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Fast image registration – a variational approach
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Image registration is central to many challenges in medical imaging and therefore it has a vast
range of applications. The purpose of this note is to provide a unified but extremely flexible
framework for image registration. This framework is based on a variational formulation of the
registration problem. We discuss the framework as well as some of its most important building
blocks. These include some of the most promising non-linear registration strategies used in today
medical imaging.

The overall goal of image registration is to compute a deformation, such that a deformed
version of an image becomes similar to a so-called reference image. Hence, the similarity measure
is an important building block. Depending on the application at hand, it is inevitable to constrain
the wanted deformation in an appropriate way. Thus, regularization is also a main building
block. Finally, it is often desirable to incorporate higher level information about the expected
deformation. We show how such constraints or information can easily be integrated in our general
framework and discuss some examples. Moreover, the proposed general framework allows for a
unified algorithmic treatment of the various building blocks.

1 Introduction

Registration is the determination of a geometrical transformation that aligns points in one view
of an object with corresponding points in another view of the same object or a similar object.
There exist many instances in a medical environment which demand for a registration, including
the treatment verification of pre- and post-intervention images, study of temporal series of cardiac
images, and the monitoring of the time evolution of an agent injection subject to patient motion.
Another important area is the need for combining information from multiple images, acquired
using different modalities, like for example computer tomography (CT) and magnetic resonance
imaging (MRI).

To be successful, each individual application should be treated by a specific registration tech-
nique. It is the purpose of this note to provide a general (theoretical) framework and a (practical)
software toolbox for non-linear registration schemes, which may be adapted to the special problem
class under consideration. The main building blocks of this toolbox resemble typical user demands
and may be assembled in a consistent and intuitive fashion.

Due to the wide range of applications a variety of different registration techniques have been
developed. Here, we focus on so-called intensity-driven approaches. These schemes aim to match
intensity pattern between a deformed scan (template) and the target (reference) based on a mathe-
matical similarity measure. For this type of problems, we provide a toolbox of registration routines
which enables the user to choose in a consistent way building blocks for schemes which cover a
wide range of applications. The idea is to phrase each individual block in terms of a variational
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formulation. This not only allows for a unified treatment but also for a fast and reliable imple-
mentation. The various building blocks comprises three categories: smoother and internal forces,
distances and external forces, and “hard” or “soft” constraints.

Internal forces are defined for the wanted displacement field itself and are designed to keep
the displacement field smooth (or “natural”) during deformation. In contrast, external forces are
computed from the image data and are defined to drive the displacement in order to arrive at the
desired registration result. Whereas the internal forces implicitly constrain the displacement to
obey a smoothness criteria, the additional constraints force the displacement to satisfy explicit
criteria, like for example landmark or volume preserving imposed constraints.

2 A variational concept

Given two images, a reference R and a template T , the aim of image registration is to find a global
and/or local transformation from T onto R in such a way that the transformed template matches
the reference. Ideally there exists a coordinate transformation u such that the reference R equals
the transformed template Tu, where Tu(x) = T (x − u(x)). Given such a displacement u, the
registration problem reduces to a simple interpolation task. However, in general it is not possible
to come up with a perfect u, and the registration problem is to compute an application conformal
transformation u, given the reference and template image.

It should be pointed out, that apart from the fact that a solution may not exist, it is not
necessarily unique. For an example, see Modersitzki [11]. In other words, intensity based
registration is inherently an ill-posed problem. That is, a regularization of the problem is necessary.

Another important issue is the fact, that a displacements u which does produce a perfect
or nearly perfect alignment of the given images is not necessarily a “good” displacement. For
example, a computed displacement which interchanges the eyes of one patient when registered to
a probabilistic atlas in order to produce a nearly perfect alignment, has obviously to be discarded.
Also, folding and cracks of the transformed template are typically not wanted. Therefore it
is desirable to have a possibility to incorporate features into the registration model, such that
the computed displacement u does resemble the properties of the acquisition, like for example
the elastic behavior of a human brain. To mimic the elastic properties of the objects under
consideration is a striking example for internal forces. These forces constrain the displacement to
physically meaningful movements.

In contrast, the external forces are designed to push the deformable template into the direction
of the reference. These forces are based upon the intensities of the images. The idea is to design
a similarity measure, which is ideally calculated from all voxel values. An intuitive measure is the
sum of squares of intensity differences (SSD). This is a reasonable measure for some applications
like the serial registration of histological sections. If the intensities of corresponding voxels are no
longer identical, the SSD measure may perform poorly. However, if the intensities are still linearly
related, a the correlation coefficient (CC) based measure is the measure of choice for monomodal
situations. In contrast, the mutual information (MI) related measure is based on the cooccurrence
of intensities in both images as reflected by their joint intensity histogram. It appears to be the
most successful similarity measure for multimodal imaginary, like MR-PET.

Finally, one may want to guide the registration process by incorporating additional information
which may be known beforehand. Among these are landmarks and fiducial markers. Sometimes it
is also desirable to impose a local volume-preserving (incompressibility) constraint which may, for
example, compensate for registration artifacts frequently observed by processing pre- and post-
contrast images. Depending on the application and the reliability of the specific information, one
may want to insist on a perfect fulfillment of these constraints or on a relaxed treatment. For
examples, in practice, it is a tricky (and time consuming) problem to determine landmarks to



NACoM-2003 Extended Abstracts 3

subvoxel precision; see, e.g., Rohr [14]. Here, it does not make sense to compute a displacement
which produces a perfect one to one match between the landmarks.

Summarizing, the general registration problem may be phrased as follows.
(IR) image registration problem:

J [u] = D[R, T ;u] + αS[u] = min, subject to Cj [u] = 0, j = 1, 2, . . . ,m.

Here, D models the distance measure (external force, e.g., MI), S the smoother or regularizer
(internal force, e.g., elasticity), and C explicit constraints (e.g., landmarks). The regularization
parameter α may be used to control the strength of the smoothness of the displacement versus
the similarity of the images.

3 The building blocks

Our approach is valid for images of any spatial dimension d, i.e., there is no restriction to d =
2, 3, 4. The reference and template images are represented by the compactly supported mappings
R, T : Ω → R, where without loss of generality, Ω =]0, 1[d. Hence, T (x) denotes the intensity of
the template at the spatial position x, where for ease of discussion we set R(x) = bR and T (x) = bT

for all x #∈ Ω. Here, bR and bT are appropriately chosen background intensities. The overall goal
is to find a displacement u, such that ideally Tu is similar to R, where Tu is the deformed image,
i.e., Tu(x) = T (x − u(x)). Note that u = (u1, . . . , ud) denotes a vector field.

The starting point of our numerical treatment is the minimization of problem (IR). In order
to compute a minimizer we apply a steepest descent method, where we take advantage of the
calculus of variations. To end up with an efficient and fast converging scheme, we require to have
explicit expressions of the derivatives of building blocks D, S, and C. In the following subsections
we will exemplarily discuss the most popular building blocks as well as their derivatives.

3.1 Smoother and Internal Forces

The nature of the deformation depends strongly on the application under consideration. For
example, a slice of a paraffin embedded histological tissue does deform elastically, whereas the
deformation between the brains of two different individuals is most likely not elastically. Therefore,
it is necessary to supply a model for the nature of the expected deformation. We now present
some of the most prominent smoothers S. An important point is, that we are not restricted to a
particular smoother S. Any smoother can be incorporated into the toolbox, as long as it possesses
a Gâteaux-derivative. In an abstract setting, the Gâteaux-derivative looks like

dS[u; v] := lim
h→0

1
h

(S[u + hv] − S[u]) =
∫

Ω
〈A[u], v〉Rd dx,

where A denotes the associated linear partial differential operator. Note that for a complete
derivation one also has to consider appropriate boundary conditions. However, these details are
omitted here for presentation purposes; see Modersitzki [11] for details.

Elastic registration. This particular smoother measures the elastic potential of the deformation.
In connection with image registration it has been introduced by Broit [2] and discussed by vari-
ous image registration groups; see, e.g., Bajcsy & Kovačič [1] or Fischer & Modersitzki [4].
The partial differential operator associated with the Gâteaux-derivative of the elastic potential
is the well-known Navier-Lamé operator. For this smoother, two natural parameters, the so-
called Lamé-constants can be used in order to capture features of the underlying elastic body. A
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striking example, where the underlying physics suggests to look for deformations satisfying elas-
ticity constraints, is the three-dimensional reconstruction of the human brain from a histological
sectioning. Details are given in Modersitzki [11].

Fluid registration. Due to the fact that an elastic body memorizes its non-deformed initial state
(rubber band), elastic registration schemes are only able to compensate for small deformations.
The situation changes for the viscous fluid model. Here the body adapts to its current state
(honey) and consequently is much more flexible than an elastic body. The viscous fluid approach
was introduced to image registration by Christensen [3]. His derivation was based on a specific
linearization of the Navier-Stokes equation. However, there is yet another derivation of the
underlying partial differential equations, which does fit into “design rules of our toolbox. Roughly
speaking, one obtains these equations by considering the elastic potential of the velocity of the
displacement field. It should come as no surprise that the partial differential operator is again the
Navier-Lamé operator, this time, however, applied to the velocity. The wanted deformation is
related to the velocity via the material derivative and is straightforward to recover.

Since the viscous fluid approach is quite flexible, it is mainly used when the focus is more on
similarity than on a “natural deformation process. For example, for the design of a probabilistic
brain atlas, a biophysical model for the nature of the deformations is not available. However, the
fluid registration has been proven to be a valuable tool.

Diffusion registration. For image registration problems Fischer & Modersitzki [5] introduced
the so-called diffusion regularization,

Sdiff [u] := 1
2

∑d
!=1

∫
Ω ‖∇u!‖2 dx, (1)

which is well-known for optical flow applications; see Horn & Schunck [10]. The associ-
ated Gâteaux-derivative leads to the well-studied Laplace-operator, i.e., Adiff [u] = ∆u =
(∆u1, . . . ,∆ud), where ∆u! = ∂x1x1u! + · · · + ∂xdxdu!. It measures the gradient of the deforma-
tion. The main reason for introducing this smoother was its exceptional computational complexity.
Fischer & Modersitzki [5] devised an O(N) (!) implementation of the registration scheme,
where N denotes the number of image voxels. It is based on an additive operator splitting scheme
(which parallelizes in a very natural way). Its outstanding computational speed makes the diffu-
sion registration scheme to a very attractive option for high-resolution, high dimensional, and/or
time critical applications. Examples include the registration of a time series of three-dimensional
MRI’s or the online correction of the so-called brain shift during the surgery.

Curvature registration. As a last example, we present the curvature smoother,

Scurv[u] := 1
2

∑d
!=1

∫
Ω (∆u!)

2 dx, (2)

introduced by Fischer & Modersitzki [7], which measures the curvature of the deformation.
The design principle behind this choice was the idea to make the non-linear registration phase
more robust against a poor (affine linear) pre-registration. Since the smoother is based on second
order derivatives, affine linear maps do not contribute to its costs. In contrast to other non-linear
registration techniques, affine linear deformations are corrected naturally by the curvature ap-
proach. Again the Gâteaux derivative is explicitly known and leads to the so-called bi-harmonic
operator Acurv[u] = ∆2u.

3.2 Distances and External Forces

Another important building block is the similarity criterion. As for the smoothing operators, we
concentrate on those measures D which allow for differentiation. Moreover, we assume that there
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exists a function f : Rd × Rd → Rd, the so-called force field, such that

dD[R, T ;u; v] = lim
h→0

1
h

(D[R, T ;u + hv] −D[R, T ;u]) =
∫

Ω
〈f(R, T, x, u(x)), v(x)〉Rd dx.

Again, we are not restricted to a particular distance measure. Any measure can be incorporated
into our toolbox, as long as it permits a Gâteaux-derivative and a force field. Among those are
the most common choices for distance measures in image registration, namely the sum of squared
differences, cross correlation, cross validation, and mutual information. Exemplarily, we discuss
two of them; see Modersitzki [11] or Roche [12] for details.

Sum of squared differences. The measure is based on a point-wise comparison of image intensities,

DSSD[R, T ;u] := 1
2

∫
Ω

(
R(x) − Tu(x)

)2
dx,

and the force-field is given by fSSD(R, T, x, y) = (T (x − y) − R(x)) ·∇T (x − y). This measure is
often used when images of the same modality have to be registered.

Mutual information. Another popular choice is mutual information. It basically measures the
entropy of the joint density ρR,T , where ρR,T (g1, g2) counts the number of voxels with intensity g1

in R and g2 in T . The precise formula is

DMI[R, T ;u] := −
∫

R2 pR,Tu log pR,Tu

pRpTu d(g1, g2),

where pR and pTu denote the marginal densities. Typically, the density is replaced by a Parzen-
window estimator; see, e.g. Viola [15]. The associated force-field is given by

fMI(R, T, x, y) =
∫

Ω
[Ψσ ∗ ∂g2L

R,Tu ](R(x), Tu(x)) · 〈∇Tu(x), v(x)〉Rd ,

where LR,Tu := 1 + pR,Tu(log pR,Tu − log(pRpTu) and Ψ is the Parzen-window function; see, e.g.,
Hermosillo [9] or Viola [15]. This measure is useful when images of a different modality have
to be registered.

3.3 Additional Constraints

Often it is desirable to guide the registration process by incorporating additional information which
may be known beforehand, like for example fiducial marker. To incorporate such information, the
idea is to add additional constraints to the minimization problem. For example, to restrict the
deformation to volume preserving mappings, one has to add the quantity C[u] := 1

2

∫
Ω(det∇u)2 dx

to the smoother; see also Rohlfing & Maurer [13]. Note that the Jacobian det∇u(x) has to
vanish, if the deformation at x is incompressible.

In other applications, one may want to incorporate landmarks or fiducial markers. Let rj be
a landmark in the reference image and tj be the corresponding landmark in the template image.
The toolbox allows for either adding explicit constraints Cj [u] := u(tj)− tj + rj , j = 1, 2, . . . ,m,
which have to be precisely fulfilled Cj [u] = 0 (“hard” constraints), or by adding an additional cost
term C[u] :=

∑m
j=1 λj ‖Cj [u]‖2

Rd to the smoother (“soft” constraints, since we allow for deviations).
For a more detailed discussion, we refer to Fischer & Modersitzki [6].

4 Numerical Treatment

As already pointed out, our numerical approach is based on the Euler-Lagrange equations for
the problem (IR)

A[u](x) + f(R, T, x, u(x)) +
∑m

j=1 λjdCj [u](x) = 0 and Cj [u] = 0, j = 1, . . . , m,
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which basically states, that all associated Gâteaux-derivatives have to vanish. Here, A is related
to the Gâteaux-derivative of S and λj ’s are Lagrange parameter. It remains to efficiently solve
this system of non-linear partial differential equations. Of course, different solution schemes can
be used; see, e.g., Henn & Witsch [8]. We use a time-stepping approach. After an appropriate
space discretization, we end up with a system of linear equations. As it turns out, these linear
systems have a very rich structure, which allows one to come up with very fast and robust solution
schemes for all of the above mentioned building blocks; see Modersitzki [11]. It is important
to note that the system matrix does not depend on the force field and the constraints. Thus,
changing the similarity measure or adding additional constraints does not change the favorable
computational complexity. Moreover, fast and parallel solution schemes can be applied to even
more reduce the computation time.

5 Conclusions

In this note we presented a general approach to image registration. Its flexibility enables one
to integrate and to combine in a consistent way various different registration modules.We dis-
cussed the use of different smoothers, distance measures, and additional constraints. The numer-
ical treatment is based on the solution of a partial differential equation related to the Euler-
Lagrange equations. These equations are well studied and allow for fast, stable, and effi-
cient schemes. Various computed real life examples may be found on the authors home-page:
http://www.math.uni-luebeck.de/SAFIR.
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