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WAVELETS BASED ON ORTHOGONAL POLYNOMIALS

BERND FISCHER AND JÜRGEN PRESTIN

Abstract. We present a unified approach for the construction of polynomial
wavelets. Our main tool is orthogonal polynomials. With the help of their
properties we devise schemes for the construction of time localized polynomial
bases on bounded and unbounded subsets of the real line. Several examples
illustrate the new approach.

1. Introduction

In this paper we introduce and discuss a new method for the construction of time
localized bases for polynomial subspaces of an L2-space with arbitrary weight. Our
analysis is based upon the theory of orthogonal polynomials. Whereas the frequency
localization will be predetermined by the choice of the polynomial spaces, the time
localization will be realized by the choice of special basis functions. More precisely,
such a basis function will be defined as the solution of a constrained approximation
problem which is designed such that its solution is maximally localized around a
specified point.

Starting with the paper of Chui and Mhaskar [2], discussing trigonometric poly-
nomial multiresolution analysis, the theory has been adapted to the algebraic poly-
nomial case, see, e.g. Kilgore, Prestin [6] and Tasche [10]. They investigated the
special case of the Chebyshev weight of the first kind. Their analysis is based on
the properties of ordinary Chebyshev polynomials and does not carry over to other
weight functions. In contrast, our derivations make use of the general theory of
kernel polynomials. This allows us to treat not only weight functions which are
supported on a compact interval (e.g., Jacobi weights) but also weight functions
which are supported on the real line (e.g., Hermite weight) or on the real half line
(e.g., Laguerre weight). Moreover, we relate our approach to the classical concept
of multiresolution analysis due to Mallat and Meyer.

The paper is organized as follows. In Section 2 we collect some basic properties
of orthogonal polynomials. Besides more theoretical results we discuss in particular
computational aspects of orthogonal polynomials. Then we define scaling functions
and wavelets and investigate some of their properties. This includes questions con-
cerning orthogonality, interpolatory properties, time localization, and the construc-
tion of dual functions. In Section 3 we discuss the algorithms for reconstruction
and decomposition. Because all participating spaces are of finite dimension, it is
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straightforward to devise a compact matrix formulation for these schemes. Sec-
tion 4 is concerned with a comparison to the ordinary multiresolution analysis and
in particular with questions related to the Riesz stability and to the (generalized)
translation invariance of the proposed basis functions. Finally in Section 5 we apply
the new approach to two different Chebyshev weights.

2. scaling functions and wavelets

After having collected some auxiliary results for orthogonal polynomials, we will
define in this section scaling functions and wavelets with respect to arbitrary weight
functions.

2.1. Orthogonal polynomials. Let dσ(t) be a nonnegative measure on the real
line, with compact or infinite support [a, b], −∞ ≤ a < b ≤ ∞, for which all
moments

νr :=

∫ b

a

trdσ(t), r = 0, 1, . . . ,(2.1)

exist and are finite with ν0 > 0. With dσ(t) there is associated an inner product
and a norm

〈p, q〉 :=

∫ b

a

p(t)q(t)dσ(t), ‖p‖ :=
√
〈p, p〉,(2.2)

on the vector space of all polynomials. It is well-known (see, for example Szegö [8,
§2.2]) that there exists a unique system of polynomials that are orthonormal with
respect to this inner product, i.e., a set of polynomials {Pr} such that

〈Pk, Pl〉 = δk,l.(2.3)

In general the system {Pr} consists of infinitely many polynomials, but reduces to
a finite number, if σ(t) has only finitely many points of increase. Throughout this
paper we assume that σ(t) has at least 2n+ 1 points of increase and consequently
{Pr}2n

r=0 forms a basis for V2n, where

Vn := span{P0, P1, . . . , Pn}.(2.4)

An important special case are distributions of the form w(t)dt. Here we assume

that the weight function w(t) is nonnegative with
∫ b
a
w(t)dt > 0.

The orthogonal polynomials Pk fulfill the following three-term recurrence relation

P−1(t) := 0, P0(t) = ν
−1/2
0 ,

bk+1Pk(t) = (t− ak)Pk−1(t)− bkPk−2(t), k ≥ 1.(2.5)

Let us collect together the three-term recurrence coefficients of {Pr}nr=0 into an
unreduced symmetric tridiagonal matrix Jn, the so-called Jacobi matrix,

Jn :=



a1 b2 0 · · · 0

b2 a2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . bn

0 · · · 0 bn an


.(2.6)
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With the vector

vn(t) := (P0(t), P1(t), . . . , Pn(t))T(2.7)

we can rewrite the three-term recurrence relation of the orthonormal polynomials
(2.5) in compact matrix notation as

tvn−1(t) = Jnvn−1(t) + bn+1Pn(t)en(2.8)

where en := (0, 0, . . . , 0, 1)T denotes the nth unit vector.
The next lemma collects some properties of the zeros of orthogonal polynomials.

A proof of parts (a) and (b) may be found in Szegö [8, Theorem 3.3.1, 3.3.2],
whereas (c) follows directly from (2.8).

Lemma 2.1. Let y
(n)
r , r = 0, 1, . . . , n− 1, denote the zeros of Pn.

(a) The zeros of Pn are all real, simple and are located in (a, b)

a < y
(n)
0 < y

(n)
1 < · · · < y

(n)
n−1 < b.

(b) The zeros of Pn and Pn+1 separate each other

y
(n+1)
0 < y

(n)
0 < y

(n+1)
1 < · · · < y

(n)
n−1 < y(n+1)

n .

(c) Any zero y
(n)
r of Pn is an eigenvalue of Jn with eigenvector vn−1(y

(n)
r ).

For a given fixed number ξ ∈ R the polynomial

Kn(t; ξ) :=
n∑

k=0

Pk(t)Pk(ξ)(2.9)

is called the kernel polynomial with respect to 〈·, ·〉 (and the parameter ξ). Note
that

Kn(ξ; ξ) =

n∑
k=0

Pk(ξ)
2 > 0.(2.10)

The name “kernel” is motivated by the following result, which is also known as the
reproducing property of the kernel polynomials (see, e.g., Davis [3, §10.1]),

〈Kn(·; ξ), p〉 =

∫ b

a

Kn(t; ξ)p(t)dσ(t) = p(ξ), for all p ∈ Vn.(2.11)

The nth kernel polynomial Kn(t; ξ) is the unique solution of the following con-
strained approximation problem (cf. Szegö [8, Theorem 3.1.3])∥∥∥∥Kn(·; ξ)

Kn(ξ; ξ)

∥∥∥∥ = min
{‖p‖ : p ∈ Vn, p(ξ) = 1

}
.(2.12)

2.2. Scaling functions. Equation (2.12) indicates that the kernel polynomials are
localized around ξ. Motivated by this property we define scaling functions as kernel
polynomials

ϕn,r(t) = ϕn(t;x(n+1)
r ) := Kn(t;x(n+1)

r ), r = 0, 1, . . . , n,(2.13)

with respect to a suitable set of parameter

x
(n+1)
0 < x

(n+1)
1 < · · · < x(n+1)

n .(2.14)

The next figure displays some typical scaling functions. Note, that we plotted in
(a) and (b) the “plain” polynomials and in (c) and (d) the polynomials times the
underlying weight function. Actually one may view the scaling functions on the
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Figure 2.2. Various scaling functions of degree n = 32. (a)
Legendre weight: w(t) = 1;ϕ32(t; 0, 5); (b) Jacobi weight:
w(t) = (1 − t)−0.5(1 + t)−0.8;ϕ32(t; 0.5); (c) Laguerre weight:
w(t) = t1/2 exp(−t);ϕ32(t; 1) · w(t); (d) Hermite weight: w(t) =
exp(−t2);ϕ32(t; 1) · w(t).

one hand as polynomial basis functions in a weighted L2-space and on the other
hand as weighted polynomial basis functions in an unweighted L2-space.

Some properties of these polynomial scaling functions are summarized in the
next theorem.

Theorem 2.3. Let ϕn,r(t) = ϕn(t;x
(n+1)
r ) denote the scaling functions with respect

to a given set of parameter x
(n+1)
0 < x

(n+1)
1 < · · · < x

(n+1)
n .

(a) The inner product of scaling functions may be evaluated as follows:

〈ϕn,r, ϕn,s〉 = ϕn,r(x
(n+1)
s ), r, s = 0, 1, . . . , n.

(b) The scaling function ϕn,r is localized around x
(n+1)
r . More precisely, we have∥∥∥∥∥ ϕn,r

ϕn,r(x
(n+1)
r )

∥∥∥∥∥ = min
{‖p‖ : p ∈ Vn, p(x(n+1)

r ) = 1
}
.

(c) The ϕn,r’s form a basis for Vn, i.e.,

Vn = span{ϕn,0, ϕn,1, . . . , ϕn,n}.
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(d) The scaling function ϕn,r is orthogonal with respect to the “modified inner

product” 〈·, · (· − x
(n+1)
r )〉

〈ϕn,r(·), q(·)(· − x(n+1)
r )〉 = 0 for all q ∈ Vn−1.

(e) The scaling function ϕn,r satisfies the so-called Christoffel - Darboux identity

ϕn,r(t) = bn+2
Pn+1(t)Pn(x

(n+1)
r )− Pn(t)Pn+1(x

(n+1)
r )

t− x
(n+1)
r

,

where bn+2 is a three-term recurrence coefficient of Pn+1 (cf. (2.5)).

(f) Let {y(n)
k }n−1

k=0 and {y(n+1)
k }nk=0 denote the zeros of Pn and Pn+1, respectively.

Moreover, define y
(n)
−1 := −∞ and y

(n)
n := ∞.

If x
(n+1)
r = y

(n)
j is a zero of Pn, then ϕn,r has the n− 1 zeros y

(n)
k , k =

0, 1, . . . , j − 1, j + 1, . . . , n− 1.

If x
(n+1)
r = y

(n+1)
j is a zero of Pn+1, then ϕn,r has the n zeros y

(n+1)
k , k =

0, 1, . . . , j − 1, j + 1, . . . , n.

If x
(n+1)
r ∈ (y

(n+1)
j , y

(n)
j ), then ϕn,r has precisely one zero in each interval

(y
(n+1)
k , y

(n)
k ), k = 0, 1, . . . , j − 1, j + 1, . . . , n.

If x
(n+1)
r ∈ (y

(n)
j−1, y

(n+1)
j ), then ϕn,r has precisely one zero in each interval

(y
(n)
k−1, y

(n+1)
k ), k = 0, 1, . . . , j − 1, j + 1, . . . , n.

Proof. Parts (a) and (b) follow immediately from (2.11) and (2.12), respectively.
To verify (c), assume that

n∑
r=0

τrϕn,r(t) ≡ 0.(2.15)

Furthermore, let {`r}nr=0 denote the set of fundamental polynomials of Lagrange
interpolation with respect to the knots (2.14), i.e.,

`r ∈ Vn and `r(x
(n+1)
s ) = δr,s, r, s = 0, 1, . . . , n.(2.16)

In view of the assumption (2.15) and the reproducing property (2.11) we deduce

0 =

〈
n∑

r=0

τrϕn,r, `s

〉
=

n∑
r=0

τr`s(x
(n+1)
r ) = τs,

for s = 0, 1, . . . , n, which shows the linear independence of the ϕn,r’s.
(d) is nothing but the reproducing property (2.11) applied to the polynomial

p(t) = (t− x
(n+1)
r )q(t).

(e) follows readily from the three-term recurrence relation (2.5) (compare
Szegö [8, Theorem 3.2.2].

(f) is a direct consequence of the Christoffel - Darboux identity (e) (compare
Fischer [4, Theorem 2.5.8]).

Note that the interlacing property of the zeros of orthogonal polynomials (cf.
Lemma 2.1(b)) together with part (f) implies that the “zero-free interval” around
the constraint point shrinks with increasing degree, as is apparent from Figure 2.4.

Part (a) of the theorem above implies that the scaling functions (2.13) are
orthogonal to each other if, and only if they fulfill the interpolatory property

ϕn,r(x
(n+1)
s ) = d

(n+1)
r δr,s, d

(n+1)
r ∈ R. This may be seen as a requirement for
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Figure 2.4. Scaling functions ϕn(t; 0.5) of degree n = 8, 16, 32
with respect to the Legendre weight w(t) = 1 and the parameter

x
(n+1)
0 = 0.5.

the parameter set (2.14). The next theorem characterizes the parameter sets which
lead to orthogonal scaling functions.

Theorem 2.5. Let ϕn,r(t) = ϕn(t;x
(n+1)
r ) denote the scaling functions with respect

to a given parameter set x
(n+1)
0 < x

(n+1)
1 < · · · < x

(n+1)
n . Then the following

conditions are equivalent to the orthogonality of the scaling functions.

(a) The scaling functions satisfy an interpolatory condition

ϕn,r(x
(n+1)
s ) = d(n+1)

r δr,s, for r, s = 0, 1, . . . , n,

where d
(n+1)
r ∈ R.

(b) The parameter x
(n+1)
r defines a quadrature rule which is exact for polynomials

of degree 2n, i.e.,∫ b

a

p(t)dσ(t) =
n∑

r=0

(
d(n+1)
r

)−1

p(x(n+1)
r ), for all p ∈ V2n,

where d
(n+1)
r = ϕn,r(x

(n+1)
r ).

(c) The polynomial qn+1(t) :=
∏n

r=0(t− x
(n+1)
r ) is quasi-orthogonal, i.e.,

〈qn+1, t
k〉 = 0, for k = 0, 1, . . . , n− 1.
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(d) There exists a number τn with

Pn+1(x
(n+1)
r ) + τnPn(x(n+1)

r ) = 0, for r = 0, 1, . . . , n.

Proof. For convenience we drop the superscripts, i.e., xr = x
(n+1)
r and dr = d

(n+1)
r .

We first show that (b) follows from (a). To this end we assume that

d−1
r ϕn,r(xs) =

n∑
k=0

d−1
r Pk(xr)Pk(xs) = δr,s,

and conclude

Pl(xs) =

n∑
r=0

Pl(xr)δr,s

=

n∑
r=0

Pl(xr)

n∑
k=0

d−1
r Pk(xr)Pk(xs)

=

n∑
k=0

Pk(xs)

n∑
r=0

d−1
r Pl(xr)Pk(xr),

for s = 0, 1, . . . , n. Hence, the polynomial

Pl(t)−
n∑

k=0

Pk(t)

n∑
r=0

d−1
r Pl(xr)Pk(xr)

has n+ 1 zeros xs. For l ≤ n this is only possible if

n∑
r=0

d−1
r Pl(xr)Pk(xr) = δl,k, for l, k = 0, 1, . . . , n.(2.17)

On the other hand, the orthonormality of the Pj ’s∫ b

a

Pl(t)Pk(t)dσ(t) = δl,k, l, k = 0, 1, . . . , n,

implies that (2.17) constitutes a quadrature rule for polynomials of the form PlPk.
Finally, observe that the product PlPk has exact degree l + k which clearly shows
that

V2n = span{PlPk : l, k = 0, 1, . . . , n}.
The proof for the statement that (a) follows from (b) is along the same lines and
is therefore omitted here.

To show that (c) follows from (b) observe that

〈qn+1, t
k〉 =

∫ b

a

qn+1(t)t
kdσ(t) =

n∑
r=0

d−1
r qn+1(x

(n+1)
r )(x(n+1)

r )k = 0,

for tkqn+1 ∈ V2n, i.e., for k ≤ n− 1.
Conversely, let p2n ∈ V2n be given. Then there exist polynomials pn−1 ∈ Vn−1

and pn ∈ Vn with

p2n(t) = pn−1(t)qn+1(t) + pn(t).
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Now we make use of the quasi-orthogonality of qn+1, and the fact that any poly-
nomial of degree n can be integrated by an interpolatory quadrature rule based on
n+ 1 given knots, to obtain∫ b

a

p2n(t)dσ(t) =

∫ b

a

pn−1(t)qn+1(t)dσ(t) +

∫ b

a

pn(t)dσ(t)

=

∫ b

a

pn(t)dσ(t)(2.18)

=
n∑

r=0

e−1
r pn(x(n+1)

r )

=

n∑
r=0

e−1
r p2n(x(n+1)

r ).

It remains to show that e−1
r = d−1

r , r = 0, 1, . . . , n. This, however, follows from
the implication (b) ⇒ (a).

For the rest of the proof we refer to Chihara [1, Ch. II, Theorem 5.1, 5.3].

In particular part (d) of the theorem above is quite useful for actually computing

parameters x
(n+1)
r which correspond to orthogonal scaling functions. Note, that the

interlacing property (cf. Lemma 2.1(b)) immediately implies that the polynomial

Pn+1(t) + τnPn(t)

has n + 1 real and simple zeros, where at most one of these zeros lies outside the
“orthogonality interval” [a, b] (compare Chihara [1, Ch. I, Theorem 5.2]).

Probably the most important special case is provided by the choice τn = 0.

Corollary 2.6. Let y
(n+1)
r , r = 0, 1, . . . , n, denote the zeros of Pn+1 and let

ϕn,r(t) = ϕn(t; y
(n+1)
r ) denote the associated scaling functions (2.13). Then

〈ϕn,r, ϕn,s〉 = ϕn,r(y
(n+1)
s ) = c(n+1)

r δr,s, r, s = 0, 1, . . . , n,

where the c
(n+1)
r ’s are given by the weights in the classical Gaussian quadrature rule∫ b

a

p(t)dσ(t) =

n∑
r=0

(
c(n+1)
r

)−1

p(y(n+1)
r ), for all p ∈ V2n+1.

We remark that the ϕn,r may be viewed as fundamental polynomials of Lagrange

interpolation with respect to the knots y
(n+1)
r .

2.3. Wavelets. In this section we define our wavelets and discuss some of their
properties. To this end let

Wn := V2n 	 Vn = span{Pn+1, Pn+2, . . . , P2n}.(2.19)

Note that

dim Wn = n.(2.20)

The goal is to identify functions, our wavelets, which define a localized basis for
Wn.
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In accordance with the definition of the scaling function (2.13) we define the
wavelets, for r = 0, 1, . . . , n− 1, in terms of kernel functions

ψn,r(t) = ψn(t; z(n)
r ) := K2n(t; z(n)

r )−Kn(t; z(n)
r )

=

2n∑
k=n+1

Pk(z
(n)
r )Pk(t),(2.21)

for a suitable set of parameter

z
(n)
0 < z

(n)
1 < · · · < z

(n)
n−1.(2.22)

Note that the interlacing property implies ψn(z
(n)
r ) > 0, for n > 1.

The next figure shows some typical wavelets. For a plot of the corresponding
scaling functions we refer to Figure 2.2.

The next theorem collects some properties of the wavelets ψn,r. Note, that
parts (a) and (b) are similar to the one for the associated scaling functions (cf.
Theorem 2.3). We stress that these properties do not depend on the particular

choice of the parameter set {z(n)
r }n−1

r=0 .
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Figure 2.7. Various wavelets of degree n = 32. (a) Le-
gendre weight: w(t) = 1;ϕ32(t; 0.5); (b) Jacobi weight:
w(t) = (1 − t)−0.5(1 + t)−0.8;ϕ32(t; 0.5); (c) Laguerre weight:
w(t) = t1/2 exp(−t);ϕ32(t; 1) · w(t); (d) Hermite weight: w(t) =
exp(−t2);ϕ32(t; 1) · w(t).
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Theorem 2.8. Let ψn,r(t) := ψn(t; z
(n)
r ) denote the wavelets with respect to the

parameter z
(n)
0 < z

(n)
1 < · · · < z

(n)
n−1.

(a) The inner product of wavelets may be evaluated as follows

〈ψn,r, ψn,s〉 = ψn,r(z
(n)
s ), r, s = 0, 1, . . . , n− 1.

(b) The wavelet ψn,r is localized around z
(n)
r∥∥∥∥∥ ψn,r

ψn,r(z
(n)
r )

∥∥∥∥∥ = min
{‖p‖ : p ∈Wn, p(z

(n)
r ) = 1

}
.

(c) Let ϕn,r(t) := ϕn(t;x
(n+1)
r ) (cf. (2.13)) denote the scaling functions with

respect to the parameter x
(n+1)
0 < x

(n+1)
1 < · · · < x

(n+1)
n . The wavelets and

the scaling functions are orthogonal to each other

〈ψn,r, ϕn,s〉 = 0, r, s = 0, 1, . . . , n− 1.

Proof. For convenience we drop the superscript zr := z
(n)
r .

To verify (a), we show that the wavelets fulfill a reproducing property with
respect to Wn. In fact, for p ∈ Wn we have by (2.21) and (2.11)

〈ψn,r, p〉 = 〈K2n(·; zr)−Kn(·; zr), p〉
= 〈K2n(·; zr), p〉 − 〈Kn(·; zr), p〉(2.23)

= p(zr).

(b) The proof is along the lines of the proof for the standard case of kernel polyno-
mials (cf. Chihara [1, Ch.I, Theorem 7.3]). Let p ∈Wn with p(zr) = 1, i.e.,

p(t) =
2n∑

k=n+1

dkPk(t), p(zr) =
2n∑

k=n+1

dkPk(zr) = 1.(2.24)

The orthonormality of the Pj ’s implies

〈p, p〉 =

2n∑
k=n+1

d2
k.

This identity together with (2.24) and the Cauchy-Schwarz inequality (applied to
the Euclidian inner product) yields

1 = p2(zr) =
(
(dn+1, dn+2, . . . , d2n)(Pn+1(zr), Pn+2(zr), . . . , P2n(zr))

T
)2

≤ ‖p‖2
2n∑

k=n+1

P 2
k (zr).

On the other hand we have∥∥∥∥ ψn,r
ψn,r(zr)

∥∥∥∥2

=
〈ψn,r, ψn,r〉(∑2n
k=n+1 P

2
k (zr)

)2 =
1∑2n

k=n+1 P
2
k (zr)

,

which concludes the proof of statement (b). Part (c) follows directly from the
definition of the participating functions.
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It is worth noticing that in accordance with the properties of scaling functions
(cf. Theorem 2.3(a)) the wavelets are orthogonal if, and only if they satisfy an

interpolatory condition ψn,r(z
(n)
s ) = 0, for r 6= s. We will present in Section 5 an

example of orthogonal wavelets. In general, however, it is not clear whether there
exist orthogonal wavelets for a given inner product.

Moreover, not any set {z(n)
r }n−1

r=0 leads to linear independent wavelet functions.

For example, let the z
(n)
r be zeros of Ps, i.e.,

Ps(z
(n)
r ) = 0, r = 0, 1, . . . , n− 1, n+ 1 ≤ s ≤ 2n.

Then the wavelets

ψn(t; z(n)
r ) =

2n∑
k=n+1,k 6=s

Pk(z
(n)
r )Pk(t), r = 0, 1, . . . , n− 1,

can span at best a space of dimension n − 1. However, we have the following
theorem.

Theorem 2.9. Let z
(n)
r = y

(n)
r , r = 0, 1, . . . , n− 1, denote the zeros of Pn and let

ψn,r(t) = ψn(t; y
(n)
r ) denote the associated wavelets. Then

Wn = span{ψn,0, ψn,1, . . . , ψn,n−1}.
Proof. We show that the {ψn,r}n−1

r=0 are linearly independent. To this end, assume
that

n−1∑
r=0

σrψn,r(t) ≡ 0.

Since the Pj ’s are orthogonal we have

〈Pn, PiPj〉
{
6= 0 for i+ j = n,

= 0 for i+ j < n.

This together with the reproducing property (2.11) implies, for i = 1, 2, . . . , n,

0 =

〈
n−1∑
r=0

σrψn,r, PnPi

〉

=

n−1∑
r=0

σr〈K2n(·; y(n)
r )−Kn(·; y(n)

r ), PnPi〉

= −
n−1∑
r=0

σr〈Kn(·; y(n)
r ), PnPi〉

= −
n−1∑
r=0

σr

n−1∑
j=0

Pj(y
(n)
r )〈Pn, PiPj〉

= −
n−1∑
j=0

〈Pn, PiPj〉
n−1∑
r=0

σrPj(y
(n)
r )

= −
n−1∑

j=n−i
〈Pn, PiPj〉

n−1∑
r=0

σrPj(y
(n)
r ).
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In other words, we end up with a triangular homogeneous linear system in the

unknown
∑n−1

r=0 σrPj(y
(n)
r ). Since the entries on the main diagonal do not vanish,

it has the unique solution

n−1∑
r=0

σrPj(y
(n)
r ) = 0, j = 0, 1, . . . , n.

This, however, is only possible for σ0 = σ1 = · · · = σn−1 = 0, because the vectors

vn−1(y
(n)
r ) = (P0(y

(n)
r ), P1(y

(n−1)
r ), . . . , Pn(y(n)

r ))T, r = 0, 1, . . . , n− 1,

are linearly independent as eigenvectors of Jn−1 (cf. Lemma 2.1(d)).

2.4. Dual functions. For practical purposes it is important to get a hand on the
dual functions ϕ̃n,r ∈ Vn and ψ̃n,r ∈ Wn. They are uniquely determined by the
following biorthogonality relations

〈ϕn,s, ϕ̃n,r〉 = δr,s, r, s = 0, 1, . . . , n,(2.25)

〈ψn,s, ψ̃n,r〉 = δr,s, r, s = 0, 1, . . . , n− 1.

Of course, here we have to assume that the wavelets ψn,r constitute a basis for
Wn. The next theorem shows that the dual functions are easy to identify. The
proof follows directly from (2.25) and the reproducing properties (2.11) and (2.23),
respectively.

Theorem 2.10. Let Vn and Wn be defined as in (2.4) and (2.7), respectively.

(a) The dual scaling functions ϕ̃n,r = `r (cf. (2.16)) are the fundamental poly-
nomials of Lagrange interpolation with respect to the given parameter set

x
(n+1)
0 , x

(n+1)
1 , . . . , x

(n+1)
n , i.e.,

ϕ̃n,r ∈ Vn and ϕ̃n,r(x
(n+1)
s ) = δr,s r, s = 0, 1, . . . , n.

(b) Let {ψn,r}n−1
r=0 be a basis for Wn. Then the dual wavelet functions ψ̃n,r ∈ Wn

are the fundamental polynomials of Lagrange interpolation with respect to the

given parameter set z
(n)
0 , z

(n)
1 , . . . , z

(n)
n−1, i.e.,

ψ̃n,r ∈Wn and ψ̃n,r(z
(n)
s ) = δr,s r, s = 0, 1, . . . , n− 1.

For the actual computation of the dual functions we refer to the next section.
We would like to point out that the dual functions as well satisfy a localization
property with respect to a discrete measure. More precisely, it holds (compare
Theorem 2.3(b))

‖ϕ̃n,r‖n+1 = min
{‖p‖n+1 : p ∈ Vn, p(x(n+1)

r ) = 1
}
,

where

‖p‖n+1 :=

(
n∑

s=0

|p(x(n+1)
s )|2

)1/2

.

Analogously, we have for the wavelet space (compare Theorem 2.8(b))∥∥∥ψ̃n,r∥∥∥
n

= min
{‖p‖n : p ∈Wn, p(z

(n)
r ) = 1

}
,
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where

‖p‖n :=

(
n−1∑
s=0

|p(z(n)
s )|2

)1/2

.

Finally, let us mention that the dual functions are in general no kernel functions
with respect to the set of orthonormal polynomials Pk as in (2.13) and (2.21). On
the other hand, however, they do have a representation in terms of kernel polyno-
mials with respect to the orthonormal polynomials defined by the corresponding
discrete inner product.

3. Two-scale relations and decomposition

The purpose of this section is to describe reconstruction and decomposition al-
gorithms of given functions. The schemes are based on the space representation
V2n = Vn ⊕ Wn. Clearly, a repeated application of this step would result in a
multiresolution of a weighted L2-space.

3.1. Matrix notation. We start by noting that in view of (2.13) any function

fn ∈ Vn, represented by the vector a(n) :=
(
a
(n)
0 , . . . , a

(n)
n

)T

,

fn(t) =
n∑

r=0

a(n)
r ϕn(t;x(n+1)

r ) = (P0(t), . . . , Pn(t))An a
(n),(3.1)

may be written in terms of the matrix

An :=
(
Pk(x

(n+1)
r )

)
k,r=0,1,... ,n

=


P0(x

(n+1)
0 ) · · · P0(x

(n+1)
n )

...
. . .

...

Pn(x
(n+1)
0 ) · · · Pn(x

(n+1)
n )


=

(
vn(x

(n+1)
0 ), . . . ,vn(x(n+1)

n )
)
.(3.2)

Analogously, we obtain for gn ∈ Wn, with b(n) :=
(
b
(n)
0 , . . . , b

(n)
n−1

)T

, the repre-

sentation

gn(t) =
n−1∑
r=0

b(n)
r ψn(t; z(n)

r ) = (Pn+1(t), . . . , P2n(t))Bn b
(n),(3.3)

where

Bn :=
(
Pk+n+1(z

(n)
r )

)
k,r=0,1,... ,n−1

=


Pn+1(z

(n)
0 ) · · · Pn+1(z

(n)
n−1)

...
. . .

...

P2n(z
(n)
0 ) · · · P2n(z

(n)
n−1)

 .(3.4)

It is the purpose of this section to study the matrices An and Bn, respectively,
in more detail.

Recall that by Theorem 2.3(c) the scaling functions are linearly independent,
i.e.,
n∑

r=0

σrϕn(t;x(n+1)
r ) =

n∑
r=0

σr

n∑
k=0

Pk(x
(n+1)
r )Pk(t) =

n∑
k=0

Pk(t)

n∑
r=0

σrPk(x
(n+1)
r ) = 0
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implies σ0 = σ1 = . . . = σn = 0. We learn from the above equation that also the

vectors vn(x
(n+1)
r ) are linearly independent, which are just the columns of An. In

fact, An has to be regular as coefficient matrix for the interpolation problem at the

knots x
(n+1)
r with respect to the space spanned by the Pj ’s.

Corollary 3.11. Let x
(n+1)
0 < x

(n+1)
1 < · · · < x

(n+1)
n be given.

(a) The matrix An is regular.

(b) The scaling functions ϕn(t;x
(n+1)
r ), r = 0, 1, . . . , n, are orthogonal and inter-

polatory (cf. Theorem 2.3(a)) if, and only if AT
nAn is a diagonal matrix.

In light of Corollary 2.6 it should come as no surprise that the matrix An based
on the zeros of Pn+1 is special.

Corollary 3.12. Let x
(n+1)
r = y

(n+1)
r , r = 0, 1, . . . , n, denote the zeros of Pn+1

and let c
(n+1)
r denote the weights of the Gaussian quadrature rule (cf. Corollary

2.6). Then the columns of An are the eigenvectors of Jn. Moreover,

AT
nAn =

(
vn(y

(n+1)
k )Tvn(y

(n+1)
r )

)n
k,r=0

= diag
(
(c

(n+1)
0 )−1, . . . , (c

(n+1)
n )−1

)
=: Dn,

and

A−1
n = D−1

n AT
n .

To discuss properties of Bn note that

n−1∑
r=0

σrψn(t; z(n)
r ) =

n−1∑
r=0

σr

2n∑
k=n+1

Pk(z
(n)
r )Pk(t) =

2n∑
k=n+1

Pk(t)

n−1∑
r=0

σrPk(z
(n)
r ).

Hence, the wavelets are linear independent if, and only if the matrix Bn is regular.
The next corollary follows from Section 2.3 and in particular from Theorem 2.9.

Corollary 3.13. Let z
(n)
0 < z

(n)
1 < · · · < z

(n)
n−1 be given.

(a) The matrix Bn is not necessarily regular.

(b) The wavelets ψn(t; z
(n)
r ), r = 0, 1, . . . , n− 1, are orthogonal and interpolatory

(cf. Theorem 2.8(a)) if, and only if BT
nBn is a diagonal matrix.

In Theorem 2.9 we identified a set of parameters which leads to linear indepen-
dent wavelets or, equivalently, to a regular Bn.

Corollary 3.14. Let z
(n)
r = y

(n)
r , r = 0, 1, . . . , n− 1, denote the zeros of Pn. Then

Bn is regular.

Proof. For later reference we offer a proof which is different from the one of The-
orem 2.9. It provides a convenient expression for B−1

n . Namely, a straightforward
computation shows that

BnA
−1
n−1 = BnD

−1
n−1A

T
n−1

=

(
n−1∑
r=0

c(n)
r Pk+n+1(y

(n)
r )Pl(y

(n)
r )

)
k,l=0,1,... ,n−1

,(3.5)
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where the matrix An−1 is based on the parameter set y
(n)
r . It turns out that this

matrix is triangular with nonvanishing anti-main diagonal entries. To justify this
statement observe that by Gaussian quadrature

0 =

∫ b

a

Pk+n+1(t)Pl(t)dσ(t) =

n−1∑
r=0

c(n)
r Pk+n+1(y

(n)
r )Pl(y

(n)
r ),

for k+n+1+ l ≤ 2n−1. It follows that det(BnD
−1
n−1A

T
n−1) 6= 0 and consequently

det Bn 6= 0.

Finally, let us summarize the relationships between the various introduced bases
for Vn and Wn, respectively.

Corollary 3.15. Let An and Bn be defined by (3.2) and by (3.4), respectively.

(a) For a given arbitrary parameter set x
(n+1)
r , r = 0, 1, . . . , n, we haveϕn,0...

ϕn,n

 = AT
n

P0

...
Pn,

 ,

ϕ̃n,0...
ϕ̃n,n

 = A−1
n

P0

...
Pn

 =
(
AT

nAn

)−1

ϕn,0...
ϕn,n

 .

(b) For a given parameter set z
(n)
r , r = 0, 1, . . . , n − 1, such that Bn is regular,

we have ψn,0
...

ψn,n−1

 = BT
n

Pn+1

...
P2n,


 ψ̃n,0

...

ψ̃n,n−1

 = B−1
n

Pn+1

...
P2n

 =
(
BT

nBn

)−1

 ψn,0
...

ψn,n−1

 .

Recall that AT
nAn and BT

nBn are the Gram matrices for our scaling functions
and wavelets, respectively.

3.2. Two-scale relations and decomposition. In this section we work out the

relationship between the coefficient vectors a(2n),a(n), and b(n) in the so-called
two-scale relation

f2n(t) =

2n∑
r=0

a(2n)
r ϕ2n(t;x(2n+1)

r )

=

n∑
r=0

a(n)
r ϕn(t;x(n+1)

r ) +

n−1∑
r=0

b(n)
r ψn(t; z(n)

r )(3.6)

= fn(t) + gn(t).

In view of (3.1) and (3.3) the above equation may be rewritten as follows:

(P0(t), . . . , P2n(t))A2n a
(2n)

= (P0(t), . . . , Pn(t))An a
(n) + (Pn+1(t), . . . , P2n(t))Bn b

(n),
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which then implies

A2n a
(2n) =

(
An 0
0 Bn

)(
a(n)

b(n)

)
.(3.7)

The next theorem shows how to decompose a function from V2n into wavelets
from Wn and scaling functions from Vn and states how to reverse this process. The
proof follows directly from (3.7).

Theorem 3.16. Let the scaling functions ϕn(t;x
(n+1)
r ), ϕ2n(t;x

(2n+1)
r ), the wave-

lets ψn(t; z
(n)
r ) and the corresponding matrices An, A2n, Bn are based on arbitrary

parameter sets.

(a) (Reconstruction) Let the coefficient vectors a(n) and b(n) in (3.6) be given.
Then

a(2n) = A−1
2n

(
An 0
0 Bn

)(
a(n)

b(n)

)
.

(b) (Decomposition) Let the coefficient vector a(2n) in (3.6) be given. If Bn is
regular, then (

a(n)

b(n)

)
=

(
A−1

n 0

0 B−1
n

)
A2na

(2n).

As it is not surprising, the above formulae simplify in the orthogonal case. In
particular, the inversion of matrices can be avoided. Note, however, that the or-
thogonality of the wavelets is only known for special cases (see Section 5).

Corollary 3.17. Let the wavelets ψn,r(t) = ψn(t; z
(n)
r ) and the scaling functions

ϕn,r(t) = ϕn(t;x
(n+1)
r ), ϕ2n,r(t) = ϕ2n(t;x

(2n+1)
r ) be given.

(a) (Reconstruction) Let the coefficient vectors a(n) and b(n) in (3.6) be given.
If the ϕ2n,r, r = 0, 1, . . . , 2n, are orthogonal, then

a(2n)
r =

1

ϕ2n,r(x
(2n+1)
r )

(
n∑

s=0

a(n)
s ϕn,s(x

(2n+1)
r ) +

n−1∑
s=0

b(n)
s ψn,s(x

(2n+1)
r )

)
.

(b) (Decomposition) Let the coefficient vector a(2n) in (3.6) be given. If the ϕn,r,
r = 0, 1, . . . , n, and the ψn,r, r = 0, 1, . . . , n− 1, are orthogonal, then

a(n)
r =

1

ϕn,r(x
(n+1)
r )

2n∑
s=0

a(2n)
s ϕn,r(x

(2n+1)
s ),

b(n)
r =

1

ψn,r(z
(n+1)
r )

2n∑
s=0

a(2n)
s ψn,r(x

(2n+1)
s ).

Proof. (a) The orthogonality and (3.6) imply

a
(2n)
r =

〈fn + gn, ϕ2n,r〉
〈ϕ2n,r, ϕ2n,r〉

=
1

〈ϕ2n,r , ϕ2n,r〉

(
n∑

s=0

a(n)
s 〈ϕn,s, ϕ2n,r〉+

n−1∑
s=0

b(n)
s 〈ψn,s, ϕ2n,r〉

)
.
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The remaining part follows from the reproducing property of ϕ2n,r (cf. (2.11)).
Part (b) is along the same lines. Here we have

a(n)
r =

〈f2n, ϕn,r〉
〈ϕn,r, ϕn,r〉 and b(n)

r =
〈f2n, ψn,r〉
〈ψn,r, ψn,r〉 .

To decompose a given function f one first has to approximate f by a suit-
able function f2n in V2n. Let us assume that the scaling functions ϕ2n,r(t) =

ϕ2n(t; y
(2n+1)
r ) are based on the zeros y

(2n+1)
r of P2n+1, i.e., they are orthogonal

〈ϕ2n,r , ϕ2n,s〉 = ϕ2n,r(y
(2n+1)
s ) = c(2n+1)

r δr,s.

Then the approximation is typically done by an orthogonal projection

f(t) ≈
2n∑
r=0

〈f, ϕ2n,r〉 ϕ2n,r(t)

〈ϕ2n,r, ϕ2n,r〉 ,

or by an interpolatory process

f(t) ≈
2n∑
r=0

f(y(2n+1)
r )

ϕ2n,r(t)

〈ϕ2n,r, ϕ2n,r〉 .

Actually, if on computes 〈f, ϕ2n,r〉 by the Gaussian quadrature both approaches
provide the same approximation. The proof of the next lemma follows directly
from Corollary 2.6.

Lemma 3.18. Let y
(2n+1)
r , r = 0, 1, . . . , 2n, denote the zeros of P2n+1 and let

ϕ2n,r denote the associated scaling functions (2.13). Furthermore, let f denote a
given smooth function. Then the Gaussian quadrature of fϕ2n,r simplifies

〈f, ϕ2n,r〉 ≈
2n∑
s=0

(
c(2n+1)
s

)−1

f(y(2n+1)
s )ϕ2n,r(y

(2n+1)
s ) = f(y(2n+1)

r ).

Let us finish this section with an example. Here we decompose a piecewise
linear “hat function” f which is zero on [−1, 1]\ (−0.01, 0.01) and one at the origin
(compare Figure 3.19 (a)). The scaling function spaces V2n and Vn were defined by
the zeros of P2n+1 and Pn+1, respectively. The wavelet spaceWn was defined by the
zeros of Pn, which ensures that the ψn,r’s constitute a basis. The approximation
f2n of f in V2n was computed by the above described interpolatory process.

It is important to note that the underlying numerical computations make use
of the properties of orthogonal polynomials. In particular, we computed the corre-
sponding parameter sets as eigenvalues of the associated Jacobi matrix (cf. Lemma
2.1 (c)) and the resulting polynomials were evaluated by means of their three-term
recurrence relations (2.5).

Figure 3.19 shows the decomposition f2n = fn+gn with respect to the Chebyshev
weight function of the first kind w(t) = (1 − t2)−1/2. Whereas Figure 3.20 shows
the same decomposition but with respect to the modified weight function w(t) =
t2(1 − t2)−1/2 (explicit expressions for the corresponding orthogonal polynomials
may be found in Chihara [1, pp. 155]). Here, the time localization is considerably
improved.

Some comments are in order. The purpose of the example is to show that the
choice of the weight function may have quite some affect on the decomposition.
Here, we designed the given function f such that in both cases the approximation
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Figure 3.19. Decomposition with respect to w(t) = (1− t2)−1/2

for n = 128. (a) Given function: f ; (b) projection on V2n: f2n;
decomposition: (c) fn ∈ Vn; (d) gn ∈Wn.

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

(a)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1

(b)

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

(c)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1

(d)

Figure 3.20. Decomposition with respect to w(t) = t2(1−t2)−1/2

for n = 128. (a) Given function: f ; (b) projection on V2n: f2n;
decomposition: (c) fn ∈ Vn; (d) gn ∈Wn.

f2n consists of only one scaling function, that is, f2n is “maximally localized” with
respect to the chosen weight function (cf. Theorem 2.3(b)). It is interesting to note
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that for both weights gn has a full expansion into wavelets, i.e., b
(n)
r 6= 0, r =

0, 1, . . . , n− 1.

4. Stability and translation invariance

The above introduced scaling functions and wavelets do not provide a multires-
olution in the classical sense. However, there are some relationships which will
be pointed out in this section. To start with, let us mention that we have also a
sequence of successive approximation spaces, i.e.,

V0 ⊂ V1 ⊂ · · · ⊂ V2j ⊂ V2j+1 ⊂ · · · .
Furthermore, from the classical theory of orthogonal polynomials we have

closL2(w)

∞⋃
j=0

V2j = L2(w),

provided that the underlying distribution function has infinitely many points of
increase. Because we deal with finite dimensional spaces V2j , j ≥ 0, we omit the
axiom ⋂

j

V2j = {0}.

The dilation axiom essentially changes into a condition for the frequencies

f ∈ Vn ⇐⇒ 〈f, Pk〉 = 0, for all k > n.

Finally, in the next subsection we discuss in greater detail the fourth axiom of a
classical multiresolution analysis, namely that the span of all integer translates of
a given scaling function yields a Riesz basis for the corresponding space.

4.1. Riesz stability. Here we establish a two-sided estimate between the weighted
L2-norm ‖fn‖ (‖gn‖) (cf. (2.2)) of an arbitrary function fn ∈ Vn (gn ∈ Wn) and
the Euclidian norm of the coefficients of fn (gn) with respect to the basis of scaling
functions (wavelets). The Euclidian norm of a vector a(n) ∈ Rn+1 is defined as

usual by ‖a(n)‖2 =
(∑n

r=0 a
2
r

)1/2
with corresponding spectral norm ‖A‖2.

Theorem 4.21. Let An (cf. (3.2)) and Bn (cf. (3.4)) denote the matrices asso-

ciated with the parameter sets x
(n+1)
r and z

(n)
r , respectively. Furthermore, let ϕn,r

and ψn,r denote the corresponding scaling functions and wavelets.

(a) For fn =
∑n

r=0 a
(n)
r ϕn,r, we have

1

‖A−1
n ‖2

‖a(n)‖2 ≤ ‖fn‖ ≤ ‖An‖2 ‖a(n)‖2.

(b) For gn =
∑n−1

r=0 b
(n)
r ψn,r, we have

‖gn‖ ≤ ‖Bn‖2 ‖b(n)‖2,

and if in addition Bn is regular, then also

1

‖B−1
n ‖2

‖b(n)‖2 ≤ ‖gn‖.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.22. Scaling functions of degree n = 32 with respect to

the Legendre weight w(t) = 1 and the parameter x
(n+1)
0 = −0.2

(solid line) and x
(n+1)
1 = 0.5 (dashed line).

Proof. By Parseval’s equation we obtain for fn ∈ Vn

‖fn‖2 =

∥∥∥∥∥
n∑

r=0

a(n)
r

n∑
k=0

Pk(x
(n+1)
r )Pk

∥∥∥∥∥
2

=

n∑
k=0

∣∣∣∣∣
n∑

r=0

a(n)
r Pk(x

(n+1)
r )

∣∣∣∣∣
2

= ‖Ana
(n)‖2

2.

Now (a) and analogously (b) follow by standard arguments.

Hence, as it is not surprising, the Riesz stability can be measured by the spectral
condition number of An

‖A−1
n ‖2‖An‖2 =

√
λmax(A

T
nAn)

λmin(AT
nAn)

(4.1)

and by the spectral condition number of Bn

‖B−1
n ‖2‖Bn‖2 =

√
λmax(B

T
nBn)

λmin(BT
nBn)

,(4.2)

respectively. Here λmax and λmin denote the extreme eigenvalues of the correspond-
ing matrices.

4.2. Generalized translation. Usually, in a multiresolution analysis time local-
ization is realized by taking shifts of one given function. Also, Euler’s functional
equation is used to advantage. Namely, a shift in the time space is equivalent to
a multiplication by an exponential in the Fourier space. In this section, we briefly
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Figure 4.23. Wavelets of degree n = 32 with respect to the Le-

gendre weight w(t) = 1 and the parameter z
(n+1)
0 = −0.2 (solid

line) and z
(n+1)
1 = 0.5 (dashed line).

outline how to generalize this concept to the present polynomial approach. Here,

we restrict ourselves to the Jacobi polynomials P
(α,β)
k . These polynomials are or-

thogonal with respect to the weight w(t) = (1− t)α(1 + t)β , −1 < t < 1.
For a given f in this weighted L2-space with Fourier-Jacobi-coefficients

f (̂k) =

∫ 1

−1

f(t)P
(α,β)
k (t)(1− t)α(1 + t)βdt

we consider the operator Sλ : L2(w) → L2(w), −1 ≤ λ ≤ 1, defined by a multipli-
cation in the frequency domain

(Sλf) (̂k) :=
P

(α,β)
k (λ)

P
(α,β)
k (1)

f (̂k) .

For −1 < β ≤ α, −1 ≤ α+ β, the operator Sλ has the properties (see Gasper [5])

‖Sλf‖ ≤ C‖f‖, for all λ ∈ (−1, 1),

and

lim
λ→1−

‖Sλf − f‖ = 0.

Hence Sλ may be seen as a generalized translation operator.
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In this context, it is possible to recover our scaling functions and wavelets, re-
spectively, as generalized translations of a given function. More precisely, with

fV (t) := ϕn(t; 1) =

n∑
k=0

P
(α,β)
k (1)P

(α,β)
k (t)

it is straightforward to verify that

ϕn(·;λ) = SλfV .

Here, we used that

fV (̂k) =

{
P

(α,β)
k (1) for 0 ≤ k ≤ n ,

0 for k > n .
(4.3)

Analogously, we have

ψn(·;λ) = SλfW

with

fW (t) := ψn(t; 1) =

2n∑
k=n+1

P
(α,β)
k (1)P

(α,β)
k (t).(4.4)

We would like to mention that modifications of (4.3) and of (4.4) which at least
remain suppfV ˆ= {0, . . . , n} and suppfW ˆ= {n+1, . . . , 2n}, respectively, do affect
the algorithms of Section 3 only by the multiplication of An and Bn by certain
regular diagonal matrices.

The two figures illustrate, that scaling functions (wavelets) with respect to dif-
ferent parameters look almost like a shift of each other.

5. Examples

In this section we want to discuss two examples in more detail. Both belong
to the class of Chebyshev weights, i.e. Jacobi weights with |α| = |β| = 1

2 . These
weights are of particular interest, because here one can handle the computations
with the help of fast algorithms based on the Discrete Cosine Transform (see, for
example Tasche et al. [9], [10], [7]).

Let us start with the Chebyshev weight of the first kind

w(t) =
1√

1− t2
, t ∈ (−1, 1).

The corresponding orthonormal polynomials, the Chebyshev polynomials of the
first kind, can conveniently be written

Pn(t) =

√
1

π
·
{√

2 cosnθ if n > 0 ,

1 if n = 0 ,

in terms of t = cos θ, 0 ≤ θ ≤ π. If we take as parameter set for the scaling
functions the zeros of Pn+1 (cf. Corollary 2.6)

y(n+1)
r = cos

(2r + 1)π

2n+ 2
, r = 0, . . . , n,

then

ϕn,r(t) =
1

π
+

2

π

n∑
k=0

cos
k(2r + 1)π

2n+ 2
cos kθ
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and

An =

√
2

π
diag

(√
2

2
, 1, 1, . . . , 1

)
·
(

cos
k(2r + 1)π

2n+ 2

)
k,r=0,... ,n

.

With the help of trigonometric identities it is easy to see that

A−1
n =

π

n+ 1
AT

n .(5.1)

Following Corollary 3.12 we notice that this is the only situation where Gauss-
ian quadrature coincides with Chebyshev quadrature (i.e., all weights are equal
π/(n+ 1)).

Analogously we choose for the wavelets the zeros y
(n)
r of Pn as the set of param-

eters. Then

ψn,r(t) =
2

π

2n∑
k=n+1

cos
k(2r + 1)π

2n
cos kθ, r = 0, . . . , n− 1,

and

Bn =
√

2
π

(
cos (n+1+k)(2r+1)π

2n

)
k,r=0,... ,n−1

=
√

2
π

(
(−1)r+1 sin (k+1)(2r+1)π

2n

)
k,r=0,... ,n−1

.

In this case we know from Corollary 3.14 that the wavelets are linear independent.
However, the following lemma shows that they are not orthogonal to each other
(compare Corollary 3.13(b)).

Lemma 5.24. The inverse of Bn is given by

B−1
n =

π

n
BT

n · diag

(
1, 1, . . . , 1,

1

2

)
(5.2)

with

BT
nBn =

(
n

π
δk,r +

1

π

)
k,r=0,... ,n−1

.

Proof. The first assertion is equivalent to

δr,s =
2

n

n−1∑
k=0

′(−1)r+s sin
(k + 1)(2r + 1)π

2n
sin

(k + 1)(2s+ 1)π

2n
,

where the prime indicates that the last term in the sum has to be divided by 2.
Having performed an index shift, we obtain for the right-hand side by the addition
formula

1

n
(−1)r+s

n∑
k=1

′ cos
k(r − s)π

n
− cos

k(r + s+ 1)π

n
.

The rest of the proof is just an application of the well-known summation formula
for Dirichlet kernels

1

2
+

n∑
k=1

′ cos
k`π

n
=

{
0 if |`| = 1, . . . , 2n− 1,

n if ` = 0.
(5.3)

The second statement follows directly from the first one.
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We conclude this example with the computation of the Riesz stability constants
(cf. (4.1), (4.2)). With (5.1) we obtain the best possible bounds for the scaling
functions

‖A−1
n ‖2‖An‖2 = 1,

whereas for the wavelets we deduce from (5.2) that

‖B−1
n ‖2‖Bn‖2 =

√
2.

Let us now consider as a second example the Chebyshev weight of the second
kind, i.e.,

w(t) =
√

1− t2, t ∈ (−1, 1),

and the corresponding orthonormal polynomials

Pn(t) =

√
2

π

sin(n+ 1)θ

sin θ
.

Again we take as parameter set for the scaling functions the zeros of Pn+1, i.e.,

y(n+1)
r = cos

(r + 1)π

n+ 2
, r = 0, . . . , n.

This choice leads to

ϕn,r(t) =
2

π

n∑
k=0

sin (k+1)(r+1)π
n+2

sin (r+1)π
n+2

sin(k + 1)θ

sin θ

and

An =

√
2

π

(
sin (k+1)(r+1)π

n+2

sin (r+1)π
n+2

)
k,r=0,... ,n

.

For completeness we mention the result on the Gaussian quadrature

AT
nAn = diag

(
n+ 2

π sin2 (r+1)π
n+2

)
r=0,... ,n

.(5.4)

Choosing the zeros y
(n)
r of Pn as the set of parameters for the wavelets we obtain

ψn,r(t) =
2

π

2n∑
k=n+1

sin (k+1)(r+1)π
n+1

sin (r+1)π
n+1

sin(k + 1)θ

sin θ
, r = 0, . . . , n− 1,

and

Bn =

√
2

π

(
sin (k+n+2)(r+1)π

n+1

sin (r+1)π
n+1

)
k,r=0,... ,n−1

.

The next lemma shows that this time we have an orthogonal set of wavelets.

Lemma 5.25. For the above defined matrix Bn we have

BT
nBn = diag

(
n+ 1

π sin2 (r+1)π
n+1

)
r=0,... ,n−1

.(5.5)
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Proof. The (r, s) element of BT
nBn looks like

2

π

n−1∑
k=0

sin (k+n+2)(r+1)π
n+1

sin (r+1)π
n+1

· sin (k+n+2)(s+1)π
n+1

sin (s+1)π
n+1

.

It may be simplified to

(−1)r+s

π sin (r+1)π
n+1 sin (s+1)π

n+1

n∑
k=1

(
cos

k(r − s)π

n+ 1
− cos

k(r + s+ 2)π

n+ 1

)
.

Now the statement follows from (5.3).

Again, we finish by computing the quotient for the Riesz bounds. Here, we
obtain from (5.4) that

‖A−1
n ‖2‖An‖2 =

{
sin−1 π

n+2 for even n,
1
2 sin−1 π

2n+4 for odd n,

and from (5.5) that

‖B−1
n ‖2‖Bn‖2 =

{
sin−1 π

n+1 for odd n,
1
2 sin−1 π

2n+2 for even n.

Let us summarize these two examples. We have constructed for the Chebyshev
weight of the first kind orthogonal scaling functions and nonorthogonal wavelets
where the quotient of the associated Riesz bounds are uniformly bounded. On
the other hand, for the Chebyshev weight of the second kind we constructed both
orthogonal scaling functions and orthogonal wavelets where the quotient of the
Riesz constants are growing linearly in n.
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