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Combining landmark and intensity driven registrations

One of the challenging tasks in today image processing is image registration. Image registration is inevitable whenever
images taken for example at different times or from different perspectives need to be compared or integrated. Typically,
the location of corresponding points in the different views of one object or even different objects is distorted, for
example, due to motion or different properties of the underlying optical systems of imaging devices. Thus, a basic
problem is to find a meaningful spatial transformation of one image, such that the transformed image becomes similar
to a second one. For many application, it is also desirable to guide the registration by additional information, for
example, the locations of outstanding points. In this note, be present a general variational based approach for image
registration which allows the choice of a user supplied similarity measure and a user supplied regularizer as well as
the integration of external knowledge, like, for example, the location of outstanding points.

1. The image registration problem

In particular in medical imaging, registration schemes are known to be valuable tools in various settings, like, e.g., the
comparison of pre- and post biopsy images. For an overview we refer to Brown [4], Maurer & Fitzpatrick [13],
van den Elsen et al. [18], or Maintz & Viergever [12]. The currently available schemes can roughly be
divided in two classes: landmark based and intensity based registration schemes. In this paper, we present a
rigorous mathematical framework for combining these two techniques, in order to benefit from the advantages of
both strategies.

Intensity based approaches aim to match images by minimizing an appropriate distance measure, like, e.g., the
L2-norm of the difference image or the mutual information of the two images; see, e.g., Brown [4], Collignon
et al. [6], Roche [15], or Viola [19]. Based on these distance measure, a variety of registration techniques
has been developed; see, e.g., D’Agostino et al. [7], Hermosillo [10], or Modersitzki [14]. These techniques
are generally full automatic and yield a good registration on the average. However, they may perform poorly for
specific, important locations like anatomical landmarks. On the opposite, landmark based registration techniques
are designed to accurately match user specified landmarks; see, e.g., Rohr [16]. A drawback of landmark based
registration is the fact that the intensities of the images are completely neglected. Consequently, the registration
result away from the landmarks may be very poor.

Here, we propose a framework for combining any distance measure based registration with landmark information.
We also present a general numerical procedure for computing the wanted transformation as well as a particular
implementation for a specific distance measure based registration technique. The general procedure computes a
displacement field which is guaranteed to produce a one-to-one match between given landmarks and at the same
time aims to minimize an intensity based measure for the remaining parts of the images.

It is important to observe, that the presented novel technique for combining intensity driven and landmark based
approaches is independent on the two main building blocks. Moreover, it is also easily possible to add other
constraints, like, for example, the restriction to volume preserving maps.

2. The general framework

In this section we set the mathematical framework and briefly introduce the landmark based and intensity driven
approaches. Finally, we describe our new approach and discuss its basic ideas.

Let d ∈ IN denote the dimension of a spatial domain Ω ⊂ IRd, where without loss of generality, we assume Ω =]0, 1[d.
Furthermore, let R, T : Ω → IR denote the two images. Hence, T (x) denotes the intensity of the template at the
spatial position x, where for ease of discussion we set R(x) = bR and T (x) = bT for all x $∈ Ω and bR and bT are
appropriate chosen background values. The overall goal is to find a displacement u : IRd → IRd, such that ideally Tu

is similar to R, where Tu(x) = T (x − u(x)). Note that u denotes a vector field.

There are various ways of computing a suitable displacement u. We present a variational approach which has three
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building blocks. The first one of them computes internal forces, which are defined for the wanted displacement field
itself, the second one is responsible for external forces, which are computed from the image data, and the third one
is related to external constraints. The internal forces are designed to keep the displacement field smooth during
deformation while the external forces are defined to obtain the desired registration result. Constraints can be used to
supply additional information about the transformation. It turns out that most of these schemes may be formulated
in the following fashion; for details see, e.g., Modersitzki [14].

(IR) Find a displacement u : IRd → IRd, such that
J [u] := D[R, T ;u] + αS[u] = min, subject to Cj [u] = 0, j = 1, . . . ,m,

where D represents a distance measure (external force) and S determines the smoothness of u (internal force),
and the Cj ’s specify additional constraints.

The parameter α may be used to control the strength of the smoothness of the displacement versus the similarity
of the images. The second term S is unavoidable. Arbitrary transformations may lead to cracks, foldings, or other
unwanted deformations. From a mathematical point of view, S may also be seen as a regularizing term introduced
in order to rule out discontinuous and/or suboptimal solutions, having in mind that image registration is an ill-posed
problem.

The smoother S

Various choices for the smoothing term S have been considered. This is mainly motivated by the fact that particular
applications demand for particular properties of the displacement field. In view of the need for fast numerical imple-
mentations, we concentrate on differentiable regularizer S, i.e., functionals where the Gâteaux-derivative dS[u; v],
given by

dS[u; v] := lim
h→0

1
h

(S[u + hv] − S[u]) =
∫

Ω
〈A[u], v〉IRd dx,

exists. Here, A denotes the associated linear partial differential operator. The most popular choices for intensity
driven registration, the so-called curvature ( [9]), demon (cf. Thirion [17]), diffusion ( [8]), elastic (cf. Broit [3] or
Bajcsy & Kovačič [1]), and fluid (cf. Christensen [5] or Bro-Nielsen [2]) registration are based on regularizer
which belong to this class. For a general treatment and the derivation of the different partial differential operators
we refer to Modersitzki [14].

The numerical examples shown in Section ?? are based on the so-called curvature regularizer (cf. [9])

S[u] :=
1
2

d∑

!=1

∫

Ω
(∆u!)

2 dx. (1)

Here, the associated partial differential operator

A[u] = (∆2u1, . . . ,∆2ud)" with ∆2u! =
d∑

j,k=1

∂xjxjxkxku!

is nothing but the well-known biharmonic operator, which is rotationally invariant and decouples with respect to
the spatial coordinates.

R e m a r k 1. Let q ∈ IN, κ ∈ INd, Dκ be a partial differential operator, Dκf := ∂κ1
x1

· · · ∂κd
xd

f , and

〈f, g〉 :=
∑

|κ|=q

cκ

∫

IRd

(Dκf) (Dκg) dx

be a semi-inner product. Note that if 2q > d, the point evaluate functionals belongs to the dual of Hq ∩ C(IRd) ∪
Πq−1(IRd); cf. Light [11]. Since q = 2 in Eq. (1), the analysis presented in the following holds for spatial dimen-
sion d < 4.

The distance measure
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In the literature one may also find various choices for the distance measure. Again, we concentrate on those measures
D which allow for differentiation, i.e., there exists a function f : IRd × IRd → IRd with

dD[R, T ;u; v] = lim
h→0

1
h

(D[R, T ;u + hv] −D[R, T ;u]) =
∫

Ω
〈f(x, u(x)), v(x)〉IRd dx.

Here and elsewhere, f is frequently called force field.

Probably the most popular choice for a distance measure, having this property, is provided by the so-called sum of
squared differences (SSD)

D[R, T ;u] := 1
2‖R − Tu‖2

L2
=

1
2

∫

Ω
(T (x − u(x)) − R(x))2 dx.

The associated force field looks like f(x, u(x)) = (R(x)−T (x−u(x)))·∇T (x−u(x)). For this measure to be successful,
one has to assume that the intensities of the two given images are comparable. Other distance measures, capable of
dealing with multimodal images, like, e.g., mutual information (cf., e.g., Collignon et al. [6] or Viola [19]), are
also under consideration; see, e.g., D’Agostino et al. [7], Hermosillo [10], or Roche [15].

Note that the unconstraint image registration problem (IR) gives a pure distance measure registration scheme.

The incorporation of landmarks

Let us now briefly introduce the landmark constraints. To this end, let the landmarks rj , tj ∈ IRd, j = 1, . . . , m, be
given. The idea is to find a smooth displacement u such that

Cj [u] := u(tj) − tj + rj = 0 for j = 1, . . . , m. (2)

Note that the transformation is given by φ(x) = x − u(x) and hence Eq. (2) reads φ(tj) = tj − u(tj) = rj , i.e.,
tj is mapped onto rj , j = 1, . . . ,m. As it is apparent, the distance between R and T is no longer part of the
functionals Cj . The images enter into the constraints only through the landmarks.

To compute the Gâteaux-derivative of Cj , it is helpful to consider the point-evaluation functional δ; see also
Remark 1. With δz[u] = u(z), the interpolation constraints read Cj [u] = δtj [u] − tj + rj = 0, j = 1, . . . , m, and the
derivative is given by gj [u] = δtj .

Note that the image registration problem (IR) without distance measure (or with D[R, T ;u] := 0) gives a plain
landmark registration scheme:

(IR-L) Find a displacement u : IRd → IRd, such that S[u] = min, subject to Cj [u] = 0, j = 1, . . . , m.

The Euler-Lagrange equations (ELE) of (IR-L) are

0 = A[u] +
m∑

j=1

λjgj [u] and Cj [u] = 0, j = 1, . . . , m; (3)

cf., e.g., Rohr [16].

For the particular choices of S (cf. eq. (1)) and Cj (cf. eq. (2)), the ELE (3) simplifies to

∆u! +
m∑

j=1

λj,! δtj
!

= 0, ' = 1, . . . , d, and Cj [u] = 0, j = 1, . . . , m,

where δtj
!

denotes the uni-variate point evaluation functional. Let ρj denote a fundamental solution (or Greens
function) of A[ρj ] = −δtj , the wanted solution can be phrased as

u =
m∑

j=1

λjρ
j =

(∑m
j=1 λj,1ρ

j
1, . . . ,

∑m
j=1 λj,dρ

j
d

)
,
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where the free coefficients λj,! are determined by the interpolation constraints, i.e., B!λ! = b!, where

λ! = (λ!,1, . . . ,λ!,m)" ∈ IRm, B!
j,ν := ρν

! (tj), B! = [B!
j,ν ]mj,ν=1 ∈ IRm×m, b! = (rj

! − tj!)
m
j=1 ∈ IRm.

The Euler-Lagrange equations for the registration problem (IR)

Summarizing, the ELE for the image registration problem (IR) read

f(x, u(x)) + αA[u](x) +
m∑

j=1

λjgj [u] = 0, x ∈ Ω. (4)

Here, f is related to the Gâteaux-derivative of the distance measure D and the partial differential operator A is
related to the Gâteaux-derivative of the smoother S, and gj is related to the Gâteaux-derivative of the constraint
Cj . If in particular the landmark interpolation constraints are under consideration, gj [u] = δtj

To solve the semi-linear Euler-Lagrange equations either a fixed-point type iteration scheme

αA[u(k+1)](x) = −f(x, u(k)(x)) −
m∑

j=1

λjgj [u(k)] = 0, k ≥ 0,

or a time-marching iteration

∂tu
(k+1)(x, t) = −f(x, u(k)(x, t)) − αA[u(k+1)](x, t) −

m∑

j=1

λjgj [u(k)], k ≥ 0,

with u(0)(x, 0) = 0, may be employed. The main work in each iteration is the solve for u(k+1), i.e., the solution of a
linear partial differential equation. Here, we are using a finite-difference approximation of the equation followed by
the application of an efficient solver for the resulting linear system of equations. For many regularizers S, the related
sparse linear systems do have a rich structure, which may be used to advantage. Here, specific implementations lead
to overall schemes with complexity O(N log N) or even O(N), where N denotes the number of voxel. The actual
complexity depends on the chosen smoother S; for details see Modersitzki [14].

Obviously, multiresolution type techniques can be used in order to reduce computation time and for an additional
regularization of the registration problem (IR). However, for ease of presentation the following derivation is on one
scale only.

The precise formulation of Eq. (4) for the 'th component of the multivariate functions reads

f!(x, u(x)) +
d∑

ν=1

(
A!,ν [uν ] +

∑m
j=1λ

!
jg

!
j

)
= 0 and Cj [u!] = 0, j = 1, . . . ,m.

Here, u = (u1, . . . , ud)", the point evaluation function δ is univariate, i.e., δtj [u!] = u!(tj) ∈ IR, and A!,ν denotes
the 'th component of the operator A acting on the νth component of u. For example, if S = Scurv (cf. eq. (1)), we
have A!,ν =

∑d
j,k=1 ∂xjxjxkxk if ' = ν and A!,ν = 0 if ' $= ν.

Let ρj denote the multivariate fundamental solution or Greens-functions of A[ρj ] = −δtj . Then the wanted solution
can be written as

u =
m∑

ν=1

λνρ
ν =

(∑m
ν=1 λ

1
νρ

ν
1 , . . . ,

∑m
ν=1 λ

d
νρ

ν
d

)"
.

The free coefficients λ!
ν are determined by the interpolation constraints

m∑

ν=1

λ!
νρ

ν
! (tj) = dj

! , j = 1, . . . ,m, ' = 1, . . . , d,

which may be written in compact notation as B!λ! = b!, where

λ! := (λ!
1, . . . ,λ

!
m)" ∈ IRm,

B!
j,ν := [ρν

! (tj)]mj,ν=1 ∈ IRm×m,
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and b!
j := (d1

! , . . . , d
m
! )" ∈ IRm.

For various choices of S, the Greens-functions are explicitly known. Often they are given in terms of a (univariate)
radial basis function ρ̂ via ρν

! (x) = ρ̂(‖x−xT,ν‖IRd). This is in particular the case, for the choice S = Scurv. Equipped
with appropriate boundary conditions, this choice leads to the well-known thin-plate-splines.
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