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Zusammenfassung

Eine Linearkombination von Riesz-Darstellern interpoliert Funktionswerte der
zugehörigen stetigen linearen Funktionale, die nach dem Darstellungssatz von
Fréchet-Riesz eindeutig zuordenbar sind. Diese interpolierende Funktion wird
unter allen Funktionen, die die generierten Funktionswerte interpolieren, als Mi-
nimum bezüglich der Norm des Hilbertraums, aus dem die Riesz-Darsteller stam-
men, bewiesen. Dieser in der Arbeit präsentierte Interpolationsansatz wird auf die
Hermite-Birkhoff-Interpolation mit radialen Basisfunktionen (RBFs) spezifiziert,
indem die linearen Funktionale in Form einer Verkettung von Auswertung und
Differentiation gewählt werden. Das Konzept wird dann zur Modellierung von
implizit definierten Oberflächen genutzt, die durch Punkte und Normalenvekto-
ren beschrieben werden. Im Vergleich der von Gauß und Wendland eingeführten
RBFs bei der Oberflächenrekonstruktion zeigt sich, dass der freie Parameter der
Gauß RBFs die Krümmung der Oberfläche beeinflusst und der Parameter der
Wendlandfunktionen einen Interpolationsradius angibt. Optische Rückstände des
kompakten Trägers der Wendlandfunktionen können durch die Eingliederung von
Polynomtermen in die interpolierende Funktion aufgehoben werden. Die Raum-
erweiterung mit Polynomen im Allgemeinen hat einen optisch glättenden Effekt
in den Oberflächen.

Abstract

A linear combination of Riesz representers interpolates values generated by the
evaluation of the associated continuous linear functionals. The interpolant of
that form is proven to be norm-minimal among all functions interpolating the
generated values in the Hilbert space containing the Riesz representers. This
in the thesis displayed interpolation approach is specialized to Hermite-Birkhoff
interpolation with radial basis functions (RBFs) by choosing a composition of
evaluation and differentiation as linear functionals. The interpolation framework
is then applied to the problem of modeling surfaces implicitly through a function
that interpolates given data, i.e. points and normal vectors. Comparing Gaus-
sian and Wendland RBFs in the interpolation for surface modeling, Gaussian’s
shaping parameter influences the surface curvature whereas Wendland’s denotes
an interpolation radius. Optical traces of the Wendland RBF’s compact support
are revoked by including a polynomial term into the interpolating function. The
augmentation with polynomials in general evokes an optical smoothing in the
surfaces.
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1

Introduction

For geometric modeling it is possible to receive object-related data, for example with a
laser scanner, to reconstruct that object’s surface; cf. [10]. The surface can be described
by creating a polygon mesh or by interpolating a function based on the related data. In-
terpolation is a method in numerical analysis for building a function, which runs through
the given data points, that are given function values mapped from nodes on a mesh. Since
the nodes of scanned interpolation data might not lie on a regular mesh (also referred to
as “scattered data”), meshless interpolation techniques are required in this setup; cf. [10].
Interpolation with radial basis functions is an already widely established method for this
problem, as they work reliably on irregular data distributions; cf. [4].
A radial basis function (RBF) is a translation- and rotation-invariant function that de-
pends primarily on the norm of its argument. Additionally, the function can be centered at
a point other than zero so that the normed distance of the argument to that center is eval-
uated. An interpolating function, within this thesis called interpolant, can be constructed
by linearly combining all nodes as center of such a radial basis function with specific real
coefficients; cf., e.g. [7]. These coefficients can be determined by solving linear equations
that form through mapping every node by the interpolant and matching the result to the
corresponding given function values. Summarizing this to one linear equation system also
delivers the so-called interpolation matrix. In addition to this interpolation approach there
also exists a concept for not only interpolating function values but also derivative values –
the Hermite interpolation; cf., e.g.[7]. Its extension – Hermite-Birkhoff interpolation – even
allows to interpolate values of derivatives of non-successive order at a node, cf. [10]. The
Hermite-Birkhoff interpolation and the interpolation with radial basis functions can not
only be combined but also be generalized to an abstract concept that interpolates linear
functionals of a Hilbert space’s continuous dual space.
Surfaces can be implicitly described by a function on spatial points whereby its zeros define
the set of points belonging to the surface [2]. It is known that the gradient of such a function
is equal to the normal vector at the same point. Therefore, Hermite-Birkhoff interpolation
with RBFs can be utilized to reconstruct a surface that is defined through a point cloud with
associated normal vectors. This concept can be applied in medical imaging, for instance in
the production of cranial implants [4].
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1 Introduction

1.1
Related Work

Multivariate interpolation works especially well with concepts relying on RBFs. These
concepts provide a quite simple approach to data non lying on a regular mesh; cf. [7].
Wendland authored an opus for scattered data interpolation [10] and also unified numerical
aspects of multivariate interpolation and approximation in his summary [11]. Deducing a
linear combination of radial basis functions as solution for the interpolation problem can
follow through the reproducing kernel Hilbert spaces theory and the representer theorem
from statistical learning [1] or solving a variational problem and constructing representers
therein [6]. A vast input to the first order Hermite-Interpolation has been contributed by
the field of computer graphics. Its interpolation’s purpose is to model a surface determined
by only one function and described through a point cloud and associated normal vectors.
The normal vector at a point can be estimated from local neighborhood points; cf. [3]. Its
incorporation into the interpolant is imperative in order to avoid trivial zero interpolants and
can be designed differently. Carr constructs offset points in [3] that are assigned a non-zero
value to determine that they are not included in the set of points belonging to the surface.
In [8] the offset points are avoided by solving a regularized variational problem, aligning
normals with the interpolant’s gradients. Macêdo at al. used the generalized interpolation
theory by Wendland to interpolate the normals [2]. In particular, they resort to Wendland’s
RBF in graphical tests for surface interpolation in [2] and demonstrated the ability of the
interpolation concept to handle close sheets and non-uniform distributed data.

1.2
Contributions of this Thesis

In their paper [2] Macêdo, Gois and Velho present an interpolation framework for surface
modeling purposes, which is strongly influenced by the work of Wendland [10]. In this thesis,
the aforementioned multivariate interpolation approach is unraveled through amendments
of the work provided by Wendland.
Following up and confirming a surface reconstruction example from [2], the behavior of the
approach of [2] on simple solids is examined further below. Macêdo et al. used a specific
radial basis function in [2], called Wendland RBF, with a compact subset of its codomain
containing non-zero values, the so-called compact support. Since different radial basis func-
tions influence the surface appearance between the data points – the interpolation’s working
area – differently, the behavior of the Gaussian RBF, which does not have compact sup-
port, will be studied for comparison, in addition to the Wendland RBF. Another property
of the latter is “isosurfacing artifacts”, which are improperly appearing surface parts; cf. [2].
Even though these artifacts are endeavored to be eliminated in computer graphics, a special
interest will be placed on their characteristics, which were also included in the studies in
Chapter 5.
It will be confirmed by two influencing components that the interpolation concept works well
for the application of surface reconstruction: A shaping parameter in the RBFs corresponds
to the surface curvature for Gaussian RBFs and represents the interpolation radius around
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1 Introduction

the data sites in the Wendland RBF case. Adding a polynomial term to the interpolant
translates into a smoothing of the object’s surfaces – in particular, a rounding of edges and
a denting of corners – and eliminates the artifacts caused by Wendland RBFs as long as the
object’s surface is closed.

1.3
Structure of this Thesis

Radial basis functions are a fundamental element in this interpolation approach and ap-
pear throughout the entire thesis. Hence, a thorough understanding of them is crucial for
comprehending the subsequent chapters, so the second chapter opens with a more detailed
insight into RBFs. The two different kinds of RBFs to be examined – Gaussian and Wend-
land RBFs – are also presented therein.
Hereafter, the content is subdivided into a theoretical chapter dealing with the interpolation
framework from a mathematical point of view and another chapter presenting an applica-
tion from the field of computer graphics for which Macêdo et al. originally provided this
concept – the interpolation of surfaces.
After presenting a general interpolation problem regarding linear functionals of a Hilbert
space’s dual space in Section 3.1 and the solution to it in Section 3.2, this framework is ap-
plied to the more particular case of Hermite-Birkhoff interpolation based on positive definite
reproducing kernels in Section 3.3. In this case the linear functionals become a composition
of an evaluation functional with a differential operator. The radial basis functions fit as an
example for the kernels and thereby complete the outlined interpolation concept. Augment-
ing the space in which the interpolant is sought with a finite-dimensional function space as
an additional modifier closes the third chapter.
Before implementing the theoretical interpolation concept for the surface reconstruction
example of application, Chapter 4 begins with an excursion into modeling surfaces for the
production of cranial implants. In Section 4.1 the concept of offset points is explained more
thoroughly to capture the full advancement of the approach in [2]. After assembling the
interpolation matrix and the interpolant in Section 4.2, some graphical tests on the interpo-
lation concept are reviewed in Chapter 5, which take the following structure: Primarily the
observations are sectioned between the Gaussian RBF in Sec. 5.1 and the Wendland RBF
in Sec. 5.2 and subordinately the influence of each function is studied by the reconstruction
of a cube’s and a regular tetrahedron’s surface. At last in Section 5.3 the two radial basis
functions are compared by means of their behavior in surface interpolation.
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2

On Radial Basis Functions

Radial basis functions (RBFs) find frequent use in scattered data interpolation and ap-
proximation for their good results even on non-regular grids and large data-free regions; cf.
[4]. To understand the below explained concepts and the RBF’s influence in the graphical
application examples a more thorough introduction is given in the following.
Throughout this thesis let n ∈ N denote the spatial dimension and L ∈ N an arbitrary
number of interpolation data.
First, there are to present the basis functions for this interpolation approach:

Definition 2.1 (radial function, cf. [7]). A function φ : Rn → R is said to be radial
regarding Euclid’s norm ‖ · ‖2 on Rn if there exists a corresponding function ψ : R≥0 → R
with φ(x) = ψ(‖x‖) for any x ∈ Rn.
The radial function φ is said to be positive definite if the matrix A = (φ(xj − xk))Lj,k=1 is
positive definite for all x1, . . . , xL ∈ Rn.

Remark 2.2. “Radial” names the direction of a circle’s center point to its boundaries. Given
Euclid’s norm and n = 2 the radial function evaluates all points equally which are located
on a circle line for they have equal distance to zero (compare Figure 2.1 on the following
page).
Given z ∈ Rn the radial function φ(· − z) is located at the center z which translates for
the two-dimensional example into a translation of the circle and the circle center. This
translation is depicted in the example in Figure 2.1 where φz accords to φ translated by
(2.5, 2)T . Obviously, the radial functions and thereby RBFs, that are assumed to be radial
regarding Euclid’s norm further on, are translation invariant.

Examples 2.3 (Gaussian RBF and Wendland RBF). A radial basis function used as
interpolation means in Chapter 5 is the positive definite Gaussian RBF. Gaussian RBFs
φε : Rn → R accord to the formula

φε(x) = e−(ε‖x‖)2

where ε > 0 denotes a shaping parameter which can be considered as “energy” in the spline
context. Gaussians are applicable on any spatial finite dimension and present no restriction
on the nodes for interpolation (compare [4] including a summarizing table of characteristics
concerning several RBFs). On the downside they are globally supported which leads into
computational complexity for larger data sets. As one can see in Figure 2.2 on page 7
the Gaussians turn out “pointier” in (0, 0)T and appear more planar with growing radial
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Figure 2.1: A radial function φ : R2 → R evaluates the same on vectors with norm equal
to the same circle’s radius. Centering φ in z′ = (2.5, 2)T instead of z = (0, 0)T effects a
translation of the center and the circle line, but the radial function φ(· − z) evaluates the
same on the translated x′ ∈ R2 and y′ ∈ R2. As a conclusion radial functions are translation
invariant and their value just depends on the norm of their argument.
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2 On Radial Basis Functions

distance while increasing ε. One can also see the latter curvature behavior away from the
interpolation nodes in dependence of the shaping parameter in Chapter 5.
Another kind of frequently employed RBFs use the Wendland functions ψn,q : R≥0 → R

whose radial basis functions are in C2q(Rn), q ∈ N0 := N ∪ {0}; cf. [9]. One specific
Wendland RBF fitting to the later graphical example is φε with

φε(x) := ψ3,1

(
‖x‖
ε

)
for ε > 0, using ψ3,1(t) =

1

20
(1− t)4+(4t+ 1)

for t ≥ 0 with the truncated power function

ψ4(t) := (1− t)4+ =

{
(1− t)4, for 0 ≤ t < 1,

0 for t ≥ 1

as presented in [9]. Because of its smoothness it is hardly noticeable in the plots of Fig-
ure 2.2 on the following page that this function actually has only a compact subset in its
domain not being mapped to zero – a function property commonly referred to as compactly
supported. Thus, the for ψ3,1 presented formula also demonstrates that ε is responsible
for stretching and compressing the support interval [0, 1] of the radial function. Compactly
supported RBFs lead to more efficient algorithms for interpolation due to sparse interpola-
tion matrices and also follow the principle of locality known from B-Splines; cf. [9]. Note
that contrasting to Gaussian RBFs, Wendlands’ turn out pointer in (0, 0)T with lower ep-
silon and the curvature behavior within the support for growing radial distance can again
be recognized in the graphical examples in Chapter 5.
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3

Theoretical Interpolation
Framework

To provide the graphical examples in Chapter 4 with a solid interpolation approach, this
chapter deals with finding a solution for the general interpolation problem presented in
Section 3.1. In Sections 3.2 and 3.3 a solution to it and a concept combining Hermite-
Birkhoff interpolation with radial basis functions is presented. In the last part of this
chapter, the space of the interpolant being sought in is augmented with a finite-dimensional
function space granting its reproduction in the interpolation process.
The subsequent approach was presented in [2] and is here supplemented by the results
contained in [10] due to the influence of this monograph alluded by the authors of [2]
themselves.

3.1
General Interpolation Problem

Problem 3.1. Let H denote a real Hilbert space with inner product 〈·, ·〉H : H×H → R and
let H∗ be the corresponding dual space to H, containing all continuous linear functionals.
Given L ∈ N linear independent functionals λi ∈ H∗ and values ci ∈ R, i ∈ 1, . . . , L, it is to
be searched for the norm-optimal interpolant f in H which solves the following optimization
problem:

min
u∈H

‖u‖H s.t. λi(u) = ci, for all i = 1, . . . , L. (3.1)

Remark 3.2. The Equation 3.1 is in [10] referred to as “optimal-recovery problem”. The
equations λi(u) = ci,∀i ∈ 1,…, L are further on named “interpolation conditions” in this
chapter. Any function u ∈ H meeting the interpolation conditions is called a generalized
interpolant (compare also [10]).

3.2
Solution of the General Interpolation Problem via Riesz

Representers

As stated by the Riesz representation theorem, every continuous linear functional λi ∈ H∗

has an according Riesz representer νi ∈ H, such that for every i ∈ 1,…, L and h ∈ H the
equation λi(h) = 〈νi, h〉H holds.
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3 Theoretical Interpolation Framework

Theorem 3.3. Given the conditions from problem 3.1 with the to λi according representers
νi ∈ H, the norm-optimal interpolant f takes the form

f =

L∑
i=1

µiν
i (3.2)

with coefficients µi ∈ R determined by the interpolation conditions from Eq. (3.1).

The interpolant fulfills the interpolation conditions by construction which can be seen
in the computation of the coefficients µi hereafter; also proving the existence of such an
interpolant. The norm-optimal property of f is displayed in an elegant proof by Wendland
in [10] whose central idea can be formalized as follows:

Proof. It can be shown that every h ∈ H annihilated by all the linear functionals λi, i.e.
λi(h) = 0 ∀i ∈ {1, . . . , L}, entails 〈f, h〉H = 0.
Assume that u ∈ H is a generalized interpolant, i.e. λi(u) = ci, ∀i ∈ 1,…, L. Then the
subsequent holds:

‖f‖2H = 〈f, f − u+ u〉H (3.3)
= 〈f, f − u〉H + 〈f, u〉H (3.4)
= 〈f, u〉H ≤ ‖f‖H‖u‖H.

In line (3.3) there is simply added a zero in the inner product. Recall in (3.4) that the
linear functionals λi evaluate the same on f and u since both are meeting the interpolation
conditions. Hence using the implication from the beginning with h := f − u, the first inner
product in (3.4) is zero. Concludingly the interpolant f of form (3.2) is smaller in norm
than any other generalized interpolant u.

Using the knowledge about the shape of f from equation (3.2) - the subordinal criteria
are transferred into a linear equation system by inserting f into the interpolation conditions.
Thus, the problem is assembled as follows:

Aµ = c

where A =
(
〈νj , νk〉H

)L
j,k=1

and with with µ and c ∈ RL containing the coefficients µi
respectively the given data values ci. Obviously, the designated A ∈ RL×L is a gram
matrix regarding the inner product of the set of Riesz representers. Ergo, the symmetry
and positive semi definiteness are naturally granted. Further it follows that as long as the
λi are linear independent, A is also positive definite.

3.3
Hermite-Birkhoff Interpolation Combined With Radial Basis

Functions

For specifying the abstract interpolation concept from the last section on Hermite-Birkhoff-
Interpolation introducing reproducing kernel Hilbert spaces respectively native spaces for
positive definite kernels is necessary. Further on let Ω denote an open subset of Rn.
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3 Theoretical Interpolation Framework

Definition 3.4 (Reproducing Kernel, [10]). Let H be a real Hilbert space of functions
h : Ω → R. A function Φ : Ω× Ω → R is called reproducing kernel for H if

1. Φ(·, y) ∈ H for all y ∈ Ω,
2. h(y) = 〈h,Φ(·, y)〉H for all h ∈ H and for all y ∈ Ω.

H then designates a reproducing kernel Hilbert space (RKSH).

Definition 3.5 ([10]). Let T be a group of transformations T : Ω → Ω. Then the RKSH
H is invariant under the group of T if

1. h ◦ T ∈ H for all h ∈ H and for all T ∈ T and
2. 〈g ◦ T, h ◦ T 〉H = 〈g, h〉H for all g, h ∈ H and for all T ∈ T .

This invariance property of the function space is inherited by its kernel.
A continuous kernel Φ is called positive definite on Ω if the matrix (Φ(xj , xk))Lj,k=1 is positive
definite for any set {x1, . . . , xL} ⊆ Ω.

For a symmetric positive definite kernel Φ : Ω × Ω → R the Native space HΦ(Ω) is a
Hilbert space of real-valued functions on Ω, induced by the span of {Φ(·, y) : y ∈ Ω}, and
Φ is its reproducing kernel. If Ω = Rn and the kernel Φ ∈ C(Rn) ∩ L1(Rn) is translation
invariant, HΦ(Ω) is a RKSH consisting of smooth functions. These past assertions are just
a summary of the RKSH theory to be found with proofs in [10].
Turning now towards the Hermite-Birkhoff interpolation, the subsequent definitions prepare
the way for concluding examples of use:

Definition 3.6. 1. Let η ∈ (N0)
n be a multiindex. Dη := ∂

η1

1 · · · ∂ηn
n designates a

differential operator that maps a sufficiently smooth function onto its derivative with
respect to each component according to the entry of the related coefficient of η.

2. For x ∈ Rn the operator δx : C(Rn) → R presents an evaluation functional such that
δx(h) = h(x) for h being continuous.

Example 3.7. For n = 3, η = (3, 0, 2)T and a sufficiently smooth function h : R3 → R
applying Dη on h translates into Dηh = ∂5h(x1,x2,x3)

∂x3
1∂x

2
3

.

Remark 3.8. Let |η| :=
∑n

k=1 ηk for an η ∈ (N0)
n and let xj ∈ Rn and ηj ∈ (N0)

n,
j = 1, . . . , L, be given nodes respectively multiindices. In this Section for q ∈ N0 the linear
functionals are the composition

λj := δxj ◦Dηj with |ηj | ≤ q. (3.5)

The linear functionals are called pairwise distinct if for j 6= k either xj and xk or ηj and
ηk are pairwise distinct as well.

The translation invariant reproducing kernel Φ is now used to construct a native Hilbert
space HΦ(Ω) suited for the problem 3.1 and with its dual space containing the linear func-
tionals λi as specified in Equation 3.5. Let Dη

1 and Dη
2 be the in 3.6.1. defined differential

operator but regarding the first respectively second argument of a kernel Φ : Ω × Ω → R.
Given a positive definite kernel Φ ∈ C2q(Ω×Ω), the linear functionals λj ∈ (HΦ(Ω))

∗ have

– 10 –



3 Theoretical Interpolation Framework

the according Riesz representers νj = Dηj

2 Φ(·, xj) ∈ HΦ(Ω) for j = 1, . . . , L. The inter-
polant then takes the form f =

∑L
i=1 µiD

ηi

2 Φ(·, xi) by inserting the νj into equation (3.2).
The parameters µi are computed by solving the linear equation system with interpolation
matrix A =

(
Dηj

1 Dηk

2 Φ(xj , xk)
)L
j,k=1

which is again invertible if the linear functionals are

linear independent. For positive definite translation invariant Φ ∈ L1(Rn)∩ C2q(Rn) holds:
If the linear functionals λj , j = 1, . . . , L as defined in Equation 3.5 are pairwise disjunct,
they are also linear independent over HΦ(Rn); cf. [10].

Now that the Hermite-Birkhoff concept is appropriately adapted, an obvious choice for
the reproducing kernels are the radial basis functions. The following two examples provided
by Wendland are shown to visualize the transition from translation invariant kernels mapped
from two arguments to radial basis functions mapped from only one argument.

Examples 3.9. Subsequently, Φ denotes an on Rn translation invariant kernel.

1. Let T be a group of translations on Rn. Choosing the transformation Tξ = x − ξ for
fixed x ∈ Rn implies Φ(x, y) = Φ(Tx, Ty) = Φ(0, x − y) =: Φ0(x − y) =: φ(x − y),
namely that a translational invariant Φ is equal to φ evaluated on the difference of Φ’s
two arguments.

2. Let T be a group of translations and orthogonal transformations on Rn. Select the
orthogonal transformation U ∈ Rn×n for e1 denoting the first unit vector of Rn with
Uξ = ‖ξ‖2e1. Then it follows that Φ(x, y) = Φ(Ux, Uy) = Φ0(U(x − y)) =
φ(‖x − y‖2e1) = ψ(‖x − y‖2). Hence Φ is also radial.

Concludingly the radial basis functions are in fact radial, translation invariant kernels.
Employing a positive definite RBF φ : Rn → R with φ ∈ C2q(Rn)∩L1(Rn) for this concept
induces a native Hilbert space Hφ(Rn) ⊆ Cq(Rn) ensuing the following characteristics:

1. For |ηj | ≤ q the linear functionals are continuous for all xj ∈ Rn.
2. The to the linear functional λj according Rieszrepresenters are

νj = (−1)|η
j |(Dηj

φ)(· − xj), 1 ≤ j ≤ L. (3.6)

3. The inner product is given by 〈νj , νk〉Hφ(Rn) = (−1)|η
k|(Dηj+ηk

φ)(xj − xk).

The factor (−1)|η
j | appears here due to the differentiation regarding the second argument

– refering to Dηj

2 – which is marked by the factor −1 in the argument of an translation in-
variant kernel respective RBF. Especially notable is the enormous flexibility of the Hermite-
Birkhoff approach. Within this basement it is possible to select derivatives of different not
successively increasing order as long as the requirements addressing |ηj | are fulfilled for all
j = 1, . . . , L.

3.4
Space Augmentation

Compactly supported RBFs like the in Chapter 2 on page 4 presented Wendland’s grant
computational advantages since they lead to sparse interpolation matrices. Thus, they do
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3 Theoretical Interpolation Framework

also create compactly supported interpolants and alas local methods applied to the inter-
polant “perceive” the function as zero everywhere apart from that local support. Therefore,
an approach is needed that produces globally supported interpolants without relying on
such a support in their basis functions.
One possible method to achieve this goal is to augment the space of interpolating functions
with a suitable finite-dimensional function space P , for example Πd(Rn) – the space of
polynomials on Rn whose degree is at most d ∈ N0. The so derived interpolant holds the
additional property of reproducing elements of P .
Let P ⊂

⋂L
i=1 dom(λi) be of dimension m ∈ N and let {p1, . . . , pm} be a basis for P . Then,

starting from the general concept in a Hilbert space H with the real dot product 〈·, ·〉H, the
augmented interpolant takes the form f =

∑L
j=1 µjν

j +
∑m

k=1 γkpk with real coefficients γk
added here.
Additionally, due to the reproducing property the first part of the interpolant f is orthogonal
to all elements of P . Thus, the condition

L∑
j=1

µjλj(pk) = 0 (3.7)

must hold for all k ∈ {1, . . . ,m} and the only element from P annihilated by every linear
functional λj is the zero-element from P itself.
Assembling the augmented interpolation conditions, one receives a linear equation system
in the form of

〈ν1, ν1〉H . . . 〈ν1, νL〉H 〈ν1, p1〉H . . . 〈ν1, pm〉H
... . . . ...

... . . . ...
〈νL, ν1〉H . . . 〈νL, νL〉H 〈νL, p1〉H . . . 〈νL, pm〉H

〈p1, νi〉H . . . 〈p1, νL〉H 0 . . . 0
... . . . ...

... . . . ...
〈pm, νi〉H . . . 〈pm, νL〉H 0 . . . 0





µ1
...
µL

γ1
...
γm


=



c1
...
cL

0
...
0


or with A defined as in Section 3.2 on page 8 and with P =

(
〈νj , pk〉H

)
j=1,...,L

k=1,...,m

rougher
expressed as(

A P

P T 0

)(
µ

γ

)
=

(
c
0

)
. (3.8)

The lower part of the linear equation system (3.8) reflects the conditions (3.7). (3.8) is a
symmetric indefinite linear equation system. Hence solving

(P TA−1P )γ = P TA−1c and
Aµ = c − Pγ,

whereas P TA−1P and A both are positive definite, is preferable; cf. [2].
Since the first part of f is orthogonal to any element of P it follows that data values c
generated by an element p ∈ P will reproduce this very element as interpolant.
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4

Interpolation for Modeling
Implicitly Defined Surfaces

Simply said like Carr et al. explain it in [4]: “Cranioplasty is the procedure of repairing
defects, usually holes, in the skull with cranial implants”. Besides of the obvious reason
– a scull defect due to an injuring accident – a craniectomy is performed on purpose e.g.
in aim of reducing brain swelling (among various other medical indications to be read
in [5]). This entails a cranioplasty for protection of the brain or bringing the patient’s
psychological disturbances at ease. Either the surgeon is sculpturing the bone implant
manually directly after the removal or an implant is inserted in a subsequent operation
involving high resolution computed tomography of the skull in its production (see [5] for
more details). For the latter method a mathematical function is fitted to the CT data, and a
computer numerically controlled mill is guiding the implant production via the reconstructed
surface. The implant must serve an accurate model to secure a good fit. Since a restoration
of the bone to a symmetrical skull will not always perform well, e.g. for resulting in large
cavities between brain and implant, cf. [4], the surface has to be reconstructed through
interpolation respectively approximation.
The framework presented in Chapter 3 allows now to be applied to such a graphical problem

as the previous one presented. Given an object, like a cube, it is possible to set up data to
describe that object’s surface. In the paper [2] a point cloud with normal vectors belonging
to each point are used to define that surface implicitly. In Figure 4.1 on the following page
an example of those data belonging to an example cube can be seen used in Chapter 5 as
well. The general concept presented in Chapter 3 is now used to reconstruct the surface of
a three-dimensional object, so the spatial dimension n is now set to three.

4.1
Former Approaches to Surface Interpolation

Before pursuing the graphical example, a throwback shall elevate the elegance of the concept
of [2] even more.
The method of using an implicit defined surface for reconstruction was already provided,
e.g. described in [3] by Carr et al., resolving the issue of trivial zero-interpolants and hence
the issue of surface orientation via the concept of “offset points”. Offset points, namely, are
not located on the surface, but shall softly indicate its boundaries. For a point x ∈ R3 of
the point cloud with associated normal n, two offset points are constructed with a shaping
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4 Interpolation for Modeling Implicitly Defined Surfaces
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Figure 4.1: The surface of the cube – visualized in black edges – can be described through
the points in R3 in the center of each face and normal vectors in S2 pointing outwards the
surface from the data points.

x + τ n

x - τ n

τn

x

Figure 4.2: At the point x ∈ R3 of the surface two offset points are constructed via x±τn
with τ > 0. The offset points are projected from x along the normal vector n and shall
indicate the surface’s boundaries in the interpolation process.
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4 Interpolation for Modeling Implicitly Defined Surfaces

parameter τ ∈ R>0 in the form of x ± τn as visualized in Figure 4.2 on the previous page.
This incorporates the surface normals, albeit not directly. The interpolants according to [3]
and [2] carry positive values on the “outside” and negative values on the “inside” of the
object’s surface. Main issues of the offset points approach are the error-prone selection of τ
and that the surface’s orientation is not interpolated. Graphical visible advantages of the
concept of Macêdo over this approach are also presented in [2].

4.2
Assembling the Interpolation Matrix and Interpolant

The surface of the object will be modeled through an implicit function, so to say a function
which is set to zero at every point included in the object’s surface. Therefore, the fact can
be employed that the gradient – defined as column vector – of the function defining an
implicit surface accords to the normal vector at the same point. For simplification it will
be assumed that each xl in the set of pairwise distinct nodes {xl ∈ Rn, l = 1, . . . , N ∈ N |
xj 6= xk for j 6= k} is assigned to one linear functional with |γi1 | = 0 and to three linear
functionals with |γik | = 1, k = 2, 3, 4. Hence the problem shapes as follows:

Problem 4.1. Given a data set {x1,…, xN} ⊆ R3 for N ∈ N and corresponding normal
vectors {n1,…,nN} ⊆ S2, the aim is to find a function f : R3 → R that fulfills

f(xi) = 0 and (4.1)
∇f(xi) = ni (4.2)

for all i = 1,…, N and with ∇f = (∂1f, ∂2f, ∂3f)
T .

Therefore, one obtains L = 4N linear functionals and the Riesz representers of the
linear functionals are N times the evaluation of the RBF at each difference combination
among the points and 3N times the RBF’s first derivative regarding each coefficient of
the RBF’s centers. Equally the data vector c ∈ R4N contains N entries with 0 and 3N

entries filled with to the linear functionals corresponding normal vectors. Considering that
|ηi|, i ∈ {1, . . . , L} is at most 1, the use of positive definite φ ∈ C2(R3) is required.
Let ∇f be defined as in problem 4.1 andH = (∂j,k)j,k∈{1,2} denote the Hess matrix operator.
Concludingly, by inserting f =

∑4N
k=1 µkν

k with Riesz representers νk from Eq. (3.6) into
the Equations (4.1) and (4.2) the following equations, with µ consisting of the αi ∈ R and
βi ∈ R3 for i ∈ {1,…, N}, are delivered in the form

0 =

N∑
k=1

αkφ(xi − xk)− (∇φ (xi − xk))Tβk (4.3)

ni =

N∑
k=1

αk∇φ (xi − xk)−Hφ (xi − xk) βk (4.4)
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4 Interpolation for Modeling Implicitly Defined Surfaces

and the interpolation matrix has the structure

A =

( ∈RN×N︷ ︸︸ ︷
φ(xj–xk))Nj,k=1

∈RN×3N︷ ︸︸ ︷
((−∇φ(xj–xk))Nj,k=1)

T

(∇φ(xj − xk))Nj,k=1︸ ︷︷ ︸
∈R3N×N

(−Hφ(xj–xk))Nj,k=1︸ ︷︷ ︸
∈R3N×3N

)
.

The vectors c and µ are to be filled with zeros and normals respectively αi and βi parts ac-
cording to the structure of A in concordance with equations (4.3) and (4.4). The interpolant
then concludes as

f(x) =
N∑
i=1

(
αi φ(x − xi)− 〈βi,∇φ(x − xi)〉R3

)
. (4.5)

Remark 4.2. In the next chapter some graphical experiments were implemented using the in
example 2.3 on page 4 defined Gaussian and Wendland RBFs. Differentiating the Wendland
RBF φε(x) for the second time, a disturbing term including the norm of x as divisor appears.
For computation this point of discontinuity is replaced by its limit.

Augmenting Hφ(R3) with the space Πd(R3), the linear equation system with
pj := (pj(x1), . . . , pj(xN )) ∈ R1×N representing again the basis for polynomials takes the
form  A (pj)1≤j≤m

(∇pj)1≤j≤m

(pj)1≤j≤m (∇pTj )1≤j≤m 0

 α

β

γ

 =

 0
n
0

 .

The single subindex j indicates the rows of a submatrix here.
Adding up the linear combination of the polynomial basis with the coefficients contained
in γ ∈ Rm to the interpolant generates the augmented interpolant that is also capable of
reproducing any polynomial of maximum degree d ∈ N0.

4.3
Surface Interpolation and Raytracing

The collocation of the interpolation set-up for the surface reconstruction is already com-
pleted. This just leaves a technical comment here on the advantage of an implicit represen-
tation of surfaces which seems a little bit laborious to work with regarding the rendering of
objects in a scene. The quality of the surface’s implicit representation expressed through a
mathematical function is its compatibility with raytracing. Equipping a scene to be shown
in an image with realistic optical features – such as lighting, shadowing, reflection, refraction
etc. – rays are sent through the scene to be mapped and intersection points are calculated
for tracing the interaction of the light rays with the objects in the scene. A mathematical
representation of the surface helps with these intersection calculations regarding a ray R.
This ray can be represented e.g. by an origin vector ~o and a direction vector ~d in the form
R(t) = ~o+ t~d, t ≥ 0, and its intersection with the surface can be calculated by finding the
minimal nonnegative parameter t for which the equation f(R(t)) = 0 holds.
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5

results

Although the implicit splines are normally used for surface interpolation on coarse data it
was chosen to study a simple surface on the contrary to demonstrate characteristics of the
Gaussian RBF and Wendland’s RBF in the approach in [2]. As sub-criteria each RBF is
applied to the same two data sets describing two simple solids. In this chapter the unindexed
x, y, z denote the first to third component of the points in R3.

5.1
Surface Reconstruction with Gaussian Radial Basis Functions

To get started on this graphical application, a simple object to be reconstructed was chosen
– a cube. A cube consists of six even surfaces and has sharp edges which were also the
characteristics studied primarily. Beginning with Gaussian RBFs for the experiments in
Figure 5.1 on the next page one can see the reconstruction of a cube with the interpolation
concept from Chapter 3 for different shaping parameters ε. The subplots from each plot
show a comparison of edges in side view between the approximated cube and an ideal cube
– represented by the black framed sqare. It can be discovered that by increasing ε, the
approximated cube fills in to the form of an ideal cube with growing congruence, finally
actually inverting its curvature. At higher ε the function forms sphere-like bumps at the
corners and dents in the plane centers.

To exclude any bias due to the normal vectors oriented parallel to the coordinate axes,
the same cubes were also approximated on rotated data with the results captured in Fig-
ure 5.2. Clearly evident the rotation has no effect on neither of the graphical ε-Extrema.

Dedicating the next graphic to the space augmentation with polynomials the same cube
with an ε = 2.0 is presented with increasing polynomial degree from the left to the right.
Focusing on the influence of that degree in Figure 5.3 on page 20 there is a swelling smooth-
ing of edges and cube corners noticeable. Augmenting the interpolant space with Π2(R3)

results in a spherical surface illustrated at the right of Figure 5.3.
Interpreting ε as energy for the multidimensional splines the Gaussian RBF based inter-
polant prefers sphere-like surfaces for low energy and plane surfaces for higher energy. This
characteristic also persists in the interpolant on the rotated data excluding any bias due
to spatial orientation of the data. Augmenting the interpolant space with polynomials of
degree d the polynomial influence excels in a rounding of edges and corners. For d ≥ 2 the
dimension of Πd(R3) overruns N in this cube example and hence dominates the Gaussian
RBF characteristics which can be seen in the spherical appearance of the interpolated sur-
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Figure 5.1: A cube’s surface reconstructed with Gaussian RBFs on the data illustrated
in Figure 4.1 show that the cube’s faces appear spherical for lower and more planar for
higher ε. The subplots show an edge comparison of the reconstructed with the ideal cube
(black edges) in side view and indicate that the surfaces curvature inverts its direction from
outside to inside for growing ε.

– 18 –



5 results

0
2

0

2

0

2

xy

z

non-rotated cube with ε = 2.0

data points normals

0
2

0

2

0

2

xy

z

rotated cube with ε = 2.0

data points normals

0
2

0

2

0

2

xy

z

non-rotated cube with ε = 0.8

data points normals

0
2

0

2

0

2

xy

z

rotated cube with ε = 0.8

data points normals

Figure 5.2: The left column of plots shows the with Gaussian RBFs reconstructed cubes
for two graphical “extreme” values of shaping parameter: ε = 2.0 results in a planar and
ε = 0.8 in a sphere-like surface. Rotating the data by 40◦ around the axis (−3, 2, 0)T does
not effect the surface except for it’s spatial alignment.
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Figure 5.3: The interpolation of cubes (Gaussian RBFs) with ε = 2.0 and increasing
degree in polynomial amendments results in a smoothing of edges and a dulling of corners
in the cube’s surface, till the polynomial term in the interpolant prevails in the surfacs’s
appearance for d = 2.

face on the right of Figure 5.3.
Descending one step further on the scale of simplicity regarding the geometric solid to be
reconstructed, a regular tetrahedron was studied next. The number of faces decreases to
4, but systematically the same kind of data were constructed as in Figure 4.1 on page 14
– points in the center of each face with related normals from the 2-sphere S2. The key
difference to the cube are the pointier corners which place an observable quality of the
interpolant. The same observations can be made on the tetrahedra as with the cubes for
increasing ε (even though ε in this case is ranging from 1.0 (spherical) to 8.0 (planar)) and
also the rotational invariance is fulfilled – both plotted in Figure 5.4 on the following page.
Here the left column shows the “untouched” tetrahedron for ε = 3.0 – a transitional value
between the two optical extrema – and the upper value ε = 8.0. The right column shows
the same tetrahedra on rotated data with rotation parameters like in Figure 5.2 on the pre-
vious page and were added into the graphic for a better view on the tetrahedra respectively
to demonstrate the rotational invariance. The independence of the data also persists for
the interpolant augmentation with polynomial terms. In particular the smaller angle of a
triangle reveals the corner denting effect of the Π0(R3) polynomials even more as shown
for ε = 8.0 in Figure 5.5. Augmenting the tetrahedron with any higher degree than d = 1

is again not reasonable in this particular case since the dimension m of the polynomial
space outpaces the number of data points N and therefore dominates the graphic. The
surface keeps still interpolating the datapoints for those higher degrees d but takes rather
the implicit forms of the polynomials themselves. Looking at the coefficients it can also
be observed that the weight of the interpolation data decreases with growing polynomial
degree. Since scattered data interpolation mostly works with large data sets; this concern
shall not bother any further but simply gets acknowledged.
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Figure 5.4: With Gaussian RBF reconstructed tetrahedra for ε = 3.0 in the first and
ε = 8.0 in the second row show rotational invariance in the second column, where the data
are rotated by 40◦ around the axis (−3, 2, 0)T .
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Figure 5.5: The with Gaussian RBF reconstructed tetrahedron with ε = 8.0 in the left plot
and additional polynomial amendments of Π0(R3) on the right confirm the edge smoothing
and corner denting effect of polynomial augmentation observed in Figure 5.3.

5.2
Surface Reconstruction with Wendland’s Radial Basis Functions

Departing now from the Gaussian RBF, center of attention in this second part lies on the
compactly supported Wendland RBF φε with associated radial function ψ3,1 as defined in
example 2.3 of the second chapter. Here in Figure 5.6 an example in [10] was successfully
reproduced which initially triggered the idea to focus on the influence of the shaping pa-
rameter ε in the modeling of simple solids. What Macêdo et al. conceal in their graphic
and hence was also concealed in Figure 5.6 are the “isosurfacing artifacts” as Macêdo calls
them. Fathoming in the following what those isosurfacing artifacts are the return to the
roots – the Wendlands’ themselves – is necessary first. In example 2.3 on page 4 the Wend-
land functions ψ3,1 were characterized with compact support in [0, 1] ⊆ R which can be
scaled through the shaping parameter ε representing the support radius. Because the RBF
evaluates this function on the Euclidean norm, the compact support is now bounded to the
closed unit ball respectively scaled through ε. Now, what are isosurfacing artifacts exactly:
Zeros outside the aggregation of ε-scaled unit balls around the data sites, i.e.

⋃N
i=1Bε(xi)

with Bε(xi) := {x ∈ R3 : ‖x − xi‖ ≤ ε}, that do not actually belong to the reconstructed
surface. The area of artifacts can be described as a form of the support’s inherited com-
plement. The only surface’s real zeros are on transitional points between the positive and
negative support subsets in

⋃N
i=1Bε(xi). Positive and negative support subsets refer to

the subsets of
⋃N

i=1Bε(xi) that are mapped to positive respectively negative values. In
Figure 5.7 the blunt artifacts are partwise visible. Partwise alludes to the fact that the
artifacts are actually the ubiquitous nonvisible part since the plotted surfaces in Figure 5.7
only represent boundary surfaces to the interpolant’s support. It might seem quite irritating
that the support takes the form of a bisected ball for ε = 0.5. Admittedly this is due to the
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Figure 5.6: The interpolation approach on the cube data as depicted in Figure 4.1, with
Wendland RBF φε ranging ε from 0.5 to 4, shows six disjoint disks that approach each
other and finally melt to the cube’s surface for growing radius ε > 0.
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Figure 5.7: The cube’s surface function interpolated with the Wendland RBF carries non
proper zeros that are inherited by the Wendland’s compact support and are depicted here as
boundary surface to positive values of the interpolant in the outstanding bulges for radius
ε = 0.5 and ε = 1.25.

slight positive approximation of the zero which is equaled to the function for evaluating the
surface. It was left this way in graphic 5.7 to have a better sight on the cube’s reconstructed
faces. A contour plot for the level z = 1 in Figure 5.8 on the next page shows that the
corresponding negative support subsets really do exist which could be graphically confirmed
by implicitly plotting the negative interpolant −f along with the original one. The zero
contours separating the positive from the negative support subsets are the modeled parts
of the cube’s faces visible in graphic 5.6 on the preceding page.
Whereas these artifacts might cause repulse in the field of computer graphics their evolution
for growing ε is actually quite fascinating and soothing to look at. Therefore, in Figure 5.9
the transition of artifact borders with growing ε is depicted, but the domain is restricted
on a distance of 0.5 to the cube in each axis direction individually to have a glance into the
positive support subset and the hereby evolving cube itself. One can observe that as the
disjoint disks on the cube faces draw nearer to one another, the borders to the artifact area
do likewise until the parts of both simultaneously start individually to melt together to a
continuous surface and the artifacts dissolve from the inner cube.

A solution for resolving the artifact issue is as motivated in Section 3.4 the interpolant
space augmentation with polynomials effectively, demonstrated in Figure 5.10

. However the polynomial amendments did not have an artifact diminishing effect until
the cube’s planes were closed completely, i.e. for ε <

√
2, as long as the polynomials did

not prevail (for d < 2).
In the cube example the choice of the plane’s circumcircle respectively the maximum of

the minimal distance from a data point xi to another point is optimal. To test this thesis
for another symmetrical solid the polynomial degree dependent interpolant in Figure 5.11
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Figure 5.8: The contour plots show the Wendland RBF cube’s surface function at z = 1.
The (outer) 6e−18 level indicates the transition line from the isosurfacing artifacts (0 level
outside) to positive codomain. The artifacts’ surface transitioning into negative codomain
is also existent for ε = 0.5 but vanishes for higher ε. The white area within the ε = 1.5

contour-plot only contains lower function levels not displayed here.

demonstrates on the tetrahedron that a radius of ε =
√
3
3 is sufficient for eliminating the

isosurfacing artifacts by polynomial augmentation. The reason why the artifacts are not
visible in Figure 5.11 is that here the negative interpolant −f was plotted to highlight the
pointy corners using Wendland RBFs in comparison to the Gaussian in Figure 5.5. Sadly,
the corner denting phenomena detected on the Tetrahedron reconstructed with Gaussians
does not spare the Tetrahedron in Figure 5.11 either.

5.3
Comparing Radial Basis Functions In Surface Interpolation

After this examination of the selected RBFs’ influence on the surface interpolation of the
two simple geometric solids, certain characteristics can be deduced for the RBFs individ-
ually and as representative examples for compactly respective non-compactly supported
radial basis functions. The Gaussian RBFs prefer spherical surfaces for lower and planar
faces for higher energy alias the shaping parameter ε. The other way around Wendland
RBFs present disjunct disks for smaller ε and sphere-like surfaces for higher ε, whereby the
shaping parameter here is not interpreted as energy but as radius of the locally determined
surface around a data side. Therefore, the shaping parameters of the Gaussian and Wend-
land RBF do not belong to the same category. The radius of the Gaussian is infinite since
they are globally supported. Then again, for the Wendland RBF a change of curvature does
in some way correlate the radius size, as visible in the graphic 2.2 on page 7 displaying the
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Figure 5.9: The outer artifacts’ surfaces on the Wendland RBF cube grow with the cube’s
displayed faces and dissolve from them with increasing ε ranging from 0.5 to 1.5 from the
left to the right.
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Figure 5.10: The artifact’s surfaces from the Wendland RBF cube with ε =
√
2 disappear

by augmenting the interpolant with terms from Πd(R3), d = 0, 1, 2.
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Figure 5.11: The tetrahedron data interpolated with Wendland RBF and ε =
√
3
3 are also

effected by the space augmentation with Πd(R3), d = {0, 1, 2}, displaying in the three plots
on the right the corner denting phenomena from Figure 5.3 in comparison to the one left
plot without polynomial amendments.
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Wendland RBF on R2. But the curvature can also be tuned by the degree of smoothness 2q
for the radial function ψ3,q. Through the sparsity the interpolation matrix with Wendland
RBFs possesses a smaller condition, but then again needs the interpolant space augmenta-
tion with at least Π0(R3) to eradicate the isosurfacing artifacts. Those artifacts display in
the inherited support’s complement of the Wendland RBFs with datapoints xi, 1 ≤ i ≤ N ,
in the center each. The rotational invariance could successfully be confirmed for the inter-
polation process with each RBF and a dullness on the corners and rounding of edges could
be detected through polynomial amendments for both RBFs regarding the cube and the
tetrahedron example.
The matter of dealing with close sheets was not studied here, but Macêdo et al. demon-
strated in numerous graphics in [2] how powerful the Hermite radial basis function implicits
can be. In their surfaces working with polynomial augmentation a smoothing can be deter-
mined as well on their larger nonsymmetric data sets working with Wendland’s RBFs.
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Conclusion and Outlook

Starting with the optimal recovery problem in Section 3.1 on page 8, an abstract solution
of the norm optimal interpolant is delivered through the linear combination of the Riesz
representers. Those represent the linearly independent linear functionals of a Hilbert space’s
continuous dual space that are to be interpolated. The existence of such Riesz representers
is guaranteed by the Riesz representation theorem. It is proven by Wendland that this in-
terpolant solution really holds the norm optimality as outlined in proof 3.2. Narrowing this
down to linear functionals taking the form of a composition of an evaluation functional with
a differential operator the flexible concept of Hermite-Birkhoff interpolation evolves. Most
notable is that as long as the linear functionals in Hermite-Birkhoff are pairwise distinct
they are also linearly independent. Hermite-Birkhoff relies on positive definite translation-
invariant kernels which can be represented by positive definite radial basis functions since
RBFs hold in fact the properties of radial translation invariant kernels. Thus, positive def-
inite radial basis functions fulfilling the conditions of smoothness, i.e. φ ∈ C2q(Rn), can
be incorporated into the interpolation concept. As an add-up the by the kernels induced
native Hilbert space can be augmented by a finite-dimensional function space whereby the
retrieved interpolant holds the reproducing property in the sense that it reproduces elements
of the augmenting function space. For this additional tool the space of polynomials on Rn

with degree at most d was chosen. Applying the concept with RBFs to geometric modeling
yields simple algorithms with directly translated mathematics. Twice continuously differ-
entiable RBFs suffice to interpolate point clouds with associated normal vectors from the
unit 2-sphere which represent the implicit function’s gradients. With an the amount of data
points N the symmetric interpolation matrix has full rank 4N and is sparse for the use of
the compactly supported Wendland RBFs resulting in much more efficient computation.
But this is not a topic here since only small data sets were studied in this thesis. On the
other hand, relying on the globally supported Gaussian RBFs proves better extrapolating
qualities. The latter RBFs show a stronger curvature for lower shaping parameter and
rather planar appearance in the surfaces for higher ε. The Wendland RBF’s compact sup-
port is scaled by the radius respectively shaping parameter and translates in some form to
the interpolation site. Its complement gets inherited from the RBFs by the interpolant and
therefore isosurfacing artifacts arise outside the union of ε-scaled unit balls around the data
points. The isosurfacing artifacts vanish by augmenting the interpolant with polynomials
of minimum degree zero as soon as the object’s proper surface is closed, but the value of the
minimum radius necessary for that was not discussed. Polynomial augmentation in general
results in a smoothening of the object’s surface which confirms the observations of Macêdo
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in [2]. For the dimension of the selected polynomial space outranging the amount of data
points the polynomial term prevailed in the surface while still interpolating the data points
and normals. The rotational invariance which persists in the approach of [2] due to the
rotational invariance of the norm respectively the RBFs could be observed in the graphics
as well.
Pursuing this work, it would be interesting to exploit the Hermite-Birkhoff flexibility in the
graphical application further. Starting in general by observing the interpolating behavior
of curvature matrices one might hereafter focus e.g. on the performance on surface recon-
struction when leaving out the surface point’s zero value just relying on the normal there
or dropping even the normal and just interpolating the curvature together with the zero
value. Additionally, the locality property mentioned by Wendland regarding his compactly
supported RBFs could prepare the way for increasing the efficiency in surface computation
even more as long as one does not choose the support radius enclosing all data points like
Macêdo et al. did in [2].
Leaving the application of geometric modeling but staying in the field of imaging, the in-
terpolation approach might suit a problem from image registration. This field deals with
finding optimal geometric transformation between corresponding image data; cf. [6]. Creat-
ing an interpolant mapping two coordinates to their transformed ones, it is simply required
solving one linear equation system for each coordinate coefficient dealing with the same
interpolation matrix for both. Furthermore, the framework can be utilized for several other
problems where interpolation of scattered data is helpful.
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