XP. The computation time for the breast Example 2.4 and 3.4 (128 × 128
images) is about 296 seconds for the unconstrained registration (68 iteration needed to fulfill
our stopping criterion

∥∥∥  u(k−1) −  u(k)
∥∥∥ ≤ tolU := 10−1, for the constrained problem we

spend about 846 seconds (23 iteration needed).
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The scheme has been applied to the images shown in Fig. 4. In Fig. 6 the results after two
(2nd row) and ten iterations (3rd row) of the unconstrained registration as well as after ten
iterations of the volume preserving (VP) constrained registration (4th row) are shown. The
numerical results are summarized in Table 1. After ten iteration both schemes have converged.

Table 1 Numerical results for the un- and VP-contrained registrations; k is the number of performed
iterations.

 k D(  u(k)) /D(0) ‖C(  u(k))‖∞
MRI unconstrained 105 2 0.81 1.36

unconstrained 105 10 0.78 1.36
VP constrained 105 10 0.87 ≤ 10−6

Although the numbers (cf. Table 1) indicate a larger reduction of the difference by the
unconstrained registrations, the ranking is not so clear if one looks at the difference images,
cf. Fig. 6. Here, the difference after ten steps un- and VP-constrained registration looks pretty
much the same. After two steps of the unconstrained registration the bright spot in the top
part of the image has not been resolved satisfactory. The explanation is that small spots which
are related to noise in the MRI images and are hardly visible in the images are registered in
the unconstrained registration. This leads to a large reduction, though it is hardly visible. To
remove this small spots, the volume has to be changed locally. However, the registration of
these small spots does not contribute to a meaningful solution for this problem.
In Fig. 7, we display the pointwise map of the change of volume. Using the unconstrained

approach, we observe a considerable change of volume for the breast with a peak value of 1.36.
Thus, part of the breast has been enlarged by a factor of 2.36. For the constrained approach,
we observe that the volume change is below a user supplied threshold (here, tolC = 10−6)
everywhere. In fact, since we used a quasi-Newton scheme for the projection, the numbers
are around 10−9.

4.3 The general case

Although the numerical scheme, outlined in the previous section, is tuned for a specific appli-
cation, we can easily identify some general patterns. In order to simplify the discussion, we
concentrate on the unconstrained registration problem.

4.3.1 Problem size

When working with real life registration problems, on has to be aware of the fact, that the
problem size can become quite large. For example: for the very modest example of a volume
preserving two-dimensional registration of two 128 × 128 images, the matrix H (cf. (12))
is N × N where N ≈ 32 · 103 and C!u (cf. (9)) is aboutN /2 × N ; for the still modest
three-dimensional knee example we have N ≈ 3 · 106. However, there are many instances
in a clinical environment, were a real-time registration is needed. Among those is the so-
called brain-shift problem. Here, the registration should compensate for the shift of brain
in course of a brain surgery; see, e.g. [45, 46] and references therein. For this demanding
example N ≈ 50 · 106, whereby the allowed practical solution time is restricted to a few
minutes. Therefore, more complex schemes, which may please the soul of a mathematician,
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Fig. 6 Registration results for the images of Fig. 4. LEFT COLUMN deformed template images
T (!u), MIDDLE COLUMN difference image |R− T (!u)| with region of interest (ROI), RIGHT COL-
UMN ROI with nodal grid, vertices connected by straight lines ; ROW 1: no registration, ROW 2:
no constraints two iterations, ROW 3: no constraints ten iterations, and ROW 4: volume preserving
constraints ten iterations.

are practically relevant only if they allow for a fast implementation. Also, there has been
considerable research towards parallel solution techniques for real-life applications; see, e.g.
[52].
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Fig. 7 Volume preservation of the unconstrained (LEFT) and constrained (RIGHT) registration
results for the MRI example.

4.3.2 Parametric registration

Another discretization option is to use a finite expansion of u in terms of some basic func-
tions. A very prominent example in this direction are splines; see e.g. [42]. This approach
may be seen as a specific regularization technique, as the solution inherits the smoothness
of the chosen basis functions. Another often used example for such a so-called parametric
registration [32, 35] is the so-called affine linear registration. Here, u = Qz, where Q is a
collection of basis functions and z denotes the parameter set. For this situation, one may set
 = 0 and in absence of constraints, Eq. (13) simplifies considerably:

Q"HQ  z = Q"r.

Due to its effectiveness and simplicity, this approach is often used in practice. It may been
even seen as todays industry standard. However, its applicability is restricted by its linear
nature and does often fail to produce satisfactory results. Nevertheless, it is frequently used
as a preprocessing step for nonlinear technique.

4.3.3 Full multigrid versus Newton type techniques

As for many problems in numerical analysis, there exist various ways to attack the non-linear
problem (1). For example, a non-linear full multigrid technique might be applied; see, e.g.,
[28, 9]. However, we found a splitting into the Newton-type outer iteration and an inner
iteration for the linear systems to be more flexible. One reason is the fact that this choice offers
the possibility of applying different, application dependent, solution techniques for the linear
system like, e.g., multigrid [26, 47], conjugate gradient [30], MINRES or SYMMLQ [37], or
even direct schemes.
Another reason for the splitting approach is its capability of dealing with different applica-

tion demands, that is, its main building blocks are easily exchangeable. For example, changing
the regularizer, simply results in a different matrixB. Replacing the distance measure DSSD

by an alternative like mutual information does only change the Hessian (12). However, care
has to be taken, since derivatives of the joint density  (R,T (!u)) (cf. (4)) need to be computed;
see [25] for details. Also, different constraints are straightforward to incorporate; see e.g. [13]
for landmark constraints and [22] for a space splitting idea, respectively.
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4.3.4 Discretize-optimize versus optimize-discretize

The presented scheme is a so-called discretize-optimize approach. That is, the continuous
problem is first discretized and then the obtained optimization problem is solved. It is this
underlying optimization problem, which makes this approach very attractive. Not only effi-
cient optimization techniques may be used to advantage, but also its variational form setting,
the Euler-Lagrange equations (13), open the door to efficient solution techniques for partial
differential equation; see [24] for an extended discussion.
To arrive at a sound discretization of the objective function in the approach above, it has to

be expressed in terms of continuously differentiable functions, say splines. The price paid for
this requirement is high, as the computation of spline coefficients and in particular the evalua-
tion of spline functions is time consuming. A computational attractive alternative can be based
on the discretization of the continuous Euler-Lagrange equation of the unconstrained registra-
tion problem, which is known as optimize-discretize approach. A minimizer is characterized
by

f(R , T ;u) +A[u] = 0, (15)

where the so-called force-field f if the Gâteaux-derivative of the distance measure and A =
B∗B is related to the regularizer. Fast schemes are based on a fixed-point type iteration
A[u(k+1)] = f (u(k)), u(0) ≡ 0, where all computational extensive parts are hidden in the
forward problem, the computation of f(u(k)). These schemes are of particularly interest, if
a discretization of the partial differential operator is highly structured. A typical example is
the diffusion regularizer, which allows for a direct solution technique in linear timeO(n); see
[11, 35] for details. The computation of image derivatives is based on finite differences and
the computation of the deformed image is based n a d-linear interpolation. Hence, a compu-
tation of spline coefficients and an evaluation of spline functions is avoided. This can speed
up the computations tremendously.

4.3.5 Scale space

Sometimes it is desirable to register the given images subsequently within different scales.
Here, the spline based approach provides a natural scale parameter. The idea is to approx-
imate the images with a varying degree of exactness. A poor approximation should only
capture the main image features and may be viewed as a smooth version of the image. Due
to the simplicity of the smoothed images, the corresponding registration is easy to accom-
plish. This result then may be used as starting guess for approximations which capture more
and more details. The smoothing parameter (degree of exactness) might be used as a degra-
dation parameter or be chosen by some optimality criterion like, e.g. the Generalized Cross
Validation (GCV) method [19]. For data interpolation using B-splines see [51].

4.4 Multi-resolution

In addition to the techniques discussed in Section 4.3.5, multi-resolution type approaches
like for example image pyramids are often used. One obvious reason is that multi-resolution
techniques typically reduce the computation time. Major corrections are computed on a com-
putationally inexpensive coarse grid, on the expensive finer grids only a few corrections steps
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are needed. A second major advantage is that these strategies prevent to converge to local
minima.

4.5 The parameter choice
In contrast to many other ill-posed problems, where efficient strategies like GCV are avail-
able to automatically estimate the regularization parameter, for image registration satisfactory
strategies are yet missing. The typical choice and the validation of the registration results are
typically performed by the trained experts.

5 Summary
We present a general approach to image registration based on a variational formulation, where
the overall goal is to minimize a certain energy functional. However, it is well-known that
image registration is an ill-posed problem. Therefore, for a particular given application, one
tries to add as much pre-information as possible to the functional. One step in this direction
is to add a designed regularizer, which on one hand penalizes unwanted solutions and on the
other hand is inevitable to make the problem well-posed. In this paper, we consider a further
step, which is to provide additional information by adding additional constraints. Constraints
are sometimes treated by penalization [6, 39], which in a sense is similar to the regularized
approach. However, in the penalized version it is not guaranteed that the constraints hold
whereas in the constrained approach it is guaranteed.
We also present an implementation of this general approach for volume preserving con-

straints. In particular, we present a stable and consistent staggered grid discretization of the
continuous variational approach. We show results for a real life application (monitoring of
tumor growth in a female breast) and discuss performance items.
From the numerical point of view, the constrained approach leads to a very challenging

and highly non-linear optimization problem where both the discretization and the numerical
optimization are not obvious. We used state-of-the-art SQP optimization techniques that allow
for an efficient solution of the registration problem. Our formulation opens up a few avenues
of research such as effective solvers for the KKT systems and inexact SQP methods.
Finally, we comment on various features of modern registration techniques and outline

some of the main research streams in image registration.
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