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Abstract. In this paper we present a novel 3-D free-form non-rigid reg-
istration algorithm which combines the mutual information similarity
measure with a particular curvature based regularizer, which has been
demonstrated to produce very satisfactory results in conjunction with the
sum of squared differences distance measure. The method is evaluated for
inter-subject MR brain image registration using simulated deformations
and compared with a scheme that applies the same similarity measure
but with a viscous fluid regularizer.

1 Introduction

Non-rigid image registration of two three-dimensional (3-D) medical image vol-
umes involves finding the 3-D vector field of 3-D displacements that maps each
point in the reference image onto its anatomically corresponding point in the
template image, such that the template image can be geometrically deformed or
warped to exactly match the reference image. Typical applications include at-
las construction, atlas-based segmentation, shape analysis or motion estimation.
Recovering the deformation field from the image data itself requires specification
of a proper similarity measure for assessing the quality of the match and of a
suitable regularization scheme to exclude non-realistic deformation and to assure
that the problem is mathematically well-posed.

Maximization of mutual information (MMI) of corresponding voxel intensi-
ties has been demonstrated to be highly succesful for affine image registration [7]
and several approaches have been proposed to extend the MMI criterion to non-
rigid matching. These differ in the way mutual information (MI) is computed
when varying the registration parameters and in the regularization constraints
that are imposed on the deformation field. While ideally regularization should
incorporate biomechanical or statistical models of tissue deformation, in practice
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most regularization schemes for non-rigid registration are purely mathematical
and can be categorized as either implicit or explicit. Implicit schemes repre-
sent the deformation field using basis functions with built-in smoothness, e.g.
B-splines [10], such that the registration solution is constrained to be within a
particular class of transformations. Explicit schemes on the other hand allow
for free-form deformations of individual voxels, but penalize displacements that
violate local smoothness. The main advantage of explicit regularization is the
possibility of incorporating physical properties of the objects to be registered,
like for example elasticity. Moreover, this approach is more flexible, in the sense
that the set of transformations that can be recovered, is in general much larger.
In addition, the numerical treatment of the explicitly regularized registration
problems leads to systems of partial differential equations for which fast, stable,
and efficient solvers are available.

Recently, Hermosillo et al. [6] and D’Agostino et al. [1] constructed a voxel-
wise force field that allows to drive free-form registration such as to maximize
MI, by deriving the gradient of MI with respect to single voxel displacements us-
ing a continuous and differentiable representation of the joint intensity histogram
based on Parzen estimation. While [6] and [1] combined the MMI force-field with
an elastic and a viscous fluid regularizer respectively, in this paper we apply the
MMI criterion in conjunction with the curvature based regularizer presented by
Fischer and Modersitzki [4] . In contrast to other regularizers, affine linear trans-
formations are not penalized by the curvature regularizer, such that non-rigid
registration is less sensitive to non-optimal affine pre-registration or may even
be applied without prior affine registration. The purpose of this work is two-
fold: firstly, we demonstrate that the force field derived in [6, 1] can be applied
succesfully to drive MMI using different regularization kernels, such that vari-
ous regularizers can be investigated for a particular application in conjunction
with the same MI similarity measure; secondly, we present some initial results
comparing the performance of the viscous fluid and curvature based regularizers
for inter-subject MR brain image registration, both allowing large deformations.
Our results indicate that acceptable and comparable registration results can be
obtained using different regularization schemes and different numerical solvers,
such that selecting an optimal regularizer is non-trivial.

The paper is organized as follows. In Section 2 we describe the curvature
based regularization scheme and the numerical solver proposed in [4] and dis-
cuss some implementation issues. In Section 3 we investigate the performance of
the curvature regularizer in function of its parameters and present a quantita-
tive comparison with the viscous fluid regularizer of [1] for recovering simulated
deformations of MR brain images.

2 Method

2.1 Similarity measure

Given two image volumes R and T defined on a domain Ω ⊂ R3 with T (x)
denoting the intensity of T at x ∈ Ω, the purpose of non-rigid image registration
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is to find the deformation field u : R3 → R3 that maps points in R onto their
corresponding points in T , such that the deformed template Tu = T (x − u(x)),
becomes similar to R. Mutual information measures the similarity between R
and Tu by the Kullback-Leibler distance

MI[R, T ;u] =
∫

R2
pR,Tu log

pR,Tu(g1, g2)
pR(g1)pTu(g2)

d(g1, g2), (1)

with pR,Tu(g1, g2) the joint intensity density of intensities g1 in R and g2 in
Tu with marginal densities pR(g1) and pTu(g2) respectively. Following the ap-
proach of [1], we estimate the density pR,Tu by the Parzen-window density esti-
mator p̂R,T based on a sample Ωd of Ω using a Gaussian Parzen-window function
Ψσ : R2 → R with width σ whose choice is discussed below:

Ψσ(g1, g2) =
1

2πσ
exp

(
− g2

1 + g2
2

2σ
)
,

pR,T (g1, g2) ≈ p̂R,T (g1, g2) :=
1

#Ωd

∑

x∈Ωd

Ψσ(g1 − R(x), g2 − T (x)), (2)

pR(g1) ≈ p̂R(g1) :=
∫

R
p̂R,T (g1, g2) dg2,

pT (g2) ≈ p̂T (g2) :=
∫

R
p̂R,T (g1, g2) dg1,

such that

MI[R, T ;u] ≈ M̂I[R, T ;u] :=
∫

R2
p̂R,Tu log

p̂R,Tu

p̂Rp̂Tu
d(g1, g2) (3)

2.2 The regularizer

Different cost functionals S for regularization of free-form deformations have
been proposed in the literature and have been evaluated by Modersitzki [8] for
unimodal image registration in conjunction with the sum of squared differences
similarity measure. In this paper, we focus on the so-called curvature regularizer
Scurv introduced in [4] :

Scurv[u] =
3∑

$=1

∫

Ω
(∆u$)2 dx. (4)

Apart from its smoothness, the main advantage of this regularizer is its ability to
automatically correct for affine linear deformations. This is due to the fact that
the smoother is based purely on second order derivatives which do not penalize
affine linear transformations, i.e.,

Scurv[Bx + c] = 0 for all B ∈ R3×3, c ∈ R3.
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Thus, in view of the fact that an affine linear pre-registration may be suboptimal,
the curvature regularizer allows for an automatic correction of the affine linear
parts. Other regularizers, such as the elastic, fluid, or diffusion regularizers, do
not have this feature. It has been validated that the curvature regularizer is
much less sensitive to the initial position of the images to be registered [4] .

Combining the MI similarity measure and the regularization cost in a single
functional, the registration problem consists of finding the deformation u which
minimizes the joint criterion

J [u] := −M̂I[R, T ;u] + αScurv[u], (5)

where the parameter α > 0 controls the strength of the regularization versus the
similarity of the images. The role of α is investigated in Section 3 below.

2.3 Optimization

To compute a solution for this minimization problem, we use a steepest descent
method considering that the first variation of the combined functional J vanishes
at the optimum. To this end, one has to compute the Gâteaux-derivatives of
the participating functionals.

For u ∈ C0(Ω)3 and for each perturbation v ∈ C0(Ω)3, the Gâteaux-
derivative of M̂I as derived by Hermosillo et al. [6] is given by

dM̂I[R, T ;u; v] =
1

#Ωd

∑

x∈Ωd

〈
fR,T (x, u(x)), v(x)

〉
R3 (6)

where

fR,T (x, u(x)) = [Ψσ ∗ ∂g2L
R,Tu ](R(x), Tu(x)) ·∇T (x − u(x)), (7)

LR,Tu(g1, g2) := 1 + p̂R,Tu log
p̂R,Tu

p̂Rp̂Tu
,

and with ∗ being the convolution operator:

[p ∗ q](z1, z2) :=
∫

R2
p(z1 − g1, z2 − g2)q(g1, g2) d(g1, g2).

For u ∈ C4(R3)3 and for each perturbation v ∈ C4(R3)3, the Gâteaux-
derivative of Scurv as derived by Fischer and Modersitzki [4] is given by

dScurv[u; v] =
∫

Ω

〈
∆2u, v

〉
R3 dx +

3∑

$=1

∫

∂Ω
∆u$ 〈∇v$,n〉R3 − v$ 〈∇∆u$,n〉R3 dx,

(8)
where n denotes the outer normal unit vector on the boundary ∂Ω. Imposing
the explicit boundary conditions on u and v,

∇u$ = ∇∆u$ = 0 on ∂Ω, ( = 1, 2, 3, (9)
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the boundary integrals in the expression for dScurv[u; v] vanish and we obtain

dScurv[u; v] =
∫

Ω

〈
∆2u, v

〉
Rd dx. (10)

In accordance with the calculus of variations, a function u ∈ C4(Rd)d which
minimizes the joint functional (5) has to satisfy the Euler-Lagrange equation

α∆2u + fR,T (x, u(x)) = 0 for all x ∈ Ω (11)

subject to the boundary condition (9), where fR,T is given by (7).
The Euler-Lagrange equation (11) is a fourth-order non-linear partial differ-

ential equation (PDE). It is known as the bipotential or biharmonic equation
and is well understood; see, e.g. [5] . For applications in mechanics, this equation
describes the displacement of a thin plate subject to the load fR,T . In the context
of image registration, the quantity fR,T may be seen as a force field which drives
the template towards the reference subject to the physical constraints imposed by
the biharmonic operator and the boundary conditions. Also, it should be noted
that there is a close connection between the curvature regularizer Scurv (4) and
the functional which is minimized by the so-called thin-plate-splines, cf., e.g., [9].
The Gâteaux-derivatives of both functionals share the same main part but dif-
fer slightly in their boundary integrals. However, this close connection offers an
alternative interpretation of the minimizer of (5). The final displacement is as
smooth as thin-plate-splines but its shape is not determined by any user supplied
landmarks, merely it is automatically designed by the forces imposed by the MI
measure.

2.4 Implementation

The MI force field (7) depends on the width σ of the Gaussian Parzen-window
kernel. A proper value for σ is determined as σ = max{σR,σT }, with σR and σT

estimated for R and T separately as the kernel widths that maximize the log-
likelihood of the marginal densities pR

σ (g) and pT
σ (g) respectively, constructed by

the Parzen-window estimator using a leave-one-out approach:

pR(g) = ch · #{x : R(x) = g},

pR
σ (g) =

cσ

#Ω(g)

∑

x∈Ω(g)

ψσ(g − R(x)) =
cσ

ch · #Ω(g)

∑

q #=g

hR(q) · ψσ(g − q),

σR = arg max
σ

∑

g∈G

pR(g) log pR
σ (g).

where Ω(g) := {x ∈ Ωd : R(x) *= 0 ∧ R(x) *= g}, ψσ is a one-dimensional
Gaussian, and the constants ch and cσ are chosen such that

∑
g∈G hB(g) = 1

and
∑

g∈G hB
σ (g) = 1, respectively, and likewise for σT . This approach is identical

to the one described in [1].
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We solve the Euler-Lagrange equation (11) by applying a semi-implicit dis-
crete time-marching algorithm

u(k+1)(x) − u(k)(x)
τ

+ α∆2u(k+1)(x) = −fR,T (x, u(k)(x)) for all x ∈ Ω,

with τ a time-step parameter and k the iteration number. Using a finite difference
approximation for the spatial derivatives, we end up with a linear system of
equations involving the coefficient matrix Acurv which is highly structured and
allows for fast solution schemes. As pointed out in [8, §12], a discrete cosine
transformation can be used to diagonalize this matrix, such that the overall
complexity of the solver is O(N log N), with N the number of voxels. Since we
solve the linear system directly and up to machine precision at each iteration, we
do not need stopping rules or a convergence analysis as would be necessary for
alternative iterative solution schemes, such as Multigrid, Conjugate Gradient,
or SOR-like approaches.

A proper choice for the regularization parameter α depends on the order of
magnitude of the forces fR,T and is investigated in Section 3 below. The time
step τ is adjusted at each iteration such that the maximal voxel displacement
maxx |u(k+1)(x)−u(k)(x)| is smaller than ∆u = 1 voxel. Regridding and template
propagation are used as in [1] to assure that the Jacobian of the deformation
field is non-negative such that topology is preserved.

The method was implemented in Matlab, with image resampling, histogram
computation and discrete cosine transformation coded in C.

3 Validation

We evaluated the performance of the method using the validation approach of [1]
and compared it with the viscous fluid regularizer described in [1]. This approach
solves

∇2v + ∇ (∇v) + fR,T (x, u(x)) = 0 for all x ∈ Ω (12)

with fR,T the force field (7) and v the deformation velocity experienced by a
particle at position x. An approximate solution of (12) is obtained by convolution
with a Gaussian kernel ψγ :

v = ψγ + fR,T (13)

with the spatial extent γ of the kernel controling the smoothness of the defor-
mation. The deformation field u(k+1) at iteration (k +1) is found by integration
over time:

∆u(k) = v(k) −
3∑

$=1

v(k)
$

[
∂u(k)

∂x$

]
, (14)

u(k+1) = u(k) +∆u(k) · τ (15)

For implementation details, we refer to [1].
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Both methods were applied to simulated images generated by the BrainWeb
MR simulator [2], which were non-rigidly deformed by known deformation fields
u∗. These were generated by matching the T1-weighted BrainWeb image to
real T1-weighted images of three periventricular leukomalacia patients, typically
showing enlarged ventricles, using the viscous fluid scheme (12). The T1 and T2-
weighted BrainWeb images were deformed by u∗ and the original T1-weighted
image was matched to the artificially deformed images using both methods. The
recovered deformation u and the ground truth u∗ were compared by their root
mean square (RMS) error ∆u evaluated in millimeter over all brain voxels ΩB:

δu =
√

1
ΩB

∑

x∈ΩB

(u(x) − u∗(x))2 (16)

Figure 1 illustrates the T1/T1 registration results obtained with the curva-
ture based regularizer with α = 55 and with the viscous fluid regularizer with
γ = 3. Error values for 3 different cases are summarized in Table 1. The deforma-
tion fields obtained with α = 55 and α = 150 are shown in Figure 2, illustrating
the smoothing effect of increasing α. Figure 3(a) plots the MI registration crite-
rion during iterations for the curvature based regularizer. Final values of MI are
1.89 and 1.73 for α = 55 and α = 150 respectively. Subsequent iterations with no
change in the MI criterion indicate that regridding is performed to maintain grid
topology. Figure 3(b) plots the registration error obtained for the experiment in
Figure 1 with the curvature based regularizer as a function of α. The error is
minimal around α = 55 and gradually increases when α is increased and more
smoothing is applied.

4 Discussion

A novel free-form registration algoritm is presented that combines the MI sim-
ilarity measure of [1] with the curvature based regularizer of [4] and which is
implemented using a stable and fast O(N log N) iterative scheme. The curva-
ture regularizer has the advantage not to penalize affine linear transformations
and was found in [4] to outperform the elastic and fluid approaches in combi-
nation with the sum of squared differences distance measure. The method was
evaluated against the viscous fluid regularizer presented in [1] using artificially

Table 1. Root mean square error ∆u 16 in voxels for T1/T1 and T1/T2 registrations
in three different cases using the curvature based scheme C presented here and the
viscous fluid scheme V of [1].

T1/T1 T1/T2
C V C V

Case 1 0.534 0.384 0.907 0.577
Case 2 0.612 0.304 0.769 0.443
Case 3 0.807 0.351 1.160 0.505
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Fig. 1. Top: T1-weighted template image (left) and artificially deformed target image
(right). Middle: Template matched to target using the curvature based regularizer
with α = 55 (left) and difference between ground truth and recovered deformations
image (middle: horizontal component; right: vertical component). Bottom: Idem for
the viscous fluid regularizer with γ = 3.
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(a) (b) (c)

Fig. 2. Recovered deformation fields for the experiment of Figure 1 using the curvature
based regularizer with α = 55 (a) and α = 150 (b) and using the viscous fluid regularizer
with γ = 3 (c).

deformed images, with the ground truth deformations generated by the viscous
fluid scheme.

As shown in Table 1, both approaches allow to recover the ground truth
deformation with subvoxel RMS error in almost all experiments, both for T1/T1
as well as for T1/T2 registration. In general, smaller errors were obtained with
the viscous fluid scheme which also generated the ground truth deformation.
However, computing the ground truth deformation with the curvature based
scheme for the first case T1/T1 registration yields errors of 0.539 and 1.253
voxels for the curvature and viscous fluid regularizers respectively. As illustrated
in Figure 2, the curvature based regularizer yields smoother deformation fields
than the viscous fluid scheme, which can be explained by the fact that the
curvature constraint penalizes the second order derivatives of the deformation
field. The curvature scheme can be tuned by the regularization parameter α.
We studied the influence of this parameter α, determining the trade-off between
smoothness of the solution and similarity with respect to the known solution.

Our results demonstrate that different regularization schemes can be applied
in conjunction with the same MMI driving force field as described above, which
may generate equivalent registration results. Future work will focus on evaluating
the ability of different schemes to generate consistent deformations that would
allow to construct statistical deformation models.
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