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Abstract

In recent years, new nonlinear partial differential equation (PDE)
based approaches have become popular for solving image processing
problems. Although the outcome of these methods is often very promis-
ing, their actual realization is in general computationally intensive.
Therefore accurate and efficient schemes are needed. The aim of this
paper is two folded. First, we will show that the three dimensional
alignment problem of a histological data set of the human brain may
be phrased in terms of a nonlinear PDE. Second, we will devise a fast
direct solution technique for the associated structured large systems of
linear equations. In addition, the potential of the derived method is
demonstrated on real-life data.
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1 Introduction

A typical image registration problem is the computation of a mapping that
aligns two given images. To illustrate this problem, consider the images
in Figure 1, which are pictures of two consecutive histological sections of a
human brain. A three dimensional reconstruction of the histological data
set (about 7000 sections per brain) will suffer from nonlinear distortions
introduced by the preparation process, as it is apparent from the difference
plot of theses images (see Figure 1).

Two different approaches for correcting this kind of distortions are com-
mon. One approach is based on the idea of representing the unknown cor-
rection in terms of the coefficients of a fixed basis, such as piecewise linear
functions or higher order splines. Typically these coefficients are determined
by a least squares condition for some user prescribed landmarks (see, e.g.,
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Reference R. Nonzero Pattern of A for M
8 and N = 6.

Template T'. Difference T' — R,
T — R||, ~ 10361.

Figure 1: Sections from a human brain (512 x 512 pixel), difference plot,
and spy of matrix A.



[3, 4]). The second approach is based on the formulation of the problem via
a nonlinear PDE. To solve these equations no further information on the
underlying images, e.g. landmarks, is needed (see, e.g. [1, 12]).

Here we follow the PDE approach. To model the behavior of a human
tissue, it is assumed that the distortions result from elastic deformations
of the tissue. For this reason, the resulting scheme is often called elastic
matching (see, e.g., [2, 5, 6, 11]).

To derive the associated PDE, let T, R : 2 — R represent two images,
e.g. T(x), R(x) are the grey or color values of the respective images at
the point x = (x,y) € Q. Then the problem is to find a displacement field
u(x) = (u(x),v(x)), such that the difference T'(x — u(x)) — R(x) is as small
as possible.

An obvious method for computing the unknown correction u would be
the minimization of the Euclidean distance between the template T and the
reference R,

D(u) = /Q (76x — u(x)) - R(x))2 dx.

However, the computed transformation u should be smooth such that for
example connected regions of the tissue remain connected. Therefore we
introduce a smoothing term which penalizes non smooth functions. Thus,
we require u to minimize as well the strain energy F'(u) given by the elastic
potential

A 1
F(u) = F(u,v) = /Q 5(% + vy)2 + u(u% + 1); + §(uy + vx)2> dx,
where the so-called Lamé constants A and p are determined by the under-
lying material (see, e.g., [9]). Now, the resulting functional looks like

D(u) + aF(u). (1)

Finally, an application of the Euler-Lagrange calculus leads to a necessary

condition for u being a minimizer of eq. (1):

f(w) = (T(x-u(x) - R(x)) VT(x - u(x)), @)
0 = f(u)+pAu+ A+ p)Vdivu,

where, for simplicity we used the notation A, u instead of oA and pa, re-
spectively. The obtained nonlinear PDE is known as Navier-Lamé equation
(NLE).

The main step in the numerical solution of eq. (2) is the repeated solution
of large systems of linear equations. For example, a standard discretization
of an image of 512 x 512 pixel results in systems with 524288 unknowns.

It should come as no surprise, that the associated matrices have a rich
structure. It will turn out that, for the case of periodic boundary conditions,



these matrices are roughly speaking block-circulant with circulant blocks.
In Section 2 we show how to explicitly invert such matrices. In Section 3
we comment on implementation details and provide an illustrative real-life
example for the derived method.

2 Fast Inversion of a Structured Matrix

A proper discretization of the NLE (2) yields a system of linear equations
where the system matrix A has a rich structure (see Figure 1 for the nonzero
pattern). As we show in Section 3, for periodic boundary conditions, the
matrix A is essentially block-circulant.
In this section, we identify a class of matrices which may be diagonalized
by FFT type techniques. As it turns out, the matrix A belongs to this class.
We start be defining this class. To this end let

o 1 0 ---0
Cpi=|: . . -, 0 e <,

0o . . o1

1 0 -+ - 0

denote the basic circulant matrix. For ease of presentation we frequently
make use of the Kronecker-product ® of two matrices B € C"*" C € CP*1,
defined as

bii--- bip b11C--- b0
: : ®C = : : e C(mp)x(nq)
bm,l T bm,n bm,lc T bm,nC
Now we are in position to define the class of matrices in question. More

precisely, let A € REmm)x(2mn) 16 3 9-by-2 block matrix with block-circulant
matrices

A= (G o) crEmm<Cm, ®)
where
AP = (Cp) T @A+ (C)P @ AL+ (Cn)' @ A (4)
Ay A7 Ay
— Ag . E]R(mn)x(mn)7
, A
Al AS A2
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and

Ay = S (Cn) ™+ S8, (O + S0, (C)! (5)
524 Sig 539
— Sg,q . ERme'
S3q Sig
574 S50 S

The matrices

Sth Sta Sis
SP = Sg,l Sg,Z Sg,?) y P = 17273747
Si1 STa Sis
are given and resemble in our application the constituent matrix stencils of
the underlying discretization.
A main ingredient of our analysis is the fact that any circulant matrix

may be diagonalized by a Fourier matrix, a proof of which may be found for
example in [7].

Lemma 1 Let wy, := exp ( —2mi/n) be a root of unity and F, € C"*" be a
Fourier matriz,

1 ) (— . n—
Fp = — (0D 1))]-,;6:1’___’“, Q, = diag (W), ..., wi ).

vn
1. The Fourier matriz is unitary, F, ' = F.

2. The circulant matriz Cy, is diagonalized by Fy,, FYCpF, = Qy,.

n
j=—n

3. Any circulant matriz Z, =Y a;(Cy) is diagonalized by F,,

n
FlZnFp= Y o5(Q).
j=-n
Next, we show how to factorize the block matrix A.
Lemma 2 Letp=1,2,3,4, ¢q=1,2,3, 7=1,....m,and k=1,...,n.
1. The matrices Ay € R™ ™ qre diagonalized by Fy,,

Fﬁ%ﬂn:&%(ﬂmj:L“wm%

P _ QP P —j—1 p  j-—1
where Aq,j = SZ’q + S3’qwm + Sl’qwm .



2. The matrices AP € RUmm)X(mn) gre diggonalized by F, ® F,,
(Fp, @ F,)"AP(F, @ Fp,)
— diag (ch”j, i=1,....m, k= 1n)

P _\P o 5k—1yP k—1yP
where Dy . = Xy ; +Wn" A3 +wy A

J
3. For the matriz A € R2mm)x(2mn) 4,0 poye

PIAF = (G (00) (09

where

o F, ® Fp, 0
0 F, ® Fp,

and DP = diag (D§k7 j=1....,m, k
Proof

1. Follows directly from Lemma 1.

Il
J—‘
=

N———

2. From
BP = (EQF,)"AP(E® Fy,)
= (Cn)' @ (FpALFy)
+(Cn)" ® (F A Fn) + (Cn)' @ (Fr AT ),
we deduce that BP is a block-circulant matrix with diagonal blocks.
A suitable permutation P yields
P7'BPP = diag (I%,...,L2),
where Lf = (Cp) 7' N5 5 + (Cn) A8 4 (Cp)'A]; € R™™. Finally, LY
may be diagonalized by F,,.
3. The matrices AP are simultaneously diagonalizable.

0

Our goal is to actually invert F"AF. The trouble is that the matrix A
might be singular (and for particular choices of SP we are interested in, it
is). Therefore we compute the so-called Moore-Penrose pseudo inverse [8].

We start by calculating the Moore-Penrose pseudo inverse B of a 2-by-2
matrix B.

12
Lemma 3 For the symmetric matric B = (22 Z4> € R2*2 we have
B~ for det(B) # 0,
Bt = mﬂ, for det(B) =0, b' # 0V b* #0,
0 otherwise.



Proof
1. If det(B) # 0, then Bf = B~1,

2. Let det(B) = 0 but b' # 0V b* # 0. Then B has a singular value
decomposition B = () diag (b1 +b*, 0) Q", where

btoov?

Q = ok (bQ _b1> for bl £0,
0 - b bt

1
(b1)2+(b%)? <b4 —b?
Hence, the pseudo inverse is given by Bf = mB .

3. Let det(B) = 0 and b' = b* = 0. Thus, B = 0 and Bf = 0.

We are now ready to present our main result.
Theorem 1 Let SP be such that DP is real and let D?> = D3. Then At =

FDYFH, where
Dt diag (DI’T) diag (DQ’T)
" \diag (D*) diag (D*T)

Lt p2f t
(o 78) - (e Bi) -
Dik Djk Dix Dik
Proof The starting point is Lemma 2.3). A suitable permutation matrix
P yields

: 1 : 2
pl (dlaggp) diag (D )>P:diag(3i,j,i,...,m, j=1,...,n),

and

diag D2) diag (D4)
DY D?.
where B; ; = ( Dg] D2]> € R?*2. The pseudo inverse of B is given by
b T
Lemma, 3. |

3 Solving the Navier-Lamé Equation

In this section we deduce a discrete version of the NLE (2). Furthermore we
show that the obtained coefficient matrix belongs to the class of matrices
discussed in the previous section. Finally, we present a numerical example
based on real life data.



To start with, we rewrite eq. (2) as follows

[= p(uge + Uyy) + (A ) (v + Uzy)a

g = p(vee + Uyy) + (A +p) (ny + Uyy)a
where

[ = (Tx—-ux)) - Rx)) - Tp(x —u(x)),

g = (T(x—ux)) —R(x)) Ty(x —u(x)).

Note, that the lefthandside (f,g) may be interpreted as a force field and
depends nonlinear on u.

To discretize the PDE we employ finite differences. Actually, for the
approximation of the derivatives we used standard stencils, e.g.

ui; = uli,j),
Uze(1,7) R Uigp1j — 2u4 5 — Ui—1j,
Upy(4,5) R (i1 g1 — Ui, j—1 — Uim1 41 + Uim1,j—1)/4,
(i, 5) =~ (Tiy1y — Tic15)/2

We remark that the mesh size is chosen to be one, which is common in image
processing applications.

With this particular approximations we obtain, for example, for the first
part of the NLE

1 (thaa(5,9) + gy 0. )) + O+ ) (10 (5, ) + 02y (5, )
~ Stxu;+ 8% kv
Here, the symbol * denotes the convolution operator

1
p R P . .
iy im Y Shoetiingee

r,s=—1

Moreover, the matrix stencils look like

2u 4+ A

S'=(H" = |n 2Bu+XN) pl, (6)
2u 4+ A

5?2 =9 = 1 : (7)

—(p+A) p+ A

Next, we have to specify appropriate boundary conditions. In all our
applications, the tissue of the human brain is embedded in paraffin wax. This
results in images which have a wide boundary of homogeneous background
color (cf. Figure 1). Therefore one may expect that the effect of different



Table 1: Algorithm for solving the NLE (2).
1. Choose (u; /), (v; /), e.g. (u; ;)@ = (v;;)® = 0.

2. For k=0,1,2,...,

compute actual forces

(i)™ = F(uiy)®), (vi)®),
(i) % = g((uiy)®, (vi;)®),

solve the linear system

A((wi )5, i) BT = ((fi )™, (905)*)"

boundary conditions on the overall process is neglectable. This expectation
is supported by the example given at the end of this section (cf. Figure 2).

Here, for computational convenience we choose periodic boundary con-
ditions

ur,; = UmM-1,j, UM, = U2y,
Uil = UjN-1, Ui N = U;2,
V1,7 = UmM-1,5, VM, = U2y,
Vi1 = UiN-1, UiN = U;2,

for an image with M x N pixel.
It is straightforward to verify that this results in the following matrix
version of the NLE

A (um) — (Al A2> (um) — (Sl * Ug,j + 52 *vi,j> _ (f@j)

Vi, j A3 At Vij S3 Ui 5+ S% x Vi j 9i.j ’
where we used the notation (u; ;) for vector s (u22,u32,...,up—1,n-1) €
R(M_2)(N_2) )

The obtained linear system is the main ingredient of a fix point type
algorithm for the solution of the NLE (2). A straightforward implementation
is given in Table 1.

The main computational work in each iteration is the solution of the lin-
ear system. In view of Theorem 1 this may be done by explicitly computing
the pseudo inverse of the block diagonal D and applying four FFT’s. The
implementation details for this process are listed in Table 2.

We note that for the particular choices of SP, cf. eqn. (6) and (7), the
computation of D simplifies considerably

2mi 2mj

Dilyj = S%’Q + 2COS(M — 1)S§,2 + 2C08(m)5%’3,
27y 271,

Di] = S%’Q"—QCOS(N_1)S§’2+2C08(ﬁ)5%’3,
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Table 2: Algorithm for solving the linear system (using a standard code for
the 2D FFT).

Compute (E,]’) = fft2(fi,j), (gi,j) = fftQ(gi,j).

Forj=2,...,N—1,fori=2,...,M—1do

P 17+~. . 24~

Uij = Di,j fig+ Di,j 9i,j>

N — D>TE 4t~

/Uikj - Dl,] fla] + DZ,] gZ,]‘
End.

Compute (u; ;) := £££27 (@4 5), (vi5) == ££827" (0;).

21y
N -1

) sin(

D};=D}; = —4S7,sin( ).

2

M -1

Finally, in Figure 2 we present a numerical example based on medical
data. We display the result of the elastic matching of the two histological
sections shown in Figure 1. The top part of Figure 2 shows the corrected
template and the corresponding difference plot obtained after 500 fix point
iterations by using the FFT-based solver with periodic boundary conditions.
For comparison, we also solved the problem by a multigrid based solver with
Dirichlet boundary conditions. Note, that the results of the two different
methods are almost indistinguishable. Also, there is a considerable reduction
in the Euclidean norm of the difference.

All computations were carried out in MATLAB [10].

4 Conclusion

We present a direct method for computing the solution of the discrete
Navier-Lamé-equation (2). The method is based on Fourier-techniques. This
scheme enables one to match two images with say 512 x 512 pixel (leading to
524288 unknowns) on a standard desktop computer. It is worth noticing that
the presented approach carries over straightforward to higher dimensional
versions of the Navier-Lamé-equation. The only restrictions, whatsoever,
are storage and computing time. We will comment on three-dimensional
applications as well as on variations of the overall nonlinear process in a
forthcoming paper.

Acknowledgements We are indebted to Dr. Oliver Schmitt (Insti-
tute of Anatomy, Medical University of Liibeck) for providing the medical
data.
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Results after 500 steps, Tih" Difference Tigy" — R,

using the FFT-based solver I T300" — Rl

iodi L oA 2082
for periodic boundary condi- 2
tions.

Results after 500 steps, Txo5 Difference Tsos — R,
using a multigrid solver for |55 RIl, 0.35
Dirichlet boundary condi- IT-RI, =~ 7
tions.

Figure 2: Results after 500 outer steps using the FFT-based solver for pe-
riodic boundary conditions and a multigrid solver for Dirichlet boundary
condition, respectively.
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