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Abstract

The design of iterative schemes for sparse matrix computations

often leads to constrained polynor_dal approximation problems on

sets in the complex plane. For the case of ellipses, we introduce a

new class of complex polynomials wlfich are in general very good

approximations to the best polynomials and even optimal in most

cases.
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§1. Introduction

We consider complex Chebyshev approximation problems of the type

En(r,c) = re.in [[P[[_:,,IIPlI_:= max[p(z)[. (1)
pEHn:p(c)=l zEEr

Here Hn denotes the space of all complex polynomials of degree at most n, £r

is any ellipse with loci +1 and semi-axes (r + r -_ )/2, r > 1, and c E C \ Er. It

will be convenient to express c as a point on the boundary O£R of the ellipse

£n, R > r, i.e. c = c(R, 7) = ((R + R-l)cos(7) + i(R- R-1)sin(7))/2, 7 e

[0, 2_r). Since Haar's condition is satisfied, there always exists a unique optimal

polynomial pn(z;r,c) of (1).

Problems (1), in general with £ C C any compact set instead of £,-, arise

in numerical linear algebra. E.g. the design of iterative methods for the solu-

tion of large sparse non-Hermitian linear systems Ax = b with best possible

convergence rates [2], the computation of optima] polynomial preconditioners

for conjugate gradient type algorithms for Az = b [7], or the acceleration of

eigenvalue methods for A [6] all lead to problems of this type. However, for

arbitrary sets £ the optimal polynomials are in general not known explicitly

and therefore the methods are usually based on polynomials which are only

asymptotically optimal. A popular choice for the set £ are ellipses, and then

the scaled Chebyshev polynomials tn(z; c) := Tn(z)/Tn(c) are used as approx-

imations to the optimal polynomials of (1) [4, 6]. Clayton [1] showed that even

tn(z; c) = p,,(z; r, c) if c is real, and in general t,, is nearly optimal for (1) as

long as n is large. However, in some of the applications we mentioned, polyno-

mials with small degree are used and typically the distance between c and £,-

is small. Depending on the position of c on O£R, Ilt.(z; c)lle, > 1 can occur,

and then tn yields no useful approximation (cf. Example 1 given below).

In this note, we introduce a new class of asymptotically optimal polyno-

mials qn for Problem (1) wtfich always satisfy Ilq.(:;c)l[_-_ < [[t,(z;c)lle, and

[[qn(z; c)[[e, < 1. Moreover, they are even optimal in most cases.

§2. Results

The q,_ are defined by

qn(z;c) = T,,(z) + _,_
+

,. sin(nT)

, = Z (R-z - 12-'----")"

Here an is the solution of the extremal problem

= rain max
c_EC_ zE£r

T.(:) +
T.(c) +

We summarize the important properties of qn(z; c)in the following

(2)

(3)
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Theorem 1. [3]

(a) q,(z; c) has precisely 2n extremaI points zj, j = 1, 2,..., 2n, on OCt with

[Iqn(z;c)[[c. = M,_(r,c)=(r" + r-")/(R" + R-").

(b) There e._sts a number R0(n,r) such that q,(z;c) - pn(z;r,c) for MI

c G O£R with R >_ Ro(n,r).

(c) Let c C OE_ be such that/t > r(9r 4 - 1)/(r 4 - 1). Then, there e._sts an

integer no(r,R) such that qn(z;e) - pn(z;r,e) t'or MI n > no(r,R).

Discussion: Supported by numeric',d tests (c.f. ExaJnple 2), we conjecture

that (c) is true for arbitrary R > r > 1. []q,(z; e)][E, does not depend on the

position of c on OER and Hq,(z; c)[[c_ _< [[t,(z; c)I[E., where equality holds iff

sin(n'7) = 0, e.g. for c C IR (cf. Example 1). The proof of Theorem 1 is based

on tile following characterization [5]: q,,(z; c) -_- p,,(z; r, c) iff the linear system

_-0 for II,,_,
j-----1

(4)

has a nontfivial and nonnegative solution. See [3] for the explicit solution of

(4).

Example 1. ]Ve compare [[q,(z;c)[[e, (continous curve) and [[tn(z;c)[[e,

(dashed curve) where r = 1.1, R = 1.2 [or q, E [0, Tr] and n = 3,4 (cf.

Figure 1).
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Figure 1. Maximum norm of q, and t,,

The nontriviM solutions of (4) always lead to a lower bound fi)r the min-

imal deviation of problem (1), which is sharp in a certain sense:

Theorem 2. Let ai, j = 1,2,...,2n, be any nontliviM real solution of (4),

norm,'dizcd such that g-,2,,,_-,j=l [aJ[ = 1, thel2

21"l

L,,(r,c)- ,]l,,(r,c) J='
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where equMity holds iff q,_(z; c) - t,n(z; r, c).

Proof: Let p E 1-I,_1. From (4) we obtain

2n 2n 2n

j=l j=l 3=1

j= !

;e)(1- (z, - c)p(zi))

II1- (: - _)p(z)llc,,

and the result follows. •

We illustrate that q,_ is in general nearly optimal ill the following

Example 2. hi this example we compute the relative deviation D,(r,c) =

(M,(r,c)- Ln(r,c))/Mn(r,c) where r = 2 t'or c 6 [-2.1,2.1] × [-i2.1,i2.1]

(here Dn(r,c) := 0 i[ c E £_) and n = 2, 3, 4, 5. Note that Dn(r,c) = 0 if

q,,(r, c) is optimM (cf Figure 2). We obtain maxce C Dn(2, c) < 0.1024, 0.0498,
0.0336, 0.0210 t'or n = 2, 3, 4, 5 resp.

r=2, n=2
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r=2, n=3

r=2, n=4
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r=2, n=5

Figure 2. Relative deviation o[ qn
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