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Abstract

In particular in medical imaging, registration schemes are known to be valuable
tools in various settings, like, e.g., the comparison of pre- and post biopsy images.
The currently available schemes in can roughly be divided in two classes: landmark
based and intensity based registration schemes. In this paper, we present a rigorous
mathematical framework for combining these two techniques, in order to benefit from
the advantages of both strategies.

Intensity based approaches aim to match images by minimizing an appropriate dis-
tance measure, like, e.g., the L2-norm of the difference image or the mutual information
of the two images. These techniques are generally full automatic and yield a good reg-
istration on the average. However, they may perform poorly for specific, important
locations like anatomical landmarks. On the opposite, landmark based registration
techniques are designed to accurately match user specified landmarks. A drawback of
landmark based registration is the fact that the intensities of the images are completely
neglected. Consequently, the registration result away from the landmarks may be very
poor.

Here, we propose a mathematical framework for combining any distance measure
based registration with landmark information. We also present a general numerical
procedure for computing the wanted transformation as well as a particular implemen-
tation for a specific distance measure based registration technique. The general pro-
cedure computes a displacement field which is mathematically guaranteed to produce
a one-to-one match between given landmarks and at the same time to minimize an
intensity based measure for the remaining parts of the images. The properties of the
new scheme are demonstrated for a variety of examples.

It is important to observe, that the presented novel technique for combining intensity
driven and landmark based approaches is independent on the two main building blocks.

Keywords: Image processing, image registration, elastic-registration, landmark regis-
tration

1 INTRODUCTION

Image registration is an often encountered problem in many application areas like, for ex-
ample, geophysics, medicine, and robotics. For an overview we refer to [6, 15, 19, 14], and
references therein. In the last two decades, computerized image registration has played an
increasingly important role in particular in medical imaging. Registered images are now
used routinely in a multitude of different applications, such as the treatment verification of

1



R T

TL TD

Figure 1: Registration results for X-rays of a human hand (images from Y. Amit [1]):
top left: reference R with 6 landmarks, top right: template T with 6 corresponding
landmarks, bottom left: template TL after landmark based registration, and bottom
right: template TD after distance measure based registration.

pre- and post-intervention images and the time evolution of an agent injection subject to
patient motion. They are also useful to take full advantage of the complementary informa-
tion coming from multimodal imagery, like, for example, computer tomography (CT) and
magnetic resonance imaging (MRI).

Two fundamental approaches are popular in todays image registration. One is based on
the detection of a number of outstanding points, the so-called landmarks, and the second
one is based on the minimization of an appropriate chosen distance measure. In the next
example (see Fig. 1) we illustrate the properties of these two approaches. Given are two
images, typically called the reference R and the template T . The goal is to find a spatial
transformation, such that the deformed template matches the reference image. For the
landmark based registration, we have chosen six landmarks and computed the thin-plate-
spline with respect to these points, i.e., a second order derivative based energy functional has
been used as a regularizer (see TL, Fig. 1, bottom left). As the distance based registration
technique we have chosen the curvature matching scheme (see Section 3.1), a method which
relies on a distance measure (for this example, the L2 distance) in combination with a second
order derivative based regularizer (see TD, Fig. 1, bottom right).

As it is apparent from the plots, we encounter a method inherent dilemma. Using a
landmark based registration technique, we are able to guarantee a one-to-one match for
the user defined landmarks. However, the overall registration is visually unpleasing, as
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the scheme solely makes use of the landmarks. On the other hand, although the distance
measure based approach produces visually pleasing results, there is no guarantee, that there
is a one-to-one correspondence between the landmarks, as the scheme “does not know” about
the landmarks.

In this paper, we propose a novel registration technique, which combines the concepts
of landmark and automatic, non-rigid distance measure based approaches (CLD registra-
tion). Roughly spoken, the idea is to minimize a regularized distance measure subject to
some interpolation constraints. It is important to note, that the presented technique does
work for any (sensible) intensity measure, i.e., the user may choose his application depen-
dent favorite intensity measure. Moreover, we present a fast and robust numerical scheme
for the computation of the wanted minimizer. Here, the desired deformation is computed
iteratively using an Euler-scheme for the first variation of the chosen objective functional.
The deformations are restricted to fulfill the interpolation constraints. Consequently, the
CLD registration guarantees that each intermediate iterate and in particular the final sta-
tionary solution do produce a one-to-one correspondence of the prescribed landmarks. At
the same time the whole process is minimizing an intensity based measure for the remaining
parts of the images. The computational overhead in our implementation introduced by the
consideration of landmarks is negligible as compared to the conventional scheme without
landmarks.

There are already some attempts in the literature to design registration schemes which
are based on matching both landmark and intensity information; see, e.g., [12, 13]. This fact
indicates the there is demand for a general solution of this interesting and timely question.
However, they are all restricted to special functionals and are not as versatile as the proposed
framework.

The paper is organized as follows. In Section 2, we introduce the basic ideas and the
general mathematical setting. The ingredients of our new approach are introduced in detail
in Section 3 and a numerical treatment is presented in Section 4. We conclude with some
examples in Section 5.

2 BASIC IDEAS

In this section we set the mathematical framework and briefly introduce the landmark based
and intensity driven approaches. Finally, we describe our new approach and discuss its basic
ideas.

Let d ∈ N denote the dimension of a spatial domain Ω ⊂ Rd, where without loss of
generality, we assume Ω =]0, 1[d. Furthermore, let R, T : Ω → R denote the two images.
Hence, T (x) denotes the intensity of the template at the spatial position x, where for ease of
discussion we set R(x) = T (x) = 0 for all x $∈ Ω. The overall goal is to find a displacement u,
u : Rd → Rd, such that ideally T (x − u(x)) ≈ R(x) for all x ∈ Ω.

There are various ways of computing a suitable displacement u. Let us start with in-
tensity driven approaches. Here, one attempts to minimize an appropriate functional. It
typically has two building blocks. One of them computes internal forces, which are defined
for the wanted displacement field itself, whereas the other one is responsible for external
forces, which are computed from the image data. The internal forces are designed to keep
the displacement field smooth during deformation, while the external forces are defined to
obtain the desired registration result. It turns out that most of these schemes may be for-
mulated in the following fashion; see, e.g. [10]. Find a displacement u : Rd → Rd, such
that

J [u] := D[R, T ;u] + αS[u] = min .
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where D represents a distance measure (external force) and S determines the smoothness of
u (internal force). The parameter α may be used to control the strength of the smoothness
of the displacement versus the similarity of the images. The second term S is unavoidable.
Arbitrary transformations may lead to cracks, foldings, or other unwanted deformations.
From a mathematical point of view, S may also be seen as a regularizing term introduced
in order to rule out discontinuous and/or suboptimal solutions, having in mind that image
registration is an ill-posed problem.

The actual choice of D and S depends on the application under consideration. Some
of the most common choices will be discussed in Section 3.2. From a numerical point of
view, it is desirable that D and S possess a Gâteaux-derivative. For this case, one may
characterize a minimizer of J as solution of the so-called Euler-Lagrange equations

f(x, u(x)) + αA[u](x) = 0, x ∈ Ω. (1)

Here, f is related to the Gâteaux-derivative of the distance measure D and the partial
differential operator A is related to the Gâteaux-derivative of the smoother S, respectively.
The above semi-linear partial differential equation allows for a fast and robust computation
of the wanted minimizer; for details, we refer to [10, 16].

To solve the semi-linear Euler-Lagrange equations either a fixed-point type iteration
scheme

αA[u(k+1)](x) = −f(x, u(k)(x)), k ≥ 0,

or a time-marching iteration

∂tu
(k+1)(x, t) = f(x, u(k)(x, t)) + αA[u(k+1)](x, t), k ≥ 0,

with u(0)(x, 0) = 0, may be employed. The main work in each iteration is the solve for
u(k+1), i.e., the solution of a linear partial differential equation. Here, we are using a finite-
difference approximation of the equation followed by the application of an efficient solver for
the resulting linear system of equations. As it turns out, the sparse linear systems do have
a rich structure, which may be used to advantage. Here, specific implementations lead to
overall schemes with complexity O(N log N) or even O(N), where N denotes the number
of voxel. The actual complexity depends on the chosen smoother S; see [16].

Let us now briefly introduce the landmark based approach. To this end, let the landmarks
rj , tj ∈ Rd, j = 1, . . . , m, be given. The idea is to find a smooth displacement u such that
tj is mapped onto rj , j = 1, . . . ,m. Again, a regularizer S is incorporated in order to
ensure smoothness of the solution. Altogether, we end up with following scheme. Find a
displacement u : Rd → Rd, such that

S[u] = min subject to u(tj) = tj − rj =: dj , j = 1, . . . ,m. (2)

As it is apparent, the distance between R and T is no longer part of the functional. The
images enter into the scheme only through the landmarks. As for the distance measure based
registration, we have two building blocks. The internal forces which control the smoothness
of the wanted displacement and the external forces, which arise now from the locations of
the landmarks.

As for the distance measure based approach, it is possible to provide necessary conditions
for u to be a minimizer of (2) in terms of a partial differential equation. This time it is
helpful to consider the point-evaluation functional δ. With δz[u] = u(z), the interpolation
constraints read δtj [u] − dj = 0, j = 1, . . . , m. Considering the Lagrange-functional

L[u,λ] := S[u] +
m∑

j=1

λj(δtj [u] − dj),
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the wanted solution is characterized by

A[u](x) +
m∑

j=1

λjδtj [u](x) = 0, x ∈ Ω, (3)

and δtj [u] − dj = 0, j = 1, . . . , m. (4)

where, again, A is related to the Gâteaux-derivative of the smoother S. For special choices
of the smoother S, it is actually possible to explicitly compute the solution of Eq. (3) in
terms of fundamental solutions; for details, see [3, 17].

Having the outlined landmark and distance measure based approaches in mind, it is
almost obvious how to combine them both to obtain the new CLD scheme. It can be thought
of computing a displacement that minimizes the combination of a distance measure and a
smoother while being guided by the landmark correspondences. Again, the internal forces
are used to keep the displacement smooth, while the external forces are now a combination
from landmark and intensity information. The mathematical description of the problem
reads as follows. Find a displacement u : Rd → Rd, such that

J [u] = D[R, T ;u] + αS[u] = min

subject to u(tj) = dj = tj − rj , j = 1, . . . ,m.

}
(5)

A minimizer is characterized by

f(x, u(x)) + αA[u](x) +
m∑

j=1

λjδtj [u](x) = 0, x ∈ Ω, (6)

and δtj [u] − dj = 0, j = 1, . . . ,m. (7)

Observe, that equation (6) and (7) may be seen as a combination of the necessary condition
for the pure intensity driven approach (1) and the landmark scheme (3), (4). This time,
we have to solve a distributional, semi-linear partial differential equation. Though this task
appears on the first glance quite tricky, the underlying numerics given in Section 4 are
surprisingly easy and elegant. Their main building blocks are the well understood methods
developed for the landmark and intensity registration algorithms, of course.

3 SOME DETAILS

Before we present our numerical scheme for the solution of (6) and (7), we discuss some
important aspects of the regularization, the distance measure, and the landmark based
registration in more detail.

3.1 The regularizer

There exist various choices for the smoothing term S. This is mainly motivated by the
fact that particular applications demand for particular properties of the displacement field.
In view of the need for fast numerical implementations, we concentrate on differentiable
regularizer S, i.e., functionals where the Gâteaux-derivative dS[u; v], given by

dS[u; v] := lim
h→0

1
h

(S[u + hv] − S[u]) =
∫

Ω
〈A[u], v〉Rd dx,
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exists. Here, A denotes the associated linear partial differential operator. The most popular
choices for intensity driven registration, the so-called elastic [5, 2], fluid [7, 4], demon [18],
diffusion [9], and curvature [11] registration are based on regularizer which belong to this
class. For a general treatment and the derivation of the different partial differential operators
we refer to [16].

The numerical examples shown in Section 5 are based on the so-called curvature regu-
larizer [11]

S[u] = Scurv[u] :=
1
2

d∑

!=1

∫

Ω
(∆u!)

2 dx.

Here, the associated partial differential operator

A[u] = Acurv[u] = (∆2u1, . . . ,∆2ud)" with ∆2u! =
∑d

j,k=1∂xjxjxkxku!

is nothing but the well-known biharmonic operator, which is rotationally invariant and
decouples with respect to the spatial coordinates.

3.2 The distance measure

In the literature one may find various choices for the distance measure. Again, we concentrate
on those measures D which allow for differentiation, i.e., there exists a function f : Rd×Rd →
Rd with

dD[R, T ;u; v] = lim
h→0

1
h

(D[R, T ;u + hv] −D[R, T ;u])

=
∫

Ω
〈f(x, u(x)), v(x)〉Rd dx.

Here and elsewhere, f is frequently called force field.
Probably the most popular choice for a distance measure, having this property, is pro-

vided by the so-called sum of squared differences (SSD)

D[R, T ;u] = DSSD[R, T ;u]

:= 1
2‖R − T (·− u)‖2

L2
=

1
2

∫

Ω
(T (x − u(x)) − R(x))2 dx.

The associated force field looks like f(x, u(x)) = (R(x) − T (x − u(x))) ·∇T (x − u(x)). For
this measure to be successful, one has to assume that the intensities of the two given images
are comparable. Other distance measures, capable of dealing with multimodal images, like,
e.g., mutual information [8, 20], are also under consideration.

3.3 The landmark registration

As pointed out in the introduction, depending on the smoother, the solution of the landmark
based registration may be computed explicitly. Here, we will briefly outline the underlying
mathematics as they will re-appear in our new scheme. The precise formulation of Eq. (3)
for the %th component of the multivariate functions reads

d∑

ν=1

(
A!,ν [uν ] +

∑m
j=1λ

!
jδtj [u!]

)
= 0 and δtj [u!] − dj

! = 0, j = 1, . . . , m.
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Here, u = (u1, . . . , ud)", the point evaluation function δ is univariate, i.e., δtj [u!] = u!(tj) ∈
R, and A!,ν denotes the %th component of the operator A acting on the νth component of u.
For example, if S = Scurv, we have A!,ν =

∑d
j,k=1 ∂xjxjxkxk if % = ν and A!,ν = 0 if % $= ν.

Let ρj denote the multivariate fundamental solution or Greens-functions of A[ρj ] = −δtj .
Then the wanted solution can be written as

u =
m∑

ν=1

λνρν =
(∑m

ν=1 λ1
νρν

1 , . . . ,
∑m

ν=1 λd
νρν

d

)"
.

The free coefficients λ!
ν are determined by the interpolation constraints

m∑

ν=1

λ!
νρν

! (tj) = dj
! , j = 1, . . . , m, % = 1, . . . , d,

which may be written in compact notation as B!λ! = b!, where

λ! := (λ!
1, . . . ,λ

!
m)" ∈ Rm,

B!
j,ν := [ρν

! (tj)]mj,ν=1 ∈ Rm×m,

and b!
j := (d1

! , . . . , d
m
! )" ∈ Rm.

For various choices of S, the Greens-functions are explicitly known. Often they are
given in terms of a ( univariate) radial basis function ρ̂ via ρν

! (x) = ρ̂(
∥∥x − xT,ν

∥∥
Rd). This

is in particular the case, for the choice S = Scurv. Equipped with appropriate boundary
conditions, this choice leads to the well-known thin-plate-splines.

4 A NUMERICAL SCHEME FOR CLD

In this section we comment on how to efficiently solve the characterizing equations (6) and
(7) for the solution of the new CLD approach. To begin with, we compute the fundamental
solutions or Greens-function ρj of

αA[ρj ] = −δtj , j = 1, . . . , m. (8)

If w is the particular solution of

αA[w] = −f(·, u(·)), (9)

then

u = w +
m∑

j=1

λjρ
j =

(
w1 +

∑m
j=1 λ1

jρ
j
1, . . . , wd +

∑m
j=1 λd

jρ
j
d

)"
, (10)

fulfills equation (6) for any choice of the coefficients λ!
j . If in addition, the coefficients λ!

j are
chosen such that the interpolation conditions (7) are fulfilled, u (cf. (10)) is stationary for
the functional J , which is what we are looking for. Note, that the computation of the λ!

j

does involve the solution of an m×m linear system with the coefficient matrix B! introduced
for landmark registration; see Section 3.3.

In the present form, the outlined computational scheme is not applicable. The problem
is that the computation of w in (9) involves the knowledge of u. As already mentioned
in Section 2, there exist two standard approaches for overcoming this problem. For the
fixed-point type iteration, we start with an initial guess u(k) fulfilling the interpolation
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Table 1: Combined distance measure and landmark based registration
algorithm CLD.

1. Initialize:

(a) Set k = 0, u(k) = 0.
(b) For j = 1, . . . ,m, solve αA[ρj ] = −δtj , end.
(c) Set B! = [ρν

! (tj)]mj,ν=1.

2. Iterate:

(d) Compute f (k)(x) = f(x, u(k), R, T ).
(e) Solve αA[w(k)] = −f (k).
(f) For % = 1, . . . , d,
(g) compute λ! from B!λ! = b!,

(h) set b! := [w!(tj) − tj! + rj
! ]

m
j=1,

(i) compute λ! from B!λ! = b!,

(j) set u(k+1)
! = w(k)

! +
∑m

j=1 λ!
jρ

j
! ,

(k) end.
(l) k -→ k + 1

(m) stop, if converged.

constraints (7), solve αA[w(k+1)] = −f(·, u(k)(·)), and update u(k+1) = w(k) +
∑m

j=1 λjρj .
For a time-marching iteration, we make u (and hence w) time-dependent, replace Eq. (6) by

∂tu = f(x, u(x)) + αA[u](x) +
m∑

j=1

λjδtj [u](x), for all x ∈ Ω, t ≥ 0, (11)

and solve for u. Note, if ∂tw = f(·, u(·)) + αA[w], then Eq. (11) is satisfied by u given
by Eq. (10), since the ρj ’s (cf. Eq. (8)) do not depend on time. Note that Eq. (11) is
nothing but a gradient-flow towards a minimizer of the registration problem. If u becomes
stationary, ∂tu = 0 and thus u is also a solution of Eq. (6).

The overall algorithm is summarized in Table 1. As a stopping rule we used a combination
of the following three criteria,

∥∥∥R − T (·− u(k))
∥∥∥

L2(Ω)
.

∥∥∥R − T (·− u(0))
∥∥∥

L2(Ω)
,

d∑

!=1

∥∥∥f (k)
!

∥∥∥
L2(Ω)

. 1, or

d∑

!=1

∥∥∥u(k)
!

∥∥∥
L2(Ω)

. 1,

where ‖ ·‖ L2(Ω) is the L2-norm.
Some comments are in order. The computation of the fundamental solution ρj (Table 1b)

may be done once and forever, as they are independent of T , R, and the iteration index k.
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Actually, as outlined at the end of Section 3.3, the fundamental solutions are even explicitly
known for various choices of the smoother S. However, this issue is not critical for our
implementation, as we do have competitive fast solvers for the partial differential equations
anyway. In general, the most time consuming part in the iteration loop is the solve for w(k);
see, Table 1e. Here we employ a finite difference scheme, followed by a specifically designed
direct solver for the resulting linear system of equations [16]. For example, for the partial
differential equation associated with the curvature smoother, a proper use of the discrete
cosine transformations leads to an O(N log N) direct scheme for the solution of the linear
system [11]. Apart from the startup phase, the overhead connected to the CLD approach
is the solution of d small m × m linear systems for the parameter λl (Table 1i) and the
update of u (Table 1j). It is worth noticing, that the partial differential equation (Table 1e)
is identical to the one obtained by solving the registration problem without landmarks. In
other words, existing codes can easily be modified to incorporate landmarks.

Finally, a few comments on pre-registration. To perform satisfactory, non-rigid regis-
tration schemes do need a good starting point. Therefore, in general, some sort of pre-
registration has to be performed. Typically, an affine linear registration scheme is applied.
However, as can be seen from the following examples, this strategy does not always work. If
there are some landmarks available, we propose to use the image obtained by a plain land-
mark based registration as starting point for the non-rigid registration. As an outcome, in
all our experiments, the non-rigid scheme did converge very rapidly to the wanted solution.

5 EXAMPLES

In this section we present three example. Two of them are academic and are designed to
show some special features of the CLD scheme as opposed to conventional schemes. We
conclude with a more realistic example. For simplicity and comparison reasons, we used the
distance measure DSSD, and the regularizer Scurv in all examples.

5.1 Landmarks to improve the initial configuration

In the first example, the reference is a big gray square with two inner structures, a small
white square and a triangle; cf. Fig. 2. The difference in the template is that the inner
structures are moved to the bottom.

Apart from the reference and template, Fig. 2 displays four registration results. The first
one (top right image) shows an intermediate result of a plain distance measure based regis-
tration. Here, the inner square is deformed to the triangle and the triangle in the template
disappears. This process is completed after about 50 iterations. Note, since we have a dom-
inating outer gray square this miss-registration cannot be avoided by performing an affine
linear pre-registration, as this pre-registrations does not change the initial configuration at
all.

The second registration (bottom left image) is the result of a plain landmark based
registration. The eleven corners of the reference and template images are used as landmarks.
Note that the displayed landmarks (black “+” on gray background) do not belong to the
images. As it is apparent from this figure, the match of the inner structures is quit good,
however, the edges of the outer gray square are deformed unacceptable.

The third registration (bottom middle image) is again a distance measure based registra-
tion. This time we used the outcome of the landmark based registration as a starting point.
This guarantees a rough match of the inner and outer structures of the images. Here we
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R T DM based, T -→ T (10)

landmark based TL DM based, TL -→ T (20) CLD, TL -→ T (20)

Figure 2: Registration results for the triangle example. top left: reference R, top mid-
dle: template T , top right: intermediate result of a plain distance measure based (DM)
registration (10th iterate), bottom left: result of a landmark based registration (over-
layed with the eleven landmarks), bottom middle: intermediate result of a plain distance
measure based registration (20th iterate) using the outcome of the landmark registration as
starting configuration, bottom right: intermediate result of the CLG registration (20th
iterate) using the outcome of the landmark registration as starting configuration (overlayed
with the eleven landmarks).

display the 20th iterate. After about 50 iterations, the deformed template perfectly matches
the reference.

Finally, the bottom right image displays the 20th iterate of the CLD approach. Again,
after about 50 iterations, the deformed template perfectly matches the reference.

This example demonstrates that the information provided by additional landmarks may
improve any distance measure based registration considerably. Note that a plain landmark
based registration does not lead to a satisfactory registration. Also note, distance measure
based registration has a strong tendency to map edges to edges and corners to corners. Thus,
since the landmarks in this example are all located at corners, the differences between the
third and fourth registration are minor.

5.2 Internal landmarks

In the second example, the reference is again a big gray square, now with an inner white disk
in the top left corner, while in the template, a smaller disk is located in the bottom right
corner; cf. Fig. 3. Note that an affine linear pre-registration would rotate the template image
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R T DM based, T -→ T (10)

landmark based TL DM based, TL -→ T (20) CLD, TL -→ T (20)

Figure 3: Registration results for the disk example. top left: reference R, top middle:
template T , top right: intermediate result of a plain distance measure (DM) based reg-
istration (10th iterate), bottom left: result of a landmark based registration (overlayed
with the five landmarks), bottom middle: intermediate result of a plain distance measure
based registration (20th iterate) using the outcome of the landmark registration as starting
configuration, bottom right: intermediate result of the CLD registration (20th iterate)
using the outcome of the landmark registration as starting configuration (overlayed with the
five landmarks).

in order to map the two disks. As a consequence, the lower right corner of the square would
be moved to the upper left position and thus would produce a miss-registration, assuming
that corresponding corners of the big square should be matched onto each other.

Fig. 3 displays four registration results. The first one (top right image) shows an in-
termediate result of a plain distance measure based registration. Here, the inner disk has
already been contracted considerably and will finally disappear.

The second registration (bottom left image) is a plain landmark based registration. As
landmarks, we used the four corners of the square and the center of the disk. Note that the
displayed landmarks (black “+” on gray background) do not belong to the images. As it is
apparent from this figure, neither the inner disk nor the outer square have been matched
sufficiently. In particular, the disk has been deformed such that the landmark is no longer
in the center of the deformed disk.

The third registration (bottom middle image) is again a distance measure based regis-
tration, but now we used the result of the landmark based registration as a starting point.
Here we show the 20th iterate. Note that the corners of the square as well as the center
of the disk are slightly off. After about 50 iterations, the corners will be mapped onto the
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corners of the reference image, however, the center of the disk remains off by about 2%.
Finally, in the bottom right image, we show the 20th iterate of the CLD approach,

where again after about 50 iterations the result is a copy of the reference. Note that this
time the position of the landmarks is fixed by construction. Thus, we are able to guarantee
a one-to-one point match of corresponding landmarks.

This example demonstrates the difference between a distance measure based registration
starting with a landmark based pre-registration and our CLD approach. As it turns out,
distance measure based registration techniques do produce in general very good results. If
in particular landmarks are located at edges or corners, the registration leads to an almost
one-to-one relation of these landmarks. However, if landmarks are not related to edges or
corners, landmarks can be miss-registered. The main point is, that in our CLD approach the
correspondence of the landmarks is not be chance or just for specific landmarks. The new
approach produces by construction a one-to-one correspondence, which can be guaranteed.

5.3 X-rays of human hands

Figure 4 displays the registration of X-rays of a two human hands. These images are popular
choice for testing registration schemes [1]. Again, the plain landmark based approach (middle
left image) does produce a visually unpleasing result. The result after curvature registration
(top right image) looks perfect. However, a close examination shows that the landmarks
are slightly off. Finally, we display several intermediate steps of the CLD scheme. It shows
that not only the landmarks are perfectly matched but also the remaining part is nicely
registered.

6 CONCLUSIONS

We have proposed a novel framework for parameter-free, non-rigid registration schemes
which allows for the additional incorporation of user prescribed landmarks. The new CLD
approach enhances the reliability of conventional approaches considerably and thereby their
acceptability by practitioners in a clinical environment. Also, the new feature enables the
user to incorporate pre-knowledge and thereby to guide the scheme to the desired solution.

It has been shown that the new CLD approach does compute a displacement field which
is guaranteed to produce a one-to-one match between given landmarks and at the same time
minimizes an intensity based measure for the remaining parts of the images. Moreover, its
complexity is comparable to the ones for conventional registration schemes, which are not
capable to incorporate additional landmark information.

We note that the new approach is easily extendable to incorporate other anatomic fea-
tures like curves, crest lines, etc. Also, it is possible to substitute the interpolatory con-
straints by some approximation constraints, which soften at will the hard requirement that
landmarks should be perfectly matched on top of each other. We will report on these
approaches as well as on the application of our CLD scheme for the registration of high-
resolution anatomical atlas of a human hip onto a low-resolution CT scan, needed for surgery
planning, in a forthcoming paper.

The outlined framework is content of the patent AZ 102 53 784.4.
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