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Zusammenfassung

Im Jahr 1992 stellten Rudin, Osher und Fatemi ein Verfahren zur Zerlegung von Bildern
f = uλ + vλ durch Minimierung ihrer Totalvariation vor [20]. Ursprünglich aus dem Feld
der Rauschunterdrückung stammend, wird das so genannte ROF Modell seitdem vielfach
in verschiedenen Anwendungen der Bildverarbeitung verwendet. Tadmor, Nezzar und Vese
schlugen eine Erweiterung des Verfahrens zu einer hierarchischen Zerlegung vor, die zu ei-
ner multiskalen Bildrepräsentation f ∼

∑

ℓ uℓ führt [22]. In dieser werden die verschiedenen
Komponenten von f auf unterschiedliche Instanzen aufgeteilt: Beginnend mit einer stark ver-
einfachten, „Cartoon ähnlichen“ Version des Bildes, wird dessen Textur schrittweise erfasst,
bis das Ausgangsbild schließlich wiederhergestellt ist. In dieser Arbeit gebe ich einen Über-
blick über das ROF Modell sowie die hierarchische (BV,L2) Zerlegung und diskutiere ihre
Eignung hinsichtlich der Repräsentation von 2D Graustufenbildern. Zudem stelle ich ein neu-
es Verfahren zur Initialisierung der hierarchischen Zerlegung vor, durch das Elemente von
möglicherweise fehlenden Skalen erfasst werden.

Abstract

In 1992, Rudin, Osher and Fatemi introduced a method for decomposing images f = uλ + vλ
by minimising their total variation [20]. Originating from the field of denoising, this so-called
ROF model is now prominently used in various applications in image processing. Tadmor,
Nezzar and Vese proposed to extend this method to a hierarchical decomposition, yielding a
multiscale image representation f ∼

∑

ℓ uℓ [22]. In this, the different components of f are
captured at different instances: Starting with a very simplified, “cartoonish” version of the
image, its texture is resolved step by step, until the original image is finally reconstructed.
In this thesis, I give an overview of the ROF model as well as the hierarchical (BV,L2)

decomposition and discuss its applicability for the representation of 2D greyscale images.
Furthermore, I introduce a new initialisation method to the hierarchical decomposition by
which elements of potentially missing scales are captured.
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1
Introduction and motivation
Starting point of this thesis is the so-called ROF model, named after Rudin, Osher and Fatemi who in
1992 proposed a method for denoising images by minimising their total variation [20]. The basic idea
is to decompose a 2D greyscale image f ∈ L2(R2) into two components f = u + v where u ∈ BV (R2)

represents a “cartoonish” version of the image, and the residual v ∈ L2(R2) contains its oscillatory part
like noise and textures.

The model gained use in many applications of image processing, see e.g. [4], also because the
resultant u is an element of the in many contexts more “well-behaving” function space of bounded
variation BV (R2) ⊂ L2(R2) [cf. 16, page 14] and has some desirable properties: BV functions are
“measure theoretically piecewise continuous” only with “jumps along a measure theoretically C1 surface”
[11, Section 5.9] and may - at least in some sense - be considered differentiable [cf. 11, Section 6.1.3]. On
the other hand and unlike functions from the Sobolev space W 1,2(R2), they are also capable of preserving
edges and thus representing information of an image more properly [4, pages 266f]. The concept behind
the ROF model was also that groundbreaking because the minimisation of total variation naturally
reduces the noise or more generally the occurrence of “spurious oscillations” [20] in an image, and yields
a relatively simple and smoothened result.

In the ROF model, the question how many details of the original image f are preserved in u, is
determined by the choice of a weighting parameter λ > 0: While small λ result in a relatively “coarse” u,
greater λ penalise the fidelity term ‖v‖22 stronger and hence u contains more information of f . In view of
this, the parameter λ can also be interpreted as a cut-off scale [22]: It serves as a scaling level determining
which elements of f are interpreted as texture and how much f should be simplified. This lead to the
idea of iteratively decomposing an image with an exponentially increasing parameter λℓ = 2ℓλ0, or more
precisely decomposing the remaining residual vℓ−1 for ℓ = 1, ...,m.

Using this hierarchical (BV,L2) decomposition, in the end one obtains a multiscale representation
f =

∑m
ℓ=0 uℓ+ vm , as first introduced by Tadmor, Nezzar and Vese in 2004 [22]. This concept got recent

attention when earlier this year in [9], it was transferred to the application of multiscale registration,
going from a “coarse” level of global structural deformations to more locally refined ones.

This thesis gives an introduction to the ROF model and studies the work of [22] on hierarchical
(BV,L2) decompositions of 2D greyscale images. To this end, I will start in Chapter 2 by defining total
variation and the BV space and name some of their properties. Next in Chapter 3, I describe the ROF
model in detail and present some of its characteristics. There, the focus lies on the interpretation of the
model as separation of texture from the “essential / cartoonish” features of an image, and on the impact
of the tuning parameter λ to the result. In this context, Theorem 3.4 from Meyer [16] plays a major role,
by which λ determines whether elements end up in uλ and vλ.

Thereafter, I extend this method to the aforesaid hierarchical (BV,L2) decomposition in Chapter 4
and discuss, why the resulting multiscale description of an image is suitable for its representation. Fur-
thermore, I give a new initialisation method to capture possibly missing larger scales in Section 4.3,
inspired by the original proposal of [22].

In the last part, I describe a way to numerically tackle both the ROF model and its hierarchical
application for obtaining a multiscale representation of real images. The theoretical considerations and
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1 Introduction and motivation

algorithms are discussed in Chapter 5. Results on their performance and actual decompositions of images
are presented in Chapter 6. The code I implemented for the thesis, is written and executed in MATLAB
(Version R2020b) [15] and published on GitHub [13]. As main example, I will use a photograph of the
Aurlandsfjord in Norway taken by myself in June 2021. It is shown in Figure 1.1 and from here on will
be referred to as fjord picture.

Figure 1.1: “Fjord picture” – This greyscaled photograph of the Aurlandsfjord in Norway serves as an
example and test image for most of the thesis.
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2
Total variation and the BV spaces

2.1 Definition of total variation and the L2 and BV function spaces

At first, I will give some preliminaries which will be needed for the further discussions in this thesis. In
general, I follow on [22] and consider images as L2 objects. More precisely, the thesis focusses on 2D
greyscale images which are here given by f ∈ L2(R2). Hence, I start by introducing the Lp space over
real domains together with its associated norm.

Definition 2.1. (following [10, Chapter 6 Definition 2.1] and [11]) Let n ∈ N and Ω ⊆ R
n be an open

set, p ≥ 1 and λ denote the Lebesgue measure [10]. For a λ-measurable function f : Ω→ R, the Lp-norm
is defined as

‖f‖p := ‖f‖Lp(Ω) :=

(∫

Ω

|f |p dλ
) 1

p

. (2.1)

The function space that consists of all functions f with ‖f‖p < ∞, is called Lp-space over Ω and
denoted by Lp(Ω). In the following, mainly L1 and L2 will be of interest.

Furthermore, for two functions f, g ∈ L2(Ω), a scalar product [cf. 10, page 255] is defined by

〈f, g〉 :=

∫

Ω

fg dλ. (2.2)

Remark. In fact, in the context of the above defined spaces, these “norms” are only semi-norms because
not only the zero function φ = 0 has “norm” 0. To obtain proper norms, all functions that coincide
almost everywhere need to be identified with each other, so the norms are actually defined on equivalent
classes of functions [cf. 10, page 250f]. However, that distinguishment is not relevant here.

The main concept behind the ROF model and hence this thesis’ topic is to decompose an image
f ∈ L2(Ω) by minimising its total variation. Therefore, at next I define this quantity. Note that the
total variation is usually defined for L1-integrable functions and there is no general inclusion relation
between L1 and L2 [10, page 253], so to be precise, in the context of this thesis images must be assumed
as f ∈ L2(Ω) ∩ L1(Ω). The next two definitions follow [11, Definition 5.1] and [4, Definition 1.1]:

Definition 2.2. Let n ∈ N, Ω ⊆ R
n be an open set and f ∈ L1(Ω). The total variation of f in Ω is

defined as
TV(f,Ω) := sup

ϕ∈C1
c (Ω,Rn)

‖ϕ‖L∞(Ω)≤1

∫

Ω

f(x) div(ϕ(x)) dx (2.3)

where C1
c (Ω,R

n) denotes the space of continuously differentiable functions from Ω to R
n with compact

support, ‖ϕ‖L∞(Ω) the essential supremum norm (see e.g. [10, page 243]) and div(ϕ) :=
∑n

i=1
∂ϕi

∂xi
the

divergence of ϕ.
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2 Total variation and the BV spaces

Definition 2.3. Let n ∈ N and Ω ⊆ R
n be an open set.

A function f ∈ L1(Ω) is said to be of bounded variation (BV function) if its total variation
TV(f,Ω) is finite. Thus, the space of functions of bounded variation (BV space) is defined as

BV (Ω) :=
{
f ∈ L1(Ω) | TV(f,Ω) <∞

}
. (2.4)

For f ∈ BV (Ω), the total variation yields a semi-norm which from now on will be denoted by

‖f‖BV
:= ‖f‖BV (Ω) := TV(f,Ω) (2.5)

Remark. a) ‖·‖BV fails to be a norm because it is 0 not only for φ = 0: As will be discussed in
Lemma 2.7, for any constant function ψ = c it holds ‖ψ‖BV = 0. However, proper norms on BV

can be found that give rise to the latter being a Banach space [4, page 273].
b) By definition it holds BV (Ω) ⊆ L1(Ω), and quoting [16, page 24] in fact BV (Ω) ⊂ L

n
n−1 (Ω). So in

particular, for the context of n = 2 that means BV (Ω) ⊂ L2(Ω).

2.2 Total variation of differentiable and weakly differentiable functions

For continuously differentiable functions, the total variation simplifies to another form which is also basic
for its discretisation in Chapter 5:

Theorem 2.4. [1] Let n ∈ N and Ω ⊆ R
n be an open set. If a function f : Ω → R is continuously

differentiable, i.e. f ∈ C1(Ω), then the total variation is given by

TV(f,Ω) =

∫

Ω

|∇f(x)| dx = ‖ |∇f | ‖1 (2.6)

where |·| denotes the Euclidean vector norm.

This statement is mentioned and used a lot in the literature, see e.g. [4, page 271], [6, page 2] or [12,
page 75]. And in fact, it is not limited to continuously differentiable functions, but also works for weakly
differentiable functions. Then, the gradient ∇f is replaced by the weak gradient Df – a generalisation of
the gradient’s concept which is defined next following [11, Section 4.1]:

Definition 2.5. Let I ⊆ R be an open interval. A univariate function f : I → R is called weakly
differentiable if there exists a function g ∈ L1(I) with

∫

I

f(x)ϕ′(x)dx = −

∫

I

g(x)ϕ(x) dx ∀ϕ ∈ C1
c (I).

Then, g is called a weak derivative of f .
Now let n ∈ N and Ω ⊆ R

n be an open set. A multivariate function f ∈ L1(Ω) is called weakly
differentiable if it is weakly differentiable with respect to every component, that is if there exist functions
g1, ..., gn ∈ L

1(Ω) with
∫

Ω

f(x)ϕxi
(x)dx = −

∫

Ω

gi(x)ϕ(x) dx ∀ϕ ∈ C1
c (Ω) , i = 1, ..., n. (2.7)

Then, gi is called weak partial derivative of f w.r.t xi and the vector Df := (g1, ..., gn) weak
gradient of f.
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2 Total variation and the BV spaces

Remark. The definitions of weak partial derivative and weak gradient are consistent in the following
sense: For f ∈ C1(Ω) they coincide with the “actual” partial derivative fxi

and the gradient ∇f . This
can be seen by integrating (2.7) by parts and using the compact support of ϕ by which it must be 0 at
the boundary ∂Ω of an open set Ω:

∫

Ω

f(x)ϕxi
(x)dx = f(x)ϕ(x)

∣
∣
∣
∂Ω
−

∫

Ω

fxi
(x)ϕ(x) dx ϕ∈C1

c (Ω)
= −

∫

Ω

fxi
(x)ϕ(x) dx.

Thus, the partial derivative fxi
is a weak partial derivative of f w.r.t xi (and by [11, page 144], that weak

partial derivative is also unique almost everywhere).
Now, a generalisation of Theorem 2.4 for functions f with L1-integrable weak gradient, that is

‖ |Df | ‖1 <∞, is given as follows:

Lemma 2.6. [cf. 11, pages 197f] Let n ∈ N, Ω ⊆ R
n be an open set and f : Ω→ R be weakly differentiable.

If ‖ |Df | ‖1 <∞, then f ∈ BV (Ω) and its total variation is given by

TV(f,Ω) =

∫

Ω

|Df(x)| dx = ‖ |Df | ‖1 (2.8)

where |·| denotes the Euclidean vector norm.

Clearly, Theorem 2.4 and Lemma 2.6 only describe special cases for computing the total variation
of a function f . However, to stress the relation between weak gradient and total variation (or their
corresponding measures, see [4, Section 1.5]), the latter is sometimes (e.g. in [4], [14], [12]) also in general
denoted by

‖f‖BV = TV(f,Ω) =

∫

Ω

|Df |.

Furthermore, the concept for a discrete approximation to the total variation carried out in Section 5.1
arises from eq. (2.8), as well as the form of the Euler-Lagrange equation to the later defined ROF problem.
That equation is introduced in Section 3.3 and basis for the numerical methods of Section 5.2.

Next, I will give an intuitively desirable result: Constant functions have a total variation of zero.
More precisely, this holds for any function f : Ω→ R which is constant almost everywhere, meaning that
it takes the same real value on the entire domain except for at most on a Lebesgue null set N ⊂ Ω – a
set with Lebesgue measure λ(N) = 0 [cf. 10, Chapter 4 Definition 4.1].

When dealing with images on bounded domains and non-zero mean, this idea will be important as
it allows for manipulating the image by adding a constant signal without changing its total variation.
More on that in Section 3.2.

Lemma 2.7. Let n ∈ N, Ω ⊆ R
n be an open set, c ∈ R and f : Ω→ R with f(x) = c almost everywhere.

The (possibly empty) null set on which f(x) 6= c be denoted by N ⊂ Ω. Then, the total variation of f is
given by TV(f,Ω) = 0.

Proof. This follows directly from Definition 2.2 and the divergence theorem because for any ϕ ∈ C1
c (Ω,R

n)

it holds by the compact support of ϕ (which imposes ϕ = 0 on ∂Ω):
∫

Ω

f div(ϕ) dλ =

∫

Ω\N

f div(ϕ) dλ = c

∫

Ω\N

div(ϕ) dλ = c

∫

Ω

div(ϕ) dλ = c

∫

∂Ω

ϕ · n dλ = 0 .

Now when taking the supremum over ϕ, one obtains TV(f,Ω) = 0.
Alternatively, by the same argument the weak gradient of f must be given by Df = (0, ..., 0), and

eq. (2.8) yields TV(f,Ω) = 0.
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2 Total variation and the BV spaces

2.3 Total variation of functions in one variable

To get a better understanding of the total variation, the one-dimensional case will be considered now.
Unfortunately, the term total variation is not distinct, and especially in 1D, there exist various, non-
necessarily equivalent definitions of the total variation. In this thesis, TV is given as in Definition 2.2.

However, there is a second, commonly used definition for total variation in which the domain is
divided into a partition and the difference between all neighbouring function values is maximised. This
quantity will be used to compute the total variation in Example 2.10 a) – which works because it coincides
with TV when f ∈ C1, see e.g. [3, Definition 1.1]:

Lemma 2.8. Let [a, b] ∈ R be a real interval and P = {t0, ..., tm} a partition of [a, b], i.e.
a =: t0 < ... < tm := b. If the function f : [a, b] → R is continuously differentiable on (a, b), then the
total variation of f can also be described by the following term:

TV(f,Ω) =

∫ b

a

|f ′(x)| dx = sup
P∈P([a,b])

m∑

j=1

|f(tj)− f(tj−1)| . (2.9)

where P([a, b]) denotes the family of partitions of [a, b].

Next, I want to give three examples of 1D-functions to illustrate some aspects in the relation between
total variation, continuity and the (squared) L2-norm. In my opinion, they give a good impression on
the total variation and why its minimisation can be desirable when seeking a representation for signals
(such as images). Example 2.9 shows a sequence of signals (fn)n∈N which all have the same energy (in an
L2-sense), but the total variation diverges corresponding to the increasing number of oscillations in fn:

Example 2.9. Be n ∈ N and fn : [0, 2π]→ R with fn(x) := sin(nx). It holds:

0 π
2

π 3π
2

2π

−1

−0.5

0

0.5

1

x

f1
f2
f10

Figure 2.1: Visualisation of fn(x) = sin(nx)
for n = 1, 2, 10. All signals have the same
energy, but the increasing number of oscil-
lations for larger n leads to an increase in
total variation.

‖fn‖
2
2 =

∫ 2π

0

(fn(x))
2 dx =

∫ 2π

0

sin2(nx)dx

=
1

2

∫ 2π

0

(1− cos(2nx))dx

=
1

2

(

x−
1

2n
sin(2nx)

) ∣
∣
∣

2π

0
= π ,

‖fn‖BV =

∫ 2π

0

|f ′n(x)|dx =

∫ 2π

0

|n cos(nx)|dx

=

∫ π
2n

0

n cos(nx)dx
︸ ︷︷ ︸

=1

+

n−1∑

i=0

∫ (i+ 3
4 )

2π
n

(i+ 1
4 )

2π
n

−n cos(nx)dx
︸ ︷︷ ︸

=2

+

n−1∑

i=1

∫ (i+ 1
4 )

2π
n

(i− 1
4 )

2π
n

n cos(nx)dx
︸ ︷︷ ︸

=2

+

∫ 2π

2π− π
2n

n cos(nx)dx
︸ ︷︷ ︸

=1

= 1 + 2n+ 2(n− 1) + 1 = 4n.

Thus, fn ∈ BV ([0, 2π]). As one can see, the squared L2-norm remains the same for all n, whereas the
variation increases linearly with the number of oscillations taking place. This idea of higher oscillating
signals leading to a larger total variation in my opinion is basic for the concept of image denoising by
total variation minimisation and in the end also the multiscale image representation discussed in this
thesis: That is because noise as well as texture elements of an image are usually associated with highly
oscillating signal information [22]. More on that in Chapter 3 and Chapter 4.
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2 Total variation and the BV spaces

The other two functions – presented in Example 2.10 – are modifications of the signal sin(1/x).
Both have finite energy, are continuous in [0, 1] and even continuously differentiable in (0, 1], but whereas
the total variation of the first function is infinite, the second one is sufficiently damped to be of bounded
variation. In my interpretation, these signals show again how the quantity of total variation depends on
the frequency of oscillations, but also on the size of the amplitude associated with the oscillations.

To compute the total variation in Example 2.10 a), I use Lemma 2.8 which works since the function
is continuously differentiable in (0, 1).

Example 2.10.

0.2 0.4 0.6 0.8 1

0

0.5

1

x

x sin(1/x)

Figure 2.2: Visualisation of the signal
f(x) = x sin(1/x). It is continuously dif-
ferentiable and has finite energy, but infi-
nite total variation.

a) Be f : [0, 1]→ R, f(x) :=

{

0 for x = 0

x sin
(
1
x

)
for x ∈ (0, 1]

.

Since lim
x→0

∣
∣x sin

(
1
x

)∣
∣ ≤ lim

x→0
|x| = 0, f is continuous in

[0, 1]. Furthermore, f is continuously differentiable in
(0, 1] with f ′(x) = sin

(
1
x

)
− 1

x
cos
(
1
x

)
.

For the energy of f , it holds:

‖f‖
2
2 =

∫ 1

0

(f(x))2dx =

∫ 1

0

x2 sin2
(
1
x

)
dx

≤

∫ 1

0

x2dx =
1

3
x3
∣
∣
∣

1

0
=

1

3
.

Following [3, Example 1.8], to compute the total vari-
ation of f on [0, 1], the partition P = {t0, ..., tm} is
chosen such that tj−1 and tj in (2.9) are alternating
maxima and minima of f . This is achieved by:

t0 := 0 , t1 :=
2

(2m− 1)π
, ... , tj :=

2

(2m− 2j + 1)π
, ... , tm−1 :=

2

3π
, tm := 1.

Now it holds |f(tj)− f(tj−1)| =
∣
∣sin

((
m− j + 1

2

)
π
)
tj − sin

((
m− j + 3

2

)
π
)
tj−1

∣
∣ ≥ 2tj−1

for j = 2, ...,m− 1, therefore

TV(f, (0, 1)) ≥
m∑

j=1

|f(tj)− f(tj−1)| ≥
m−1∑

j=2

2tj−1 =
2

π

m−1∑

j=2

2

2m− 2j + 3
=

2

π

m∑

j=3

2

2j − 1
≥

2

π

m∑

j=3

1

j
.

Letting m → ∞ now yields TV(f, (0, 1)) ≥ lim
m→∞

2
π

m∑

j=3

1
j
= ∞ by the divergence of the harmonic

series.
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2 Total variation and the BV spaces

0.2 0.4 0.6 0.8

0

0.5

1

x

x2 sin(1/x)

Figure 2.3: Visualisation of the signal
f(x) = x2 sin(1/x). It is continuously
differentiable, has finite energy and is of
bounded variation.

b) Be f : [0, 1]→ R, f(x) :=

{

0 for x = 0

x2 sin
(
1
x

)
for x ∈ (0, 1]

.

Again, f is continuous in [0, 1], and continuously dif-
ferentiable in (0, 1] with f ′(x) = 2x sin

(
1
x

)
− cos

(
1
x

)
.

An upper bound for the energy of f is now given by:

‖f‖
2
2 =

∫ 1

0

(f(x))2dx =

∫ 1

0

x4 sin2
(
1
x

)
dx

≤

∫ 1

0

x4dx =
1

5
x5
∣
∣
∣

1

0
=

1

5
.

And in difference to a), here the total variation can
be estimated by:

‖f‖BV =

∫ 1

0

|f ′(x)|dx =

∫ 1

0

∣
∣2x sin

(
1
x

)
− cos

(
1
x

)∣
∣ dx

≤

∫ 1

0

( ∣
∣2x sin

(
1
x

)∣
∣

︸ ︷︷ ︸

≤2x

+
∣
∣cos

(
1
x

)∣
∣

︸ ︷︷ ︸

≤1

)

dx ≤ x2 + x
∣
∣
∣

1

0
= 2.

Hence, in both cases f ∈ L2([0, 1]), f ∈ C0([0, 1]) and even f ∈ C1((0, 1]), so the multiplication by
x resp. x2 especially yields continuity. But whereas x does not suffice to limit the total variation of f in
case a), the “stronger damping” induced by the x2-term in case b), does not only ensure continuity, but
also bounds the variation effectively.

2.4 Properties of total variation and functions of bounded variation

Now back to the multivariate case: Besides Theorem 2.4 resp. Lemma 2.6, there is a great number of
properties regarding the quantity of total variation as well as the BV space in general, see e.g. [11], [3]
or [4]. They give an idea to the question, why signals of bounded variation might suit for representing
information of images, but a detailed discussion on that goes beyond the scope of this thesis.

Instead, I want to state only two properties of the total variation, namely its lower semi-continuity
and its convexity. Both will be needed later in Section 3.2 when discussing the existence and uniqueness
of a minimiser to the (ROF) problem. Afterwards, I will quote two more – in my opinion very important
– results on BV functions.

Lemma 2.11. [cf. 4, Section 1.2.3]

a) The total variation is lower semi-continuous, that is:
Let Ω ⊆ R

n for n ∈ N be an open set and f, fk ∈ L1(Ω) for k ∈ N where fk → f in L1(Ω). Then it
holds:

TV(f,Ω) ≤ lim inf
k→∞

TV(fk,Ω).

b) The total variation is convex, i.e. for all f1, f2 ∈ L1(Ω) and t ∈ [0, 1] it holds:

TV(tf1 + (1− t)f2,Ω) ≤ t TV(f1,Ω) + (1− t) TV(f2,Ω).

Proof. The second statement follows directly from the supremum in (2.3) and the linearity of inte-
grals. For the first statement, the continuity of the integral form imposes for any ϕ ∈ C1

c (Ω,R
n) with

‖ϕ‖L∞(Ω) ≤ 1:
∫

Ω

f div(ϕ) = lim
k→∞

∫

Ω

fk div(ϕ) ≤ lim inf
k→∞

TV(fk,Ω).
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2 Total variation and the BV spaces

When taking the supremum over ϕ, the left hand side becomes the definition of total variation in (2.3)
and the lower semi-continuity follows.

Finally, I come to the two properties of the BV space that I want to point out. In my opinion,
both give important information on the central question in this thesis, why minimising the total variation
might be desirable when seeking a suitable representation for an image. Furthermore, they clarify the
impact of a potentially small total variation in a signal. For more background and the proofs, see the
indicated references.

The first statement gives a result on the approximation of BV functions: It ensures that any function
f ∈ BV (Ω) and its total variation can be locally approximated by a sequence of smooth functions. This is
important especially when numerically dealing with the ROF problem, since the methods from Section 5.2
to discretely approximate the minimiser mainly treat the image as if it was continuously differentiable,
as will discussed in that section.

The second result yields information on the total variation of BV functions: On the one hand, it
generally serves as an upper bound of their size in an L1 (and for n = 2 even L2)-sense. And on the
other hand, it also limits the “difference” between the function and its mean in every ball (and hence in
particular in any domain). In my opinion, especially that second aspect also clarifies the meaning of the
term total variation.

Lemma 2.12.

a) [cf. 11, Theorem 5.3] Let n ∈ N, Ω ⊆ R
n be an open set and f ∈ BV (Ω) be a function of bounded

variation. There exists a set of infinitely differentiable functions with bounded variation {fk}∞k=1 ⊆

BV (Ω) ∩ C∞(Ω) such that

fk → f in L1(Ω) and ‖fk‖BV → ‖f‖BV as k →∞.

b) [cf. 11, Theorem 5.10] Be n ∈ N. There exists a constant C1(n) such that for all functions of bounded
variation f ∈ BV (R2):

‖f‖
L

n
n−1 (Rn)

≤ C1(n) ‖f‖BV (Rn).

Further, there exists a second constant C2(n) such that for all balls Br(y) ⊂ R
n with radius r > 0

and centre y ∈ R
n and for all f ∈ BV (R2) it holds:

‖f − f̄‖
L

n
n−1 (Br(y))

≤ C2(n) ‖f‖BV (Br(y)),

where f̄ :=
∫

Br(y)
f(x)dx denotes the “mean” of f on Br(y).
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3
The Rudin-Osher-Fatemi model
The decomposition of an image by minimising its total variation originates from the field of image
denoising or, more generally, image reconstruction [20]. As the name indicates, this process aims at
reconstructing the original signal u or something as close to that as possible from a given defective signal
f . Hence, one seeks a decomposition f = u + v where u represents the desired “original” signal and
v = f − u the residual. In a perfect scenario, v would obviously be exactly the error (e.g. noise).

In this setting, an approximation to u is defined as a minimiser of a properly chosen energy functional
E : L2(Ω)→ R of the form

E(u) = F (u) + λ ‖f − u‖
2
2 .

where F : L2(Ω) → R is a functional corresponding to the type of signal to reconstruct and specifies
by what characteristics u should be evaluated [cf. 4, Section 1.1.2]. Of particular interest is the tuning
parameter λ > 0 which determines the weight of both components in E, and will later be discussed in
detail for the ROF model.

Due to the authors of [4], “a good F should simultaneously ensure some spatial regularity, but also
preserve the edges” [4, page 267]. In 1992, Rudin, Osher and Fatemi proposed in a seminal paper [20] to
consider the total variation as regulariser, i.e. F (u) = TV(u,Ω). Since then, this idea is being referred
to as ROF model. By construction, it results in a signal of bounded variation, i.e. u ∈ BV (Ω). In this
chapter, I will give a precise and mathematical description of the model and discuss some of its properties.

3.1 Definition and description of the ROF model

In the context of this thesis, the ROF model describes the decomposition f = uλ+vλ of a 2D greyscale im-
age f ∈ L2(Ω) into a “cartoonish” version uλ ∈ BV (Ω) and the residual vλ ∈ L2(Ω). The decomposition
is obtained by minimising the energy functional

Ef,λ : BV (Ω)→ R , Ef,λ(u) := ‖u‖BV + λ ‖f − u‖
2
2 (3.1)

over all functions of bounded variation u ∈ BV (Ω) for a pre-specified weighting parameter λ > 0. Thus,
the ROF problem is defined as the minimisation problem

minimise
u∈BV (Ω)

‖u‖BV + λ ‖f − u‖
2
2 . (ROF)

Here, λ ‖f − u‖22 is the fidelity term, ‖u‖BV serves as regularisation and the parameter λ > 0 determines
the influence of both terms to the minimisation process.

Notation: In this thesis, I will refer to the actual obtained infimum in (ROF) as

J(f, λ) := inf
u∈BV (Ω)

Ef,λ(u)
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3 The Rudin-Osher-Fatemi model

which measures how well f can be approximated by its “BV -features” [cf. 22, page 555], and to the
resultant arguments uλ and vλ as

[uλ, vλ] := arg min
u+v=f

J(f, λ) :=

[

arg min
u∈BV (Ω)

Ef,λ(u) , f − arg min
u∈BV (Ω)

Ef,λ(u)

]

. (3.2)

This last notation with the arg min of the J-functional J(f, λ) will prove useful for clarity – especially in
the discussion on the hierarchical decomposition in Chapter 4 – and follows the style of [22] and [9].

I want to point out that in their original paper, Rudin, Osher and Fatemi introduced a different
version of the minimisation problem: As mentioned above, the ROF model has its origins in the image
denoising. This problem underlies the assumption that a given signal f ∈ L2(Ω) consists of the actual
image û ∈ L2(Ω) and some additive noise v̂ ∈ L2(Ω) of mean 0 and standard deviation σ, i.e. f = û+ v̂

[20]. Thus, their procedure aimed at computing a decomposition f = u+ v such that u approximates û
as accurate as possible by minimising its total variation; the noise v̂ is analogously approximated by the
residual v = f −u. In view of that, Rudin, Osher and Fatemi originally proposed to solve the constrained
minimisation problem

minimise
u∈BV (Ω)

‖u‖BV subject to
∫

Ω

(f − u) = 0 and 1
2 ‖f − u‖

2
2 = σ2. (3.3)

Existence, uniqueness and some statements regarding the well-posedness of problem (3.3) were proven
in 1994 by Acar and Vogel [2], and more generally three years later by Chambolle and Lions [5]. In the
latter, it was also proven that solving (3.3) is equivalent to solving the unconstrained problem (ROF) for
some parameter λ > 0, and this is today most commonly known as ROF model.

By the discussions of Chapter 2, one would expect the result uλ ∈ BV (Ω) to be a simpler and
smoother signal than f that consists of its essential features (especially large objects and edges), whereas
v represents the oscillatory part such as spurious components or texture. This interpretation of the
decomposition as distinguishment between edges and texture [16] [22] is fundamental for the later discussed
multiscale representation.

In view of this, the parameter λ does not only weight the influence of both terms in Ef,λ: It is a
cut-off scale [22] that defines whether elements of f are rather interpreted by the ROF model as texture
or not, and thus determines how much f should be simplified. As will be discussed in the next section,
this question is closely related to the oscillatory character of an element.

It usually requires a priori information on the image to properly select λ: If it is chosen too small,
only few information are kept in a “very simple” uλ, whereas a great λ may produce a resultant uλ
that is very close to and contains “too many” details of the original image f [cf. 22, Section 2.1]. This
is illustrated in Figure 3.1. In this thesis’ consideration of a hierarchical decomposition, however, that
problem is only minor, as will be discussed in Section 4.3.

The ROF model can be (and often were and is) modified – for instance by using the non-squared
L2-norm ‖f − u‖2 [cf. 16, page 29] or L1-norm ‖f − u‖1 [cf. 4, page 56] as fidelity term, and extended to
more general applications such as pre-transformed models f = Au + v where A is a linear operator and
represents some transformation (e.g. blurring, sampling) [4]. In this thesis, however, I will only discuss
the above defined (ROF) problem.

3.2 A selection of properties of the ROF model

As mentioned above, a prove for the existence of a minimiser of (ROF) was given in [5]. Nonetheless,
I consider this to be such a central result for the discussion of this thesis that I want to sketch a proof
following [4, Section 1.2.3]:

Considering a minimising sequence (uk)k∈N for Ef,λ such that Ef,λ(uk) → infu Ef,λ(u), one finds
for sufficiently large k ∈ N that Ef,λ(uk) ≤ Ef,λ(0) = λ ‖f‖

2
2 <∞ up to a subsequence (uk̃)k̃∈Ñ , thus

– 11 –



3 The Rudin-Osher-Fatemi model

λ = 105 λ = 100
uλ vλ + 0.5 uλ vλ + 0.5

Figure 3.1: ROF decomposition of the fjord picture at scale λ = 1e5 and λ = 1e0: While with the choice
of a “large” λ almost all information of f end up in uλ, relatively “small” λ yield very smoothened results.

(uk)k∈N\Ñ is bounded in L2(Ω). Then it follows that – again up to a subsequence – (uk)k∈N\Ñ converges
weakly to some u∗ ∈ L2(Ω) [cf. 4, page 272], i.e.

∫

Ω

uk(x) v(x) dx→
∫

Ω

u∗(x) v(x) dx ∀v ∈ L2(Ω).

By [4, page 273], it now holds that ‖f − u∗‖22 ≤ lim inf
k→∞

‖f − uk‖
2
2. This result in combination with

the lower semi-continuity of ‖·‖BV stated before in Lemma 2.11 a) yields that

Ef,λ(u
∗) ≤ lim inf

k→∞
Ef,λ(uk) = inf

u
Ef,λ(u).

Hence, u∗ is a minimiser of (ROF).
The uniqueness of this minimiser now follows from the convexity of Ef,λ which can directly be derived

from the convexity of its summands ‖·‖BV (see Lemma 2.11 b)) and ‖·‖22 (follows directly from the triangle
inequality), and the following calculation:

Be u′ and u′′ two minimiser of (ROF), i.e. Ef,λ(u′) = Ef,λ(u′′) = infu Ef,λ(u). Then:

inf
u
Ef,λ(u) ≤ Ef,λ

(
u′ + u′′

2

)

‖·‖BV convex
≤

1

2

(
‖u′‖BV + ‖u′′‖BV

)
+ λ

∥
∥
∥
∥
f −

u′ + u′′

2

∥
∥
∥
∥

2

2

=
1

2

(
Ef,λ(u

′) + Ef,λ(u
′′)
)
+ λ

(∥
∥
∥
∥
f −

u′ + u′′

2

∥
∥
∥
∥

2

2

−
1

2

(

‖f − u′‖
2
2 + ‖f − u

′′‖
2
2

)
)

=
1

2

(
Ef,λ(u

′) + Ef,λ(u
′′)
)
+ λ

(

‖f‖
2
2 − 〈f, u

′ + u′′〉+
1

4
‖u′‖

2
2 +

1

2
〈u′, u′′〉+

1

4
‖u′′‖

2
2

−
1

2

(

‖f‖
2
2 − 2〈f, u′〉+ ‖u′‖

2
2 + ‖f‖

2
2 − 2〈f, u′′〉+ ‖u′′‖

2
2

)
)

=
1

2

(
Ef,λ(u

′) + Ef,λ(u
′′)
)
+ λ

(

−
1

4
‖u′‖

2
2 +

1

2
〈u′, u′′〉 −

1

4
‖u′′‖

2
2

)

=
1

2

(
Ef,λ(u

′) + Ef,λ(u
′′)
)
−
λ

4
‖u′ − u′′‖

2
2

= inf
u
Ef,λ(u)−

λ

4
‖u′ − u′′‖

2
2

which would be strictly less than infu Ef,λ(u), unless u′ = u′′ almost everywhere. In conclusion:
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3 The Rudin-Osher-Fatemi model

Theorem 3.1. [cf. 4, Section 1.2.3] The energy functional Ef,λ of the minimisation problem (ROF) is
lower semi-continuous and strictly convex. Hence, it has a minimiser and this minimiser is unique.

The convexity of Ef,λ is not only important for the uniqueness of a minimiser. It also assures that –
at least in a continuous setting – there are no local minima which can interrupt the minimisation process
inevitably. Furthermore, this enables one to use many tools from convex optimisation [cf. 4, page 268].

After knowing that a unique minimiser uλ of (ROF) exists, the question for its properties arises. Of
particular interest here are statements on its character regarding the representation of information that
the signal f contained. In Chapter 2, I already discussed some aspects on that when describing functions
of bounded variation and the impact of a possibly small total variation in detail.

But there is another – clearly desirable – result directly regarding the ROF model that I would like
to mention: In [4, Theorem 2.7], the authors clarify that at least for an input signal f ∈ BV (Ω)∩L∞(Ω),
the ROF model does not produce new discontinuities in the sense that the “jump set” of the resultant
uλ is contained in the one of f . Later in [4, page 295], it is further stated that for almost all points in
the jump set of uλ, the orientation of the jumps remains the same as in f .

Now, what can be said about the nature of the minimiser uλ and its relation to the residual vλ?
Before coming to the main theorem from Meyer which tries to give an answer on that, I will state two –
in my opinion intuitively clear – results regarding constant displacements of the signal f . From here on,
I will consider the domain Ω on which f is defined, to be bounded. This is in addition to the previous
assumption of Ω being an open set, and appears reasonable in the context of practically dealing with real
images. Now the idea regarding the displacements is as follows:

The addition of a constant signal is associated with no change in total variation, since the latter
becomes 0 precisely for a.e.-constant functions as discussed in Lemma 2.7, whereas it may certainly have
an impact on the L2-norm. Thus, in the decomposition, any difference in mean from 0 will be fully
included in uλ, and accordingly the residual vλ will always have a mean of 0. Although this statement
might seem obvious, I will give a short proof:

Lemma 3.2. Let n ∈ N, Ω ⊂ R
n be an open and bounded set, f ∈ L2(Ω) and f = uλ + vλ the optimal

ROF decomposition. Then the mean of vλ in Ω is 0:
∫

Ω

vλ(x)dx = 0.

Proof. Suppose, [uλ, vλ] = arg min
u+v=f

J(f, λ) is the optimal ROF decomposition of f where the mean of vλ

is non-zero, i.e. v̄ := 1
|Ω|

∫

Ω
vλ(x)dx 6= 0. Let 1 : Ω → R with 1(x) = 1 for x ∈ Ω be the “one-function”

and note that 〈vλ, 1〉 = v̄|Ω| and ‖v̄1‖22 = v̄2|Ω|. Then it can be shown that [u′, v′] with u′ := uλ + v̄1
and v′ := uλ − v̄1 is a “better” decomposition in the sense that Ef,λ(u′) < Ef,λ(uλ), in contradiction to
the optimality of [uλ, vλ]. This follows from:

Ef,λ(uλ + v̄1) = ‖uλ‖BV + ‖v̄1‖BV
︸ ︷︷ ︸

=0

+ ‖vλ − v̄1‖22

= ‖uλ‖BV + ‖vλ‖
2
2 + ‖v̄1‖22 − 2〈vλ, v̄1〉

= ‖uλ‖BV + ‖vλ‖
2
2 + v̄2|Ω| − 2v̄〈vλ, 1〉

= ‖uλ‖BV + ‖vλ‖
2
2 − v̄

2|Ω|

< ‖uλ‖BV + ‖vλ‖
2
2 = Ef,λ(uλ).

Thus, uλ would not minimise (ROF), so the assumption is wrong and it follows v̄ = 0.

Corollary. As direct conclusion from Lemma 3.2 it follows that
∫

Ω
uλ(x)dx =

∫

Ω
f(x)dx. Thus, the

mean of uλ coincides with the one of f .
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3 The Rudin-Osher-Fatemi model

This gives rise to another result: Let f̄ denote the mean value of a signal f . Instead of solving (ROF)
directly for f , one could formally also solve it for its mean value adjusted counterpart f̃ := f − f̄ and
obtain the optimal decomposition of f by adding the mean value to the resultant minimiser ũλ, so in the
end f = (ũλ + f̄) + vλ. This fact is shown in the next lemma and will be important in the application of
Meyer’s theorem to bounded domains.

Lemma 3.3. Let n ∈ N, Ω ⊂ R
n be an open and bounded set, f ∈ L2(Ω) and f = uλ + vλ the optimal

ROF decomposition, i.e. [uλ, vλ] = arg min
u+v=f

J(f, λ).

Then the optimal decomposition for the mean value adjusted signal f̃ := f−f̄1 with f̄ := 1
|Ω|

∫

Ω
f(x)dx

is given by f̃ = ũλ + vλ where ũλ = uλ − f̄1, meaning [ũλ, vλ] = arg min
u+v=f̃

J(f̃ , λ).

Furthermore, for their energy it holds Ef̃ ,λ(ũλ) = Ef,λ(uλ).

Proof. At first, I will show the equality of energy. Therefor let [uλ, vλ] := arg min
u+v=f

J(f, λ), i.e. uλ minimises

Ef,λ. Further be ũλ := uλ − f̄1. When looking at the energy functional Ef̃ ,λ of the mean value adjusted
signal f̃ in ũλ, it can be obtained that

Ef̃ ,λ(ũλ) = ‖uλ‖BV +
∥
∥f̄1

∥
∥
BV

︸ ︷︷ ︸
=0

+
∥
∥
∥f̃ − uλ + f̄1

∥
∥
∥

2

2
= ‖u‖BV + ‖f − uλ‖

2
2 = Ef,λ(uλ).

Now, to obtain that ũλ is the actual (ROF) minimiser of f̃ , it suffices to see that for any (non-a.e.-zero)
h ∈ BV (Ω) it holds

Ef̃ ,λ(ũλ + h) = ‖uλ + h‖BV + ‖f − uλ − h‖
2
2 = Ef,λ(uλ + h) > Ef,λ(uλ) = Ef̃ ,λ(ũλ)

because uλ minimises Ef,λ. Hence, ũλ is the (unique) minimiser of Ef̃ ,λ and the lemma is proven.

With these preliminaries, I will now come to the theorem of Meyer. It uses a dual norm of ‖·‖BV ,
denoted by ‖·‖∗. I do not want to go into detail on duality in general or the dual to the BV space in
particular as that is not in the focus of this thesis. Instead, I will directly quote the statements regarding
this matter: Following [16, Sections 1.12 and 1.14], for any function v : Ω → R with

∫

Ω
v(x) dx = 0 and

a representation v = div g where g ∈ C1
c (Ω,R

n), the dual norm ‖v‖∗ takes the form

‖v‖∗ = inf
g∈C1

c (Ω,Rn)
div g=v

‖g‖L∞(Ω) = sup
u∈BV (Ω)
‖u‖BV 6=0

〈u, v〉

‖u‖BV

. (3.4)

Furthermore, by [16, Lemma 3] it holds for arbitrary v ∈ L2(Ω) with
∫

Ω
v(x)dx = 0 that

|〈u, v〉| =

∣
∣
∣
∣

∫

Ω

u(x)v(x)dx
∣
∣
∣
∣
≤ ‖u‖BV ‖v‖∗ ∀u ∈ BV (Ω). (3.5)

Now, the following and aforesaid Theorem 3.4 corresponds to [16, Theorem 3 and Lemma 4] and
provides information on the quantitative character of the ROF decomposition f = uλ + vλ. It consists of
two parts: The first yields that if the parameter λ is chosen too small (or the image f is “too smooth” for
that parameter), then in the optimal ROF decomposition, uλ = 0 and f remains entirely in the residual
vλ. Intuitively, this follows from ‖f‖22 being a fixed number, so if it is weighted negligibly small in Ef,λ,
any change in u is penalised stronger by ‖u‖BV than the improvement in ‖f − u‖22 could be.

The second part in my interpretation is a statement on the distribution of information in the ROF
decomposition: If ‖·‖∗ is considered to be a measure for texture size [16] [23], and the minimisation of
(ROF) is seen as the separation of the “essential features” of an image f from its texture, then the
theorem states that the ROF model resolves all information “down to scale 1/2λ”. That “resolved part”
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3 The Rudin-Osher-Fatemi model

ends up in uλ, whereas the “texture below this scale” remains in the residual vλ. Thus, the theorem is
also a result that quantifies the influence of the parameter λ on the decomposition.

Note that the original version from Meyer is stated without requiring that the mean of f is 0 because
the entire R

n is taken as domain Ω. But in preparation of the numerics in Chapter 5, I want to give and
proof the following modification of Meyer’s theorem for bounded domains Ω:

Theorem 3.4. Let n ∈ N, Ω ⊂ R
n be an open and bounded set, f ∈ L2(Ω) with

∫

Ω
f(x)dx = 0 and

f = uλ + vλ the optimal ROF decomposition for λ > 0, i.e. [uλ, vλ] = arg min
u+v=f

J(f, λ). Then it holds:

a) If ‖f‖∗ ≤ 1
2λ , then [uλ, vλ] = [0, f ] (almost everywhere). Roughly speaking, this means that the entire

image f is treated by the ROF model as texture.
b) Otherwise if ‖f‖∗ > 1

2λ , then the optimal decomposition f = uλ+vλ is characterised by the following
two conditions:

‖vλ‖∗ =
1

2λ
and 〈uλ, vλ〉 =

∫

Ω

uλ(x)vλ(x)dx =
1

2λ
‖uλ‖BV .

Proof. The proof for this theorem is an extension of the proof given in [16, pages 32-34].

a) For uλ, no (almost everywhere) constant function other than 0 needs to be considered because by
Lemma 3.2 it is

∫

Ω
uλ(x)dx =

∫

Ω
f(x)dx = 0; and a non-zero constant function has non-zero mean,

contrary to the setting of the theorem.
Since uλ = arg min

u∈BV (Ω)

Ef,λ(u), the problem (ROF) yields uλ = 0 if and only if for any function

h ∈ BV (Ω) with ‖h‖BV 6= 0 it holds

Ef,λ(0) ≤ Ef,λ(h)

⇔ λ ‖f‖
2
2 ≤ ‖h‖BV + λ ‖f − h‖

2
2

⇔ λ ‖f‖
2
2 ≤ ‖h‖BV + λ ‖f‖

2
2 + λ ‖h‖

2
2 − 2λ〈h, f〉

⇔ 〈h, f〉 ≤
1

2λ
‖h‖BV +

1

2
‖h‖

2
2

⇔
〈h, f〉

‖h‖BV

≤
1

2λ
+

1

2

‖h‖
2
2

‖h‖BV

.

Now replacing h by εh for ε > 0 and letting ε→ 0 yields:

〈εh, f〉

‖εh‖BV

≤
1

2λ
+

1

2

‖εh‖
2
2

‖εh‖BV

⇔
|ε|〈h, f〉

|ε| ‖h‖BV

≤
1

2λ
+

1

2

|ε|2 ‖h‖
2
2

|ε| ‖h‖BV

⇔
〈h, f〉

‖h‖BV

≤
1

2λ
+
|ε|

2

‖h‖
2
2

‖h‖BV

ε→0
−−−→

1

2λ
.

But with (3.4), it is

‖f‖∗ = sup
h∈BV (Ω)
‖h‖BV 6=0

〈h, f〉

‖u‖BV

≤
1

2λ
.

Hence, if ‖f‖∗ ≤ 1
2λ , then uλ = 0 almost everywhere and statement a) follows.
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b) Now be ‖f‖∗ > 1
2λ . Since [uλ, vλ] = arg min

u+v=f

J(f, λ) minimises (ROF) and ‖·‖BV is convex, it holds

for any h ∈ BV (Ω) and ε ∈ R that

‖uλ‖BV + λ ‖vλ‖
2
2 ≤ ‖uλ + εh‖BV + λ ‖vλ − εh‖

2
2 (3.6)

≤ ‖uλ‖BV + ‖εh‖BV + λ ‖vλ − εh‖
2
2 .

⇒ λ ‖vλ‖
2
2 ≤ ‖εh‖BV + λ ‖vλ − εh‖

2
2 .

When assuming ε > 0 and ‖h‖BV 6= 0, the same calculations as in the prove of a) yield:

λ ‖vλ‖
2
2 ≤ ‖εh‖BV + λ ‖vλ − εh‖

2
2

⇔
〈h, vλ〉

‖h‖BV

≤
1

2λ
+
ε

2

‖h‖
2
2

‖h‖BV

ε→0
−−−→

1

2λ
.

And again with (3.4), it is

‖vλ‖∗ = sup
h∈BV (Ω)
‖h‖BV 6=0

〈h, vλ〉

‖h‖BV

≤
1

2λ
. (3.7)

Next, taking h = uλ in eq. (3.6) and limiting ε ∈ (−1, 1) gives:

‖uλ‖BV + λ ‖vλ‖
2
2 ≤ (1 + ε) ‖uλ‖BV + λ ‖vλ − εuλ‖

2
2

= ‖uλ‖BV + ε ‖uλ‖BV + λ ‖vλ‖
2
2 + ε2 ‖uλ‖

2
2 − 2λ ε〈uλ, vλ〉

⇔ 2λ ε〈uλ, vλ〉 ≤ ε ‖uλ‖BV + ε2 ‖uλ‖
2
2

This inequality holds for arbitrary ε ∈ (−1, 1); thus for ε ց 0 (i.e. ε > 0) it yields
2λ 〈uλ, vλ〉 ≤ ‖uλ‖BV , and for εր 0 (i.e. ε < 0) it yields 2λ〈uλ, vλ〉 ≥ ‖uλ‖BV . Together:

〈uλ, vλ〉 =
1

2λ
‖uλ‖BV .

So the second statement of (b) is proven. At last, by (3.5) it holds

1

2λ
‖uλ‖BV = 〈uλ, vλ〉 ≤ ‖uλ‖BV ‖vλ‖∗ (3.8)

which yields ‖vλ‖∗ ≥ 1
2λ since ‖uλ‖BV 6= 0. The latter must hold because uλ = 0 would result in

case a) and other constant functions are excluded by Lemma 3.2. Now, (3.8) together with (3.7)
finally gives ‖vλ‖∗ = 1

2λ which completes the proof.

Remark. For arbitrary f ∈ L2(Ω) (with possibly non-zero mean), Lemma 3.3 gives a formal way to apply
this theorem. Then,

∥
∥f − f̄1

∥
∥
∗

is evaluated, [uλ, vλ] = [f̄1, f − f̄1] is obtained in case a), and in case b)
the last equality holds for uλ − f̄1 instead of uλ.

Note that Theorem 3.4 implies that the inequality (3.5) becomes an equality when the pair [u, v] is
the minimising ROF decomposition f = u + v. This gave rise to Meyer’s proposal of a modification of
the ROF model in which the residual vλ is evaluated by ‖vλ‖∗ instead of ‖vλ‖22 [cf. 16]. To this approach
also discrete algorithms were developed, e.g. in [23].
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3 The Rudin-Osher-Fatemi model

3.3 The Euler-Lagrange equation of the ROF functional

To obtain the solution uλ of (ROF), the convex functional Ef,λ needs to be minimised. From calculus
of variation it is known that – under some assumptions – the associated Euler-Lagrange equation is a
necessary condition for a function u to be a minimiser of that functional. For convex functionals with a
unique minimiser such as Ef,λ, satisfying that equation is furthermore sufficient [cf. 19, page 47]. Thus,
a possible approach to compute the (ROF) minimiser arises from trying to find a solution of the Euler-
Lagrange equation. This idea is widely used to tackle (ROF) – amongst others in the original paper [20]
and the one proposing the hierarchical decomposition [22] – and will also be the basis for the algorithms
used and discussed later in Chapter 5.

Following [19, pages 48-50], the Euler-Lagrange equation for a functional F : W 1,p(Ω) → R of the
form F(u) =

∫

Ω
L(x, u(x), Du(x))dx is generally given by

0
!
=
∂L

∂u
− div

((
∂L

∂ux1

, ...,
∂L

∂uxn

))

=
∂L

∂u
−

(
∂

∂x1

∂L

∂ux1

+ ...+
∂

∂xn

∂L

∂uxn

)

a.e. in Ω, (3.9)

augmented by a boundary condition on ∂Ω. The requirement u ∈ W 1,p(Ω) demands that its weak
gradient Du = (ux1

, ..., uxn
) exists and is Lp-integrable. This is clearly a limitation and will not be

met in general. However, Lemma 2.12 a) at least ensures that uλ ∈ BV (Ω) can be approximated by an
Lp-convergent sequence of smooth functions, and hence when computing an approximation to uλ in a
discrete setting, it appears reasonable to make use of the equation nevertheless.

If u ∈ BV (Ω) is weakly differentiable, Lemma 2.6 states that the total variation of u is given by
‖u‖BV =

∫

Ω
|Du(x)|dx. Thus, the functional Ef,λ takes the form

Ef,λ(u) = ‖u‖BV + λ ‖f − u‖
2
2 =

∫

Ω

(√

ux1
(x)2 + ...+ uxn

(x)2 + λ(f(x)− u(x))2
)

dx. (3.10)

Plugging (3.10) into eq. (3.9) and rearranging the terms, finally gives the following Euler-Lagrange
equation for Ef,λ(u) (see also [4, page 284] or [22, page 565]):

0
!
= u(x)− f(x)−

1

2λ
div
(
Du(x)

|Du(x)|

)

∀x ∈ Ω. (3.11)

with the Neumann boundary condition

Du · n = 0 on ∂Ω. (3.12)

The latter imposes that the weak directional derivative of u along the normal n of the boundary ∂Ω
is zero, meaning that there is no flux inwards or outwards the domain Ω. For signals such as images, this
condition certainly makes sense. An alternative notation is ∂u

∂n

∣
∣
∂Ω

= 0.
Besides this requirement of uλ ∈ W 1,p(Ω), the Euler-Lagrange equation for the ROF model yields

another, possibly even greater issue: Du is only differentiable where Du(x) 6= 0. The ROF model,
however, tends to result in “staircasing”, i.e. a function uλ with large areas where Duλ = 0 [cf. 4, page
284]. Numerically, this difficulty can for instance be met by employing the regularisation

√

ε2 + |Du|2

instead of |Du| in the denominator [22]. I will give some more on that notion in Section 5.2.
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4
Extension of the ROF model to a hierarchical
(BV,L2) decomposition

4.1 Description of the hierarchical decomposition

So far, only the single ROF decomposition was discussed. In that, the information of an image which
can properly be described and represented in the BV space – particularly edges and large homogeneous
regions – are being separated from the rest, for instance from noise and texture. But according to the
authors of [22], many information and hence images themselves lie somewhere “between” the larger L2

space and its (smaller) subspace BV ; they are elements of so-called intermediate spaces.
From that fact arose the idea to not ultimately decompose an image into two fixed parts, but rather

seek a representation in which the various elements are contained in multiple different instances. In view
of this, Tadmor, Nezzar and Vese proposed a multiscale representation in 2004 [22]. In this, a given
image is hierarchically decomposed by iteratively solving (ROF). Quoting [22, page 556], by doing so,
the “intermediate regularity between L2 and BV ” can be captured and the “representation of an L2
image is not predetermined but is resolved in terms of layers of intermediate scales”.

In the following, I will introduce that image representation on the basis of [22]: The idea behind
the hierarchical decomposition is that information which at a given scale λ are interpreted by the ROF
model as “textures”, meaning which remained in the residual vλ, might be seen as “significant edges”
when viewed under a larger scale, for instance 2λ. Hence, every residual from the previous decomposition
f = uλ + vλ might partly consist of scale-dependent BV features that can be extracted at a refined next
step

vλ = u2λ + v2λ, [u2λ, v2λ] = arg min
u+v=vλ

J(vλ, 2λ). (4.1)

Now, a two-scale representation f = uλ + u2λ + v2λ is obtained where uλ and u2λ represent BV -
features at different scales, and textures below the scale 1/2λ remain unresolved in vλ. This concept of
course can be extended to an iterative procedure:

In a first step, for a given image f ∈ L2(Ω) a very coarse decomposition

f = u0 + v0, [u0, v0] = arg min
u+v=f

J(f, λ0) (4.2)

is computed in which the resultant minimiser u0 covers only the “most basic” features of f , while great
parts of the image will be interpreted as texture and thus end up in the residual v0. This is achieved by
choosing a “relatively small” parameter λ0 > 0. Next, with the refined scale λ1 := 2λ0 that residual is
again decomposed to

v0 = u1 + v1, [u1, v1] = arg min
u+v=v0

J(v0, λ1).

This approach is continued with the successive application of the refinement step (4.1): In every
iteration, the current residual is decomposed at a scale twice the size of the previous one – up to a final
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4 Extension of the ROF model to a hierarchical (BV,L2) decomposition

level m ∈ N. In conclusion, the entire procedure can be described by the initialisation (4.2) followed by

vℓ−1 = uℓ + vℓ, [uℓ, vℓ] = arg min
u+v=vℓ−1

J(vℓ−1, 2
ℓλ0) (4.3)

for ℓ = 1, ...,m. After m steps, this results in the following hierarchical decomposition:

f = u0 + v0

= u0 + u1 + v1

...

= u0 + u1 + ...+ um + vm.

Thus, the original image f is up to scale 1/2λm with λm := 2mλ0 approximated by the multiscale
representation of bounded variation

f ∼
m∑

ℓ=0

uℓ (4.4)

with residual vm, in which each uℓ captures certain information of f at the fixed scale λℓ := 2ℓλ0. Here, I
use the “∼ notation” of [22] and assume that the authors intend to describe precisely this “approximation
up to some scale” relation by it.

As m increases, more and more edges are resolved by um and the representation of f gets more
accurate: ‖vm‖22 decreases monotonously with ‖vm‖22 − ‖vm+1‖

2
2 = 1

λm+1
‖um+1‖BV + ‖um+1‖

2
2 ≥ 0 (see

the proof of Theorem 4.1). Of course, the refinement scale needs not be fixed to factor 2 but may be
chosen differently by using λℓ = sℓλ0 for any s > 1 – the greater s, the coarser the decomposition of f .

The authors of [22] state that the sum f ∼
∑m

ℓ=0 uℓ “provides a multilayered description of f” which
lies precisely in the “intermediate scale of spaces, in between BV and L2”, and that this multiscale
(BV,L2) expansion “is particularly suitable for image representations” [22, page 557] which after all
considerations in the previous sections, appears very reasonable to me.

In Section 3.1, I mentioned that the choice of λ in the standard ROF model needs to be made wisely
in order to obtain a proper decomposition f = u+ v. In case of the hierarchical (BV,L2) decomposition,
this problem is now mostly evaded as the information of f are contained in multiple layers of different
scales. The only greater concern regarding this matter is the question how to choose λ0 properly, even
though – except for a shift in the index ℓ – this choice influences the resultant representation of f only
slightly. That question of initialisation will be discussed in Section 4.3 where I propose a new method
inspired by [22].

4.2 Convergence of the hierarchical decomposition

Naturally, now the question arises how well (4.4) approximates the signal f , in particular whether the
sum converges to f and if so, by what rate this convergence can be quantified. In [22], Tadmor, Nezzar
and Vese provide mainly two results to these questions which I want to quote next including their proofs.

But before that, in my opinion the following thought [cf. 22, page 558] already gives an idea of what
one might expect: When comparing the energy Evℓ,λℓ+1

of the optimal decomposition vℓ = uℓ+1 + vℓ+1

of step ℓ – that is [uℓ+1, vℓ+1] = arg min
u+v=vℓ

J(vℓ, λℓ+1) – with the one of the trivial pair [0, vℓ], one finds

Evℓ,λℓ+1
(uℓ) ≤ Evℓ,λℓ+1

(0) ⇔ ‖uℓ+1‖BV + λℓ+1 ‖vℓ+1‖
2
2 ≤ λℓ+1 ‖vℓ‖

2
2

⇔
1

λℓ+1
‖uℓ+1‖BV ≤ ‖vℓ‖

2
2 − ‖vℓ+1‖

2
2 ,
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4 Extension of the ROF model to a hierarchical (BV,L2) decomposition

so when summing over all iterations and using f = u0 + v0, it holds

m∑

ℓ=0

1

λℓ
‖uℓ‖BV =

1

λ0
‖u0‖BV +

m−1∑

ℓ=0

1

λℓ+1
‖uℓ+1‖BV

≤ ‖f‖
2
2 − ‖v0‖

2
2 +

m−1∑

ℓ=0

(

‖vℓ‖
2
2 − ‖vl+1‖

2
2

)

= ‖f‖
2
2 − ‖vm‖

2
2

≤ ‖f‖
2
2 .

Thus, when weighting the total variation of each instance uℓ with its corresponding scale 1/λℓ and
summing them all up, this sum is bounded by the “L2-energy” of f for any m. The next theorem gives a
more precise “energy estimate” [22, page 558] as well as a statement on the convergence of the hierarchical
decomposition f ∼

∑

ℓ uℓ:

Theorem 4.1. [cf. 22, Theorem 2.1] Let n ∈ N, Ω ⊆ R
n be an open set and f ∈ L2(Ω). Then f admits

the hierarchical decomposition

f =
∞∑

ℓ=0

uℓ with the “(weak) convergence rate”
∥
∥
∥
∥
∥
f −

m∑

ℓ=0

uℓ

∥
∥
∥
∥
∥
∗

≤
1

2m+1λ0
. (4.5)

Furthermore, the following “energy” estimate holds:
∞∑

ℓ=0

(
1

λℓ
‖uℓ‖BV + ‖uℓ‖

2
2

)

≤ ‖f‖
2
2 , λℓ := 2ℓλ0. (4.6)

Proof. The proof follows [22] and is mainly based on Theorem 3.4, given by Meyer in 2001. Since in my
version it requires

∫

Ω
f(x)dx = 0, I will first proof the statement under this assumption: According to

that theorem, for the (ROF) decomposition f = uλ + vλ it holds: If ‖f‖∗ ≤ 1
2λ , then [uλ, vλ] = [0, f ];

otherwise,
‖vλ‖∗ =

1

2λ
and 〈uλ, vλ〉 =

1

2λ
‖uλ‖BV . (4.7)

For m ∈ N, [um, vm] is given by [um, vm] = arg min
u+v=vm−1

J(vm−1, λm), and Lemma 3.2 assures that vm−1 has

mean 0, so the theorem still holds. Now either:

• ‖vm−1‖∗ ≤
1

2λm
, so [um, vm] = [0, vm−1] and hence ‖vm‖∗ = ‖vm−1‖∗ ≤

1
2λm

,
• or if ‖vm−1‖∗ >

1
2λm

, then by (4.7) it holds ‖vm‖∗ = 1
2λm

.

Together: ∥
∥
∥
∥
∥
f −

m∑

ℓ=0

uℓ

∥
∥
∥
∥
∥
∗

= ‖vm‖∗ ≤
1

2λm
=

1

2m+1λ0
,

so (4.5) is shown. For the second statement, squaring the basic refinement step vℓ = uℓ+1 + vℓ+1 and
using (4.7) gives:

‖vℓ‖
2
2 = ‖uℓ+1 + vℓ+1‖

2
2

= ‖uℓ+1‖
2
2 + ‖vℓ+1‖

2
2 + 2〈uℓ+1, vℓ+1〉

= ‖uℓ+1‖
2
2 + ‖vℓ+1‖

2
2 +

1

λℓ+1
‖uℓ+1‖BV

which is equivalent to 1
λℓ+1
‖uℓ+1‖BV + ‖uℓ+1‖

2
2 = ‖vℓ‖

2
2 − ‖vℓ+1‖

2
2 for ℓ = 0, ...,m−1. In the first iteration

it analogously holds 1
λ0
‖u0‖BV + ‖u0‖

2
2 = ‖f‖

2
2 − ‖v0‖

2
2.
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Summing this up finally yields for all m ∈ N:
m∑

ℓ=0

(
1

λℓ
‖uℓ‖BV + ‖uℓ‖

2
2

)

= ‖f‖
2
2 − ‖v0‖

2
2 +

m∑

ℓ=1

(

‖vℓ−1‖
2
2 − ‖vℓ‖

2
2

)

= ‖f‖
2
2 − ‖vm‖

2
2 ≤ ‖f‖

2
2 (4.8)

Thus, also the energy estimate (4.6) is shown.
Now to the case that Ω is bounded and f̄ := 1

|Ω|

∫

Ω
f(x)dx 6= 0: Lemma 3.3 allows the application of

Theorem 3.4 and thus the above considerations for f̃ := f − f̄1. Since then u0 = ũ0 + f̄1, the statement
(4.5) still holds for f .

To check the validity of (4.6), further note that f̃ and ũ0 have mean 0, so 〈ũ0, 1〉 = 〈f̃ , 1〉 = 0. Thus,

‖f‖
2
2 =

∥
∥
∥f̃ + f̄1

∥
∥
∥

2

2
=
∥
∥
∥f̃
∥
∥
∥

2

2
+
∥
∥f̄1

∥
∥
2

2
+ 2f̄〈f̃ , 1〉
︸ ︷︷ ︸

=0

‖u0‖
2
2 =

∥
∥ũ0 + f̄1

∥
∥
2

2
= ‖ũ0‖

2
2 +

∥
∥f̄1

∥
∥
2

2
+ 2f̄〈ũ0, 1〉
︸ ︷︷ ︸

=0

Since also ‖u0‖BV = ‖ũ0‖BV +
∥
∥f̄1

∥
∥
BV

= ‖ũ0‖BV , (4.6) holds for arbitrary f ∈ BV (Ω) as well and
the prove is complete.

Note that the original statement of [22] uses

‖f‖W−1,∞ := sup
g∈W 1,1(Ω)
‖ |∇g| ‖

L1 6=0

∫

Ω
f(x)g(x)dx
‖ |∇g| ‖L1

instead of ‖f‖∗ = sup
g∈BV (Ω)
‖g‖BV 6=0

∫

Ω
f(x)g(x)dx
‖g‖BV

which – in a continuously differentiable setting – is identical by Theorem 2.4. Furthermore, the “con-
vergence rate” in (4.5) that I wrote as an inequality, is given as an equality there, which I do not agree
with in general: As can be seen from the proof, this would require vm 6= 0 for all m ∈ N which does not
necessarily hold (e.g. if f is constant, then the residual will always be 0).

Due to the authors of [22], (4.5) is limited to weak convergence. However, they give a second result
yielding strong convergence if f ∈ BV (Ω). At the same time, also the energy inequality (4.6) becomes
an equality because by eq. (4.8), this is the case precisely when ‖vm‖22 = ‖f −

∑m
ℓ=0 uℓ‖

2

2
→ 0 as m goes

to infinity – strong convergence in L2 is attained:

Theorem 4.2. [cf. 22, Theorem 2.2] Let n ∈ N, Ω ⊆ R
n be an open set and f ∈ BV (Ω). Then the

hierarchical (BV,L2) decomposition f =
∑∞

ℓ=0 uℓ converges strongly in L2, and the energy of f is given
by

∞∑

ℓ=0

(
1

λℓ
‖uℓ‖BV + ‖uℓ‖

2
2

)

= ‖f‖
2
2 , λℓ := 2ℓλ0. (4.9)

Proof. To proof the theorem, it must be shown that ‖vm‖22 → 0 or equivalently ‖v2m‖22 → 0 as m→∞.
This residual v2m can be written as v2m = vm −

∑2m
ℓ=m+1 uℓ, and multiplying it against v2m yields:

‖v2m‖
2
2 = 〈v2m, v2m〉 = −

〈

v2m,

2m∑

ℓ=m+1

uℓ

〉

︸ ︷︷ ︸

=:I

+ 〈v2m, vm〉
︸ ︷︷ ︸

=:II

≤ |I|+|II|.

Hence, when showing that |I| and |II| tend to zero as m → ∞, the proof is complete. From the
previous proof it is known that ‖v2m‖∗ ≤ 1/2λ2m, so for arbitrary h ∈ BV (Ω) it holds by (3.5) that
|〈v2m, h〉| ≤ ‖v2m‖∗ ‖h‖BV ≤

1
2λ2m

‖h‖BV . Now, for I follows:

|I| ≤
1

2λ2m

∥
∥
∥
∥
∥

2m∑

ℓ=m+1

uℓ

∥
∥
∥
∥
∥
BV

≤
1

2λ2m

2m∑

ℓ=m+1

‖uℓ‖BV ≤

2m∑

ℓ=m+1

1

2λℓ
‖uℓ‖BV

m→∞
−−−−→ 0
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as a Cauchy subsequence of the bounded series
∑∞

ℓ=0

(
1
λℓ
‖uℓ‖BV + ‖uℓ‖

2
2

)

≤ ‖f‖
2
2, given in (4.6).

For II, the requirement f ∈ BV (Ω) is now needed: Since f and all uℓ have bounded variation, this
is also true for the residual vm. Furthermore, the growth of ‖vm‖BV is limited by 2m; in particular:

‖vm‖BV =

∥
∥
∥
∥
∥
f −

m∑

ℓ=0

uℓ

∥
∥
∥
∥
∥
BV

≤ ‖f‖BV +
m∑

ℓ=0

‖uℓ‖BV ≤ ‖f‖BV + λm

m∑

ℓ=0

1

λℓ
‖uℓ‖BV ≤ ‖f‖BV + λm ‖f‖

2
2

Finally, with |〈v2m, vm〉| ≤ 1
2λ2m

‖vm‖BV (by the same argument as above), ‖f‖BV < ∞ and
‖f‖

2
2 <∞, it can be concluded that |II| vanishes:

|II| ≤
1

2λ2m
‖vm‖BV ≤

1

2λ2m

(

‖f‖BV + λm ‖f‖
2
2

)

=
1

22m+1λ0
‖f‖BV +

1

2m+1
‖f‖

2
2

m→∞
−−−−→ 0.

The authors of [22] even extend the statement of strong convergence and equality in the energy
estimate to functions from the intermediate space of L2 and BV , and conclude that other extensions in
the same manner were possible: “A minimal amount of smoothness beyond the L2 bound will guarantee
strong convergence” [22, page 559]. This guarantees that under very little assumptions on a given image
f , any information of it will at one point be resolved by the hierarchical decomposition and thus contained
in the resultant multiscale representation f ∼

∑

ℓ uℓ.
Finally, in [22] is stated that the decomposition of energy stated in (4.9) lies entirely within the BV

scales [cf. 22, page 560]. This limits the variation of the latest resolved BV features uℓ in each step ℓ

and stresses the relation between the energy of f and the character of its multiscale representation. The
statement requires strong convergence of the hierarchical decomposition, for instance by f ∈ BV (Ω), and
that

∫

Ω
f(x)dx = 0 – otherwise, of course it would apply to the mean value adjusted signal:

Lemma 4.3. Let m ∈ N, Ω ⊆ R
n be an open set, f ∈ L2(Ω) and

∫

Ω
f(x)dx = 0. If the energy of f

is given by ‖f‖22 =
∞∑

ℓ=0

(
1
λℓ
‖uℓ‖BV + ‖uℓ‖

2
2

)

as in (4.9), then it lies entirely in the BV scales with the

following boundaries:
∞∑

ℓ=0

1

λℓ
‖uℓ‖BV ≤ ‖f‖

2
2 ≤

5

2

∞∑

ℓ=0

1

λℓ
‖uℓ‖BV .

Proof. The first inequality holds by definition, so I will only address the second: Since uℓ = vℓ−1 − vℓ, it
follows

‖uℓ‖∗ ≤ ‖vℓ−1‖∗ + ‖vℓ‖∗ ≤
1

2λℓ−1
+

1

2λℓ
=

3

2λℓ
.

Furthermore, again by (3.5) it is ‖uℓ‖22 = |〈uℓ, uℓ〉| ≤ ‖uℓ‖BV ‖uℓ‖∗ and hence ‖uℓ‖22 ≤ 3
2λℓ
‖uℓ‖BV .

Together, the final result is obtained:

∞∑

ℓ=0

1

λℓ
‖uℓ‖BV ≤

∞∑

ℓ=0

(
1

λℓ
‖uℓ‖BV + ‖uℓ‖

2
2

)

︸ ︷︷ ︸

=‖f‖2
2

≤
5

2

∞∑

ℓ=0

1

λℓ
‖uℓ‖BV .

Note: In the original version of [22], the upper bound is given by 3
2

∑∞
ℓ=0

1
λℓ
‖uℓ‖BV . I do not follow

on that result, but the overall interpretation, however, remains the same in both cases.
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4.3 Initialisation of the hierarchical decomposition

At last, I will address the question how to choose the scale for the first step, namely λ0. As discussed in
Chapter 3, a “small” weighting parameter λ > 0 in (ROF) yields a decomposition in which relatively few
elements are extracted in uλ. And by Theorem 3.4 a) it is known that – besides a mean displacement –
uλ is empty if ‖f‖∗ ≤ 1/2λ, that is λ ≤ 1/2 ‖f‖∗.

The procedure (4.3) mainly aims at decomposing the signal f in a way that its major parts are
distributed to several different instances (with corresponding scale). Thus, λ0 should be chosen such that
in the first result u0 not many (or rather the least possible amount of) information are being captured
and every following uℓ significantly resolves new edges. On the other hand, if λ0 is chosen too small (way
below 1/2 ‖f‖∗), then the procedure will yield uℓ = 0 until the parameter λℓ = 2ℓλ0 exceeds 1/2 ‖f‖∗.

So, with scaling factor 2, the initial scale λ0 is sought such that

1

2λ0
≤ ‖f‖∗ ≤

1

λ0
.

In practice, it might be impossible to compute (or even properly estimate) ‖f‖∗. Therefore, the
authors of [22] propose a reverse refinement procedure which “aims to capture a hierarchical representation
of the missing larger scales.” However, I am convinced that their method of decomposing the residual v0
downwards, cannot work because ‖v0‖∗ = 1

2λ0
< 1

λ0
= 1

2λ−1
yields [0, v0] by Theorem 3.4 a) (for details

on their procedure, see [22, page 561]). Thus, inspired by their concept, I propose a different approach.
The idea is simple: If λ0 was chosen too large, then u0 contains too many information and should

be decomposed downwards (i.e. with a smaller scale λ−1 := 2−1λ0). To still obtain a representation
f ∼

∑

ℓ uℓ in the end, I will now change the notation: Let the first decomposition be f = û0 + v0.
Next, this “too large” û0 is decomposed downwards to û0 = û−1 + u0 where û−1 represents the smaller
(but possibly still too large) BV part and the residual u0 only contains the information between scale
1/2λ0 and 1/λ0. Continuing this decomposition iteratively, the entire reversed initialisation procedure is
described by

ûℓ = ûℓ−1 + uℓ, [ûℓ−1, uℓ] = arg min
û+u=ûℓ

J(ûℓ, 2
ℓ−1λ0) (4.10)

for ℓ = 0,−1, ...,−m0. For comparison: In the “forward procedure” J(vℓ−1, 2
ℓλ0) was used, so the

component at step ℓ is now evaluated with half the scaling factor. Also, now the texture containing
residual (measured by ‖·‖22) and not the BV part is kept, but since û0 ∈ BV (Ω), the “backward residuals”
uℓ are still of bounded variation.

As ℓ decreases and the scale λℓ = 2ℓλ0 is continuously reduced, the procedure always decomposes the
last (and thereby smallest) BV function ûℓ to an even “smoother” version ûℓ−1 and the sought residual
uℓ; until after m0 ∈ N steps, also the least oscillating part of f is exhausted by satisfying ‖f‖∗ ≤ 1/λ−m0

.
Then, û−m0−1 and everything thereafter would equal zero, so the backward procedure is complete.

Now, the following multiscale decomposition is obtained:

f = û0 + v0

= û−1 + u0 + v0

...

= u−m0 + u−m0+1 + ...+ u0 + v0,

After this, the “forward procedure” (4.3) can be applied, starting with v0 = u1 + v1 as usual. In the end,
the multiscale representation f ∼

∑m
ℓ=−m0

uℓ with residual vm is obtained.
A comparison of the concept of forward and backward procedure is sketched in Figure 4.1, as well as

the distribution of information in the final hierarchical decomposition. There, the various elements of f
are illustrated as oscillations of different frequencies. This corresponds to the interpretation of the ROF
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Forward procedure step:

f

v0

v1 · · ·
+

u1
+

u0 · · ·

Backward initialisation step:

f
û0

û−1 · · ·
+

u0

+

v0 · · ·

Final decomposition in combined procedure:

f

v0

vm−1

vm
+

um

.... .
.

u1

+

û0

û1−m0
u−m0

+
u1−m0

...
. . .

u0

Figure 4.1: Top: Schematic visualisation of the image components contained in the decomposition after
two steps in the forward vs. backward approach. Bottom: Distribution of components in the final
hierarchical decomposition. The differently oscillating lines represent the different elements of an image:
Noise and texture is associated with high oscillations, and the “most essential features” extracted at a
low scale with rather little oscillation.

model as separation between highly oscillating components such as noise and texture, and the “essential
features” characterised by small oscillations.

I finally want to note two aspects regarding this initialisation method: If the mean of f in Ω is not
zero, then it would be contained in the last (or rather first) instance of u, namely u−m0 . The initialising
“backward procedure” should be ended once u−m0

does not significantly consist of more information than
the mean of f , that is ‖u−m0‖BV ≈ 0. Furthermore, the results from Theorem 4.1, Theorem 4.2 and
Lemma 4.3 are only valid for the “forward procedure”. If the backward initialisation is used, these results
hold starting at ℓ = 0 and with û0 instead of u0. Nevertheless, this has no impact on the convergence
behaviour itself.

Visual results on the initialisation procedure are briefly discussed in Section 6.2, see especially Fig-
ure 6.9.
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5
Discretisation and implementation of the
models
In the previous chapters, I discussed mainly theoretical aspects of the ROF model and the multiscale
representation obtained by hierarchically decomposing a signal f . But in this thesis, I also want to take
a look at the application of both procedures to real images, and I will present some numerical results and
analyses later in Chapter 6.

In the next part, I will first give some details on the notation used for the further discrete consid-
erations and procedures, and describe the framework (particularly the grid) in detail (see Section 5.1).
Afterwards, I will present the used algorithms for the one-time ROF decomposition (Section 5.2), and
carry out their extension to the hierarchical case (Section 5.3).

5.1 Notation and Grids

In the following, I will only consider two-dimensional greyscale images of rectangular size, that is
f ∈ L2(Ω) where Ω = [a, b] × [c, d] ⊂ R

2 – usually Ω = [0, 1]2. The image f : Ω → [0, 1] is a real
function on Ω whose values range from 0 (black) to 1 (white). Of course, in practice the image f is only
known by a finite number of information in a discrete framework.

In this thesis, I use the discretisation model outlined in [17, Section 3.1]. More precisely, I assume
that the data (information on f) is given on a grid of pixels. If N1 and N2 denote the number of pixels
with respect to the first and second dimension, then the pixel length and thereby spatial distance between
two neighbouring grid points is everywhere given by h1 = (b− a)/N1 and h2 = (d− c)/N2, respectively.

I consider the used grid to be cell-centred, meaning the intensity given for a pixel actually represents
the one at the centre of that pixel. Thus, all grid points lie in those very pixel centres, so the x-coordinates
of the grid points x1, ..., xN1 are given by xi = a +

(
i− 1

2

)
h1 for i = 1, ..., N1 , and simultaneously

yj = c+
(
j − 1

2

)
h2 for j = 1, ..., N2. An illustration of the used grid is given in Figure 5.1.

In the following, let fi,j := f(xi, yj) and ui,j := u(xi, yj) denote the discrete information of f resp. u
given at the corresponding grid points. Furthermore, from now on the denominators f and u will represent
the original (and continuous) signals as well as their discrete models. Of course, mathematically both
objects are different, but their identification should not lead to misunderstandings here and is useful in
terms of readability and interpretation. I want to point out that even though in my programmes, the
images are stored in 2D-arrays (like matrices), in a mathematical sense, the discrete signals f and u

remain vectors of finite dimension N1 ·N2.
An approximation on the integral

∫

Ω
f(x)dx that is consistent with the cell-centred grid, is given by

∫

Ω

f(x)dx ≈ h1h2
∑

i,j

fi,j , hence ‖f‖
2
2 ≈ h1h2

∑

i,j

f2i,j and 〈f, g〉 ≈ h1h2
∑

i,j

fi,jgi,j .

Next, I will address the question of differentiation: Let the usual discrete forward, backward and
centred difference operators be denoted by D+, D− and D0, respectively. More precisely, the differences
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(1, 1) (2, 1)

(1, 2)

(1, N2)

(N1, 1)

(N1, N2)

a a+ h1 a+ 2h1 b− h1 b

x1 x2 xN1

c

c+ h2

c+ 2h2

d− h2

d

y1

y2

yN2

Figure 5.1: Illustration of the cell-centred grid used in this thesis for the domain Ω = [a, b] × [c, d], [cf.
17, Figure 3.2]

in x- and y-direction are defined as [cf. 22]

Dx
+ui,j :=

ui+1,j − ui,j
h1

Dx
−ui,j :=

ui,j − ui−1,j

h1
Dx

0ui,j :=
ui+1,j − ui−1,j

2h1

D
y
+ui,j :=

ui,j+1 − ui,j
h2

Dx
−ui,j :=

ui,j − ui,j−1

h2
Dx

0ui,j :=
ui,j+1 − ui,j−1

2h2
.

In general, the central difference D0 is often considered less suitable for approximating the actual first
derivative because – even though it uses information from both sides – it misses thin structures and does
not allow for oscillations of high frequencies [cf. 12, page 77] as it does not depend on ui,j .

When it comes to approximating the total variation of a signal u, one can find several approaches for
implementing this in the literature, see e.g. [12] and [8]. In this thesis, I will use the so-called isotropic
TV with the one-sided forward difference Dx

+ and D
y
+ following [4, Section 3.1]:

‖u‖BV ≈ h1h2
∑

i,j

√

(Dx
+ui,j)

2 + (Dy
+ui,j)

2. (5.1)

This is in accordance with Lemma 2.6, by which the total variation of a weakly differentiable function
u is given by ‖u‖BV =

∫

Ω
|Du(x)|dx. Furthermore, the TV discretisation (5.1) is consistent, meaning it

converges to the continuous TV as the resolution becomes infinitely fine (i.e. h1, h2 → 0) as stated in [4,
Proposition 3.1]. Hence, I will approximate the energy functional Ef,λ by:

Ef,λ(u) = ‖u‖BV + λ ‖f − u‖
2
2 ≈ h1h2

∑

i,j

√

(Dx
+ui,j)

2 + (Dy
+ui,j)

2 + λh1h2
∑

i,j

(fi,j − ui,j)
2. (5.2)

5.2 Implementation of the ROF model

Quoting [6, page 14], numerous numerical algorithms have been proposed to approximate the minimiser uλ
of (ROF), most of them fall into the three main approaches “direct optimisation”, “solving the associated
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Euler-Lagrange equation” and “using the dual variable”. Besides those, also many other algorithms were
developed [cf. 12, page 78]. In this thesis, however, I will limit the discussion to the concept of solving
the Euler-Lagrange equation associated with (ROF), as already the proposed algorithm of Rudin, Osher
and Fatemi [20] and the one used by Tadmor, Nezzar and Vese [22] aimed for.

Discrete realisation of the Euler-Lagrange equation
The approximation to the solution uλ of (ROF) is tackled by seeking a function u ∈ BV (Ω) that satisfies
the associated Euler-Lagrange equation (3.11) (see Section 3.3). A numerical issue in this equation is
faced whenever Du = 0, and especially since the occurrence of such “flat regions” is very likely [cf. 4, page
284], at first the singularity arising from the denominator in eq. (3.11) should be removed. Therefore,
instead of minimising the functional Ef,λ(u) =

∫

Ω

(
|Du(x)|+ λ(f(x)− u(x))2

)
dx (see eq. (3.10)), the

regularised energy functional

E
(ε)
f,λ(u) :=

∫

Ω

(√

ε2 + |Du(x)|2 + λ(f(x)− u(x))2
)

dx (5.3)

with ε2 > 0 is being minimised [cf. 22, Section 4.2]. Clearly, E(ε)f,λ approaches Ef,λ as ε→ 0 and dissolves
the singularity, but I should mention that in [6] it is stated that the use of an ε which is large enough
for effective regularisation will reduce the ability of the ROF model to preserve edges [cf. 6, page 15].
Nevertheless, this concept will be used here and the same computations as in Section 3.3 now yield the
regularised Euler-Lagrange equation

0
!
= u− f −

1

2λ
div
(

Du
√

ε2 + |Du|2

)

. (5.4)

Now, a discrete counterpart to this is needed, i.e. an equation which the discrete signals f and u must
satisfy in conformance with (5.4). In Section 5.1, I introduced notations for discretely approximating the
spatial differences Dx and Dy. Based on that, the following symmetrically balanced 2D discretisation
of div

(
Du

√

ε2+|Du|2

)

= ∂
∂x

(
ux

√

ε2+(ux)2+(uy)2

)

+ ∂
∂y

(
uy

√

ε2+(ux)2+(uy)2

)

is described in [22] (and similarly in
[20] and [12]):

∂

∂x

(

ux
√

ε2 + (ux)2 + (uy)2

)∣
∣
∣
∣
(xi,yj)

≈ Dx
−




Dx

+ui,j
√

ε2 + (Dx
+ui,j)

2 + (Dy
0ui,j)

2



 (5.5)

=
1

h1
Dx

−




ui+1,j − ui,j

√

ε2 + (Dx
+ui,j)

2 + (Dy
0ui,j)

2





=
1

h21




ui+1,j − ui,j

√

ε2 + (Dx
+ui,j)

2 + (Dy
0ui,j)

2
−

ui,j − ui−1,j
√

ε2 + (Dx
−ui,j)

2 + (Dy
0ui−1,j)2



 ,

and simultaneously for y:

∂

∂y

(

uy
√

ε2 + (ux)2 + (uy)2

)∣
∣
∣
∣
(xi,yj)

≈ Dy
−




D

y
+ui,j

√

ε2 + (Dx
0ui,j)

2 + (Dy
+ui,j)

2





=
1

h22




ui,j+1 − ui,j

√

ε2 + (Dx
0ui,j)

2 + (Dy
+ui,j)

2
−

ui,j − ui,j−1
√

ε2 + (Dx
0ui,j−1)2 + (Dy

−ui,j)
2



 .
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By introducing the following notation for the denominators

cEi,j :=
1

√

ε2 + (Dx
+ui,j)

2 + (Dy
0ui,j)

2
cWi,j :=

1
√

ε2 + (Dx
−ui,j)

2 + (Dy
0ui−1,j)2

cNi,j :=
1

√

ε2 + (Dx
0ui,j)

2 + (Dy
+ui,j)

2
cSi,j :=

1
√

ε2 + (Dx
0ui,j−1)2 + (Dy

−ui,j)
2
,

(5.6)

a discrete approximation of eq. (5.4) in (xi, yj) is given by

0
!
= ui,j−fi,j−

1

2λh21

(

cEi,j(ui+1,j−ui,j)−c
W
i,j(ui,j−ui−1,j)

)

−
1

2λh22

(

cNi,j(ui,j+1−ui,j)−c
S
i,j(ui,j−ui,j−1)

)

.

Rearranging this equation, multiplying by 2λh21h
2
2 and solving for ui,j , finally yields:

0
!
= ui,j

(

1 +
cEi,j + cWi,j

2λh21
+
cNi,j + cSi,j

2λh22

)

− fi,j −
cEi,jui+1,j + cWi,jui−1,j

2λh21
−
cNi,jui,j+1 + cSi,jui,j−1

2λh22

⇔ ui,j
!
=

2λh21h
2
2fi,j + h22(c

E
i,jui+1,j + cWi,jui−1,j) + h21(c

N
i,jui,j+1 + cSi,jui,j−1)

2λh21h
2
2 + h22(c

E
i,j + cWi,j) + h21(c

N
i,j + cSi,j)

. (5.7)

Note that the superscript of the constants stands for the corresponding cardinal direction and in-
dicates their position in the grid relative to (xi, yj). This, together with a depiction of the information
used for the computation of each constant, is illustrated in Figure 5.2.

(i, j) (i+ 1, j)

(i+ 1, j + 1)

(i+ 1, j − 1)

(i− 1, j)

(i− 1, j + 1)

(i− 1, j − 1)

(i, j + 1)

(i, j − 1)

cEi,jcWi,j

cNi,j

cSi,j

Figure 5.2: Schematic location of constants cEi,j , cWi,j , cNi,j and cSi,j in the grid relative to the bold pixel
(xi, yj). The blue and red lines illustrate which neighbouring grid points are used for the computation of
each constant in x and y direction, respectively.

As stated in (3.12), the Euler-Lagrange equation is augmented by Neumann boundary conditions, so
that there is no flux at the boundary going in- or outwards the system. Numerically, this is met by em-
ploying reflection boundary treatment to u [22, page 566], meaning: On each side of the grid, an additional
border line is added to that grid containing the same values as the neighbouring line, as illustrated in Fig-
ure 5.3. Specifically, the grid {x1, ..., xN1

} × {y1, ..., yN2
} is extended to {x0, ..., xN1+1} × {y0, ..., yN2+1}

where for i = 1, ..., N1 and j = 1, ..., N2:

u0,N2+1 = u1,N2 ui,N2+1 = ui,N2 uN1+1,N2+2 = uN1,N2

u0,j = u1,j uN1+1,j = uN1,j (5.8)
u0,0 = u1,1 ui,0 = ui,1 uN1+1,0 = uN1,1

– 28 –



5 Discretisation and implementation of the models

a b

x0 x1 xN1 xN1+1

c

d

y0

y1

yN2

yN2+1

Figure 5.3: Illustration of the reflection boundary treatment in the grid corresponding to Figure 5.1.

Alternative derivation of the discrete Euler-Lagrange equation
The above approach to derive eq. (5.7) by discretising the continuous Euler-Lagrange equation (5.4) has
a major disadvantage: The latter requires that uλ is weakly differentiable and even the divergence of its
(weak) gradient properly defined (cf. Section 3.3). But in fact, it is possible to arrive at eq. (5.7) without
this requirement or any limitations to the continuous setting, as I will show next.

The idea is as follows: Instead of first deriving the Euler-Lagrange equation associated with the
continuous functional E(ε)f,λ and afterwards discretising this equation, the functional itself is discretised
directly, so its minimisation then corresponds to a finite dimensional optimisation process. In the com-
ing considerations, I will assume the functional E(ε)f,λ of the regularised ROF problem to be discretised
analogously to eq. (5.2), that is

E
(ε)
f,λ(u) ≈ h1h2

∑

i,j

√

ε2 + (Dx
+ui,j)

2 + (Dy
+ui,j)

2 + λh1h2
∑

i,j

(fi,j − ui,j)
2. (5.9)

To illustrate the following manipulations more clearly in “matrix-vector form”, the vector u = (ui,j)

will be reshaped to u =
(

u1,1, ... , uN1,1
︸ ︷︷ ︸

ui,1

, u1,2, ... , uN1,2
︸ ︷︷ ︸

ui,2

, · · · , u1,N2
, ... , uN1,N2

︸ ︷︷ ︸
ui,N2

)T

∈ R
N1N2 and the same

way f to f ∈ R
N1N2 . Thus, grid points neighbouring in x-dimension are denoted directly below each

other, whereas neighbours in y-dimension are associated with distance N1. At first, I note that now
∑

i,j(fi,j − ui,j)
2 = (f− u)T I(f− u).

From now on, the first non-zero row and column will always denote the element corresponding to
the (i, j)-component. To describe Dx

+ui,j as a matrix-vector product in terms of u, I define the operator

Dx
i,j :=

1

h1

(
0, ... , 0, −1

︸︷︷︸

(i,j)th

, 1, 0, ... , 0
)
, so that Dx

i,ju = Dx
+ui,j =

ui+1,j − ui,j
h1

.
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Thus, it follows:

uT
(
Dx

i,j

)T
Dx

i,ju = uT 1

h21








0
. . .

1 −1
−1 1

0
. . .

0








︸ ︷︷ ︸

=:D2x
i,j

u =
1

h21
uT










0
...

0
−ui+1,j+ui,j

ui+1,j−ui,j

0
...

0










=
u2i+1,j − 2ui+1,jui,j + u2i,j

h21

and hence
(
Dx

+ui,j
)2

=
(
Dx

i,ju
)2

= uTD2x
i,j u.

Similarly, Dy
i,j is defined where Dy

i,ju = D
y
+ui,j =

ui,j+1−ui,j

h2
and

(
D

y
+ui,j

)2
=
(
D

y
i,ju
)2

= uTD
2y
i,j u.

With this notation, (5.9) takes the form

E
(ε)
f,λ (u) ≈ h1h2

∑

i,j

√

ε2 + uTD2x
i,j u + uTD

2y
i,j u + λh1h2(f− u)T I(f− u). (5.10)

Since E(ε)f,λ is continuously differentiable in u, the necessary condition for optimality (see e.g [18,
Theorem 2.2]), that is for u to possibly be a minimiser, is given by ∇E(ε)f,λ (u)

!
= 0. Thus, the differentiation

of each component of (5.10) with respect to u is sought:
Therefore, at first it is ∇(f−u)T I(f−u) = 2(u− f), and since D2x

i,j and D2y
i,j are both symmetric, also

∇uTD2x
i,j u = 2D2x

i,j u resp. ∇uTD
2y
i,j u = 2D2y

i,j u. Hence, for one entire “square root term” it holds:

∇
√

ε2 + uTD2x
i,j u + uTD

2y
i,j u =

D2x
i,j u +D

2y
i,j u

√

ε2 + uTD2x
i,j u + uTD

2y
i,j u

.

But this yields (for simplicity I will only discuss the x-dimension):

∑

i,j

D2x
i,j u

√

ε2 + uTD2x
i,j u + uTD

2y
i,j u

=
∑

i,j

1

h21

1
√

ε2 + uTD2x
i,j u + uTD

2y
i,j u










0
...

0
−ui+1,j+ui,j

ui+1,j−ui,j

0
...

0










=
1

h21








...
ui,j−ui−1,j

√

ε2+uTD2x
i−1,j u+uTD

2y
i−1,j u

−
ui+1,j−ui,j

√

ε2+uTD2x
i,j

u+uTD
2y
i,j

u
...








= −
1

h1








...

Dx
−

ui+1,j−ui,j
√

ε2+uTD2x
i,j

u+uTD
2y
i,j

u
...








= −









...

Dx
−

Dx
+ui,j

√

ε2+(Dx
+ui,j)2+(Dy

+ui,j)2

...









Except forDy
+ instead ofDy

0 – this last expression completely equals (5.5) which was the discretisation
of the “x-dimensional divergence part” of the continuous Euler-Lagrange equation.
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Altogether, one finally obtains that the necessary condition ∇E(ε)f,λ (u)
!
= 0 is equivalent to:

0
!
= ui,j − fi,j −

1

2λ



Dx
−

Dx
+ui,j

√

ε2 + (Dx
+ui,j)

2 + (Dy
+ui,j)

2
+D

y
−

D
y
+ui,j

√

ε2 + (Dx
+ui,j)

2 + (Dy
+ui,j)

2



 ∀i, j ,

and with the same manipulations as above, one arrives precisely at eq. (5.7) – with the only difference
that the central discrete differences Dx

0 and Dy
0 are replaced by the forward ones Dx

+ and Dy
+, respectively.

In view of Figure 5.2, this means the constants cEi,j and cNi,j coincide into a “Northeastern one”, cWi,j
moves to the “Northwest” and cSi,j to the “Southeast”, so the scheme loses the symmetry of eq. (5.7).
Hence, in the further considerations and my code, I continue with the latter.

In conclusion, the results of this section show that the “Euler-Lagrange-based” approach that lead to
eq. (5.7), is actually also a proper strategy to deal with (ROF) when solely imposing that the functional
to be minimised is discretely approximated by eq. (5.9). Assumptions on the differentiability of u up to
second order as required for the continuous Euler-Lagrange equation in (5.4), however, are not necessary.

An iterative method to approximate the ROF minimiser
In this thesis, I use a Gauss-Seidel fixed point iterative method to approximate a solution of eq. (5.4),
as also done in [22]. In general, this fixed point procedure is known to properly work and converge
to a solution only for linear systems [21]. Since eq. (5.4) is non-linear in the first place because of its
denominator, it is “linearised by lagging the diffusion coefficient” [6, page 14]: In every step,

√

ε2 + |Du|2

is a priori estimated – based on the previous information. Specifically, in the iteration over n ∈ N0, the
(n+ 1)-th iterate is obtained by solving the linear equation

0 = u(n+1) − f −
1

2λ
div
(

Du(n+1)

√

ε2 + |Du(n)|2

)

.

In the discrete setting of eq. (5.7), this “lagging of the diffusion coefficient” corresponds to computing
the constants cEi,j , cWi,j , cNi,j , cSi,j before the (n+ 1)-th iteration based on the information of step n, namely
u
(n)
i,j , u(n)i−1,j and u

(n)
i,j−1 as well as their neighbouring points for the discrete differences. Then, eq. (5.7)

is a linear system since (despite its notation as 2D-array) u is a vector of size N1 ·N2, and fi,j and the
ci,j ’s are given numbers for i = 1, ..., N1 and j = 1, ..., N2.

Gauss-Seidel methods generally aim at solving a quadratic system of linear equations, say Au−b = 0

where u is the unknown. When decomposing the linear operator A = D + L + U into its diagonal
components D, the lower triangular part L and the upper triangular part U , it should hold (D + L)u =

b − Uu. Furthermore should be assumed that D is invertible, i.e. no diagonal component of A is zero.
Now, the idea of Gauss-Seidel iterative methods is to approximate a solution of Au− b = 0 by iteratively
updating u as result of the equivalent equation u = (D + L)−1(b − Uu). That is, when initialising with
u(0) and iterating over n ∈ N0, in particular: u(n+1) = (D + L)−1

(
b− Uu(n)

)
. For more on iterative

methods, see e.g. [21, Chapter 4].
This concept can now directly be projected to solving the linear system of eq. (5.7). There, the

denominator represents the (positive, thus non-zero) diagonal components of A, b is given by 2λh21h
2
2f

and the rest corresponds to diagonals of a sparse linear operator, i.e. to components of L and U . Hence,
by setting ui,j and the already computed elements ui−1,j and ui,j−1 to u(n+1)

i,j , u(n+1)
i−1,j resp. u(n+1)

i,j−1 , and
fixing ui+1,j and ui,j+1 at time step n, the iterative procedure given by

u
(n+1)
i,j =

2λh21h
2
2fi,j + h22(c

E
i,ju

(n)
i+1,j + cWi,ju

(n+1)
i−1,j ) + h21(c

N
i,ju

(n)
i,j+1 + cSi,ju

(n+1)
i,j−1 )

2λh21h
2
2 + h22(c

E
i,j + cWi,j) + h21(c

N
i,j + cSi,j)

(5.11)

is a Gauss-Seidel method for approximately solving eq. (5.7). Since this procedure uses the most recent
information on u, it requires to compute each u(n) element by element, iterating over i = 1, ..., N1 and
j = 1, ..., N2.
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In conformance with the reflection boundary condition, after every step n the additional border lines
are filled with the values from the neighbouring grid points as described in (5.8). The procedure ends
either after a given maximum number of iterations nmax, or as in [22], when no significant update is
obtained any more, meaning that for a preassigned tolerance τstop it holds:

∥
∥
∥u(n) − u(n−1)

∥
∥
∥

2

2
≤ τstop. (5.12)

Instead of considering the actual change in u(n), one could also measure the latest improvement in
terms of the objective function Ef,λ, so a second possible stopping criterion would be

Ef,λ

(

u(n−1)
)

− Ef,λ

(

u(n)
)

≤ τstop (5.13)

An alternative approach arises from Theorem 3.4: According to that, the minimising pair [uλ, vλ]

satisfies 〈uλ, vλ〉 = ‖uλ‖BV /2λ. So to test if a resultant u(n) is rather close to the solution uλ, it can be
checked whether this equation is approximately met. Hence, once |〈uλ, vλ〉 − ‖uλ‖BV /2λ| ≤ τstop, the
iteration will be terminated. In the discrete setting, this computation can be tackled by:
∣
∣
∣
∣
〈u, f − u〉 −

1

2λ
‖u‖BV

∣
∣
∣
∣
≈

∣
∣
∣
∣
∣
∣

h1h2
∑

i,j

ui,j(fi,j − ui,j)−
1

2λ
h1h2

∑

i,j

√

(Dx
+u)

2
i,j + (Dy

+u)
2
i,j

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

h1h2
∑

i,j

(

ui,j(fi,j − ui,j)−
1

2λ

√

(Dx
+u)

2
i,j + (Dy

+u)
2
i,j

)
∣
∣
∣
∣
∣
∣

?
≤ τstop (5.14)

In Section 6.1, I will present some observations made with these three quantities, see especially
Figure 6.3. In either case, let nstop denote the final iteration step at which the stopping criterion is met,
so the iteration runs for n = 0, ..., nstop. Then u(nstop) represents an accurate approximation of (5.4)’s
“fixed point steady solution” uλ on the grid, i.e. u(nstop)

i,j ≈ uλ(xi, yj) [cf. 22, page 567].
Finally, I briefly want to address the question how to initialise the procedure, i.e. how u(0) is chosen.

Lemma 3.2 yields that for the minimiser uλ it must hold
∫

Ω
uλ =

∫

Ω
f . Transferred to a discrete scenario

and due to the reflection boundary treatment, u(0) should satisfy h1h2
∑

i,j

u
(0)
i,j = h1h2

∑

i,j

fi,j .

The usual strategy that was e.g. also used in [22], is to set u
(0)
i,j := fi,j . This leads to a re-

sultant u(nstop) that is normally rather close to the original signal (especially in case of slow conver-
gence). However, it seems desirable to me to choose the starting values in a way that the initial de-
composition

[
u(0), f − u(0)

]
is a priori at least not worse than the trivial decomposition [0, f ], meaning

Ef,λ(u
(0))) =

∥
∥u(0)

∥
∥
BV

+ λ
∥
∥f − u(0)

∥
∥
2

2
6> λ ‖f‖

2
2 = Ef,λ(0). But for rather “small” λ this may very well

happen when choosing u(0) := f . This brought me to the idea of using the “optimal combination” of f
and f̄ := 1

N1N2

∑

i,j

fi,j , meaning: α ∈ [0, 1] is chosen such that the objective function Ef,λ(u(0)) is minimal

for u(0) = αf + (1− α)f̄ . Analytically:

Ef,λ(αf + (1− α)f̄) =
∥
∥αf + (1− α)f̄

∥
∥
BV

+ λ
∥
∥f − αf − (1− α)f̄

∥
∥
2

2
= α ‖f‖BV + λ(1− α)2

∥
∥f − f̄

∥
∥
2

2

which is a convex parabola attaining its minimum when

0 = ‖f‖BV − 2λ(1− α)
∥
∥f − f̄

∥
∥
2

2
⇔ α = 1−

‖f‖BV

2λ
∥
∥f − f̄

∥
∥
2

2

.

Thus, in addition to the choice u(0) := f , I propose using u(0) := αf + (1− α)f̄ where

α := max
{

1−
‖f‖BV

2λ
∥
∥f − f̄

∥
∥
2

2

, 0

}

∈ [0, 1]. (5.15)
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Algorithm 1 Gauss-Seidel iterative method to approximate the (ROF) minimiser
Given:

(
fi,j
)

where i = 1, ..., N1, j = 1, ..., N2 and λ > 0

Choose:
(
u
(0)
i,j

)
, ε2 > 0, τstop > 0 and nmax ∈ N ⊲ e.g. u(0)i,j ← fi,j ∀i, j

nstop ← nmax

Built additional border lines in u(0) for reflection boundary treatment as described in (5.8)
for n← 0 to nmax do

for i← 1 to N1 do
for j ← 1 to N2 do

Compute constants cEi,j , cWi,j , cNi,j , cSi,j based on u(n) as described in (5.6)
Compute u(n+1)

i,j as described in (5.11)
end for

end for
Update additional border line in u(n+1)as described in (5.8)
if
∥
∥u(n+1) − u(n)

∥
∥
2

2
≤ τstop then ⊲ Alternatively use (5.13) or (5.14)

nstop ← n+ 1

break
end if

end for
Return: u(nstop)

In case of small values for α, one may end up with a rather blurred, grey appearing result. The value of
α also gives an idea on the nature of the parameter λ or in particular how much of f is interpreted as
texture at that scale, as α already gives information about whether u is “better” if it is very smooth or
rather similar to f . In practice, however, the choice u(0) := f appeared to not only yield visually better
results but also a faster minimisation of Ef,λ. A reason for this could be that large areas with only few
variation lead to very small updates since the constants in (5.11) become dominant then. I will briefly
discuss results on both methods in Section 6.1, see especially Figure 6.2.

A precise description of the entire procedure that I used for the numerical experiments in this
thesis is given in Algorithm 1. But what about its properties of this fixed point iterative method for
the linearised Euler-Lagrange equation? The first follows from (5.11): There, every summand in the
numerator corresponds to one in the denominator, with the difference that it comes with always exactly
one component of f , u(n) or u(n+1). Hence, it holds everywhere and for n ∈ N that

u
(n)
i,j ≤ max

i,j
{fi,j , u

(0)
i,j } and u

(n)
i,j ≥ min

i,j
{fi,j , u

(0)
i,j }.

With the above discussed choices for u(0), this yields that if f is bounded by the constants m0 and
M0 in the sense m0 ≤ fi,j ≤M0 for all i, j, then also the estimate u is bounded by these constants in every
iteration n, i.e. m0 ≤ u

(n)
i,j ≤M0. Hence, the procedures lead at most to a “shrinking” or “smoothening”

of the original signal. This property is also in agreement with the maximum principle for the continuous
case, by which for the minimiser uλ of (ROF) it holds m0 ≤ uλ(x) ≤M0 if m0 ≤ f(x) ≤M0 for all x ∈ Ω

[cf. 16, page 36]. Furthermore, in [6, page 15] it is mentioned that these fixed point iterative methods
converge to the actual (ROF) minimiser, even though only with linear rate; but empirically already after
few iterations a result of “visual accuracy” is obtained. A more precise statement on their convergence
was first developed by Chan and Mulet in 1999 [7].

At last, I consider it worth noting that in the expectable case of quadratic pixels, that is h1 = h2 =: h,
the above computations simplify quite a bit: Then, eq. (5.11) can be reduced to the form [cf. 22, page
566]

u
(n+1)
i,j =

2λh2fi,j + cEi,ju
(n)
i+1,j + cWi,ju

(n+1)
i−1,j + cNi,ju

(n)
i,j+1 + cSi,ju

(n+1)
i,j−1

2λh2 + cEi,j + cWi,j + cNi,j + cSi,j
.
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Furthermore, when replacing ε2 by ε2h2 in the computation of the constants, then the division by h in
every discrete difference can be omitted and instead the entire fraction multiplied by h; this may speed
up the numerics noticeably.

5.3 Implementation of the hierarchical decomposition

After having a procedure to approximate the optimal ROF decomposition [uλ, vλ] = arg min
u+v=f

J(f, λ) for

a given signal f ∈ BV (Ω) and fixed parameter λ > 0, this is now used for computing the hierarchical
(BV,L2) decomposition of Chapter 4 which results in a multiscale image representation f =

∑m
ℓ=0 uℓ+vm,

or when using the “backward initialisation” of Section 4.3, in f =
∑m

ℓ=−m0
uℓ + vm.

Starting with the computation of a first, coarse decomposition f = u0 + v0 at scale λ0 > 0 fol-
lowing Algorithm 1 where u0 := u(nstop), the hierarchical decomposition of the “forward procedure”
[uℓ, vℓ] = arg min

u+v=vℓ−1

J(vℓ−1, 2
ℓλ0) is obtained by reiterating this process for ℓ = 1, ...,m in the manner [22]

{

fnew ← fold − u
(nstop)

λnew ← 2λold.

In every decomposition step ℓ, a new initial guess u(0)ℓ needs to be chosen. For this, the above strategies
input data and optimal combination can be used – in my numerical experiments, initialising with the
input data gave the best results.

On the question when the entire multiscale procedure should be ended, namely the determination
of m, are three options presented in [22]: The first is to directly pre-specify the number of scales m. In
view of Theorem 4.1, this corresponds to measuring the amount of ultimately remaining texture since
‖vm‖∗ = 1/2λm. An alternative is to measure the energy ‖um‖22 below a certain tolerance to ensure that
a significant update is obtained in every step (Note: In the original paper ‖um − um−1‖

2
2 is given [cf. 22,

page 567], but in my opinion that criterion makes little sense and should supposedly describe only the
update). Their last proposal regards the dissolving of texture: Once ‖vm−1‖

2
2−‖vm‖

2
2 becomes sufficiently

small, the iteration is ended. The entire “forward procedure” to obtain the multiscale representation of
f for given m and λ0 with scaling factor 2 is described in Algorithm 2.

Algorithm 2 Forward procedure to compute a hierarchical (BV,L2) decomposition
Given:

(
fi,j
)

where i = 1, ..., N1, j = 1, ..., N2 , m ∈ N and λ0 > 0

Choose: Initialisation and stopping strategy for each ROF decomposition
Approximate [u0, v0] = arg min

u+v=f

J(f, λ0) using Algorithm 1 where: u0 ← u(nstop) and v0 ← f − u0

for ℓ← 1 to m do
Approximate [uℓ, vℓ] = arg min

u+v=vℓ−1

J(vℓ−1, 2
ℓλ0) using Algorithm 1 where uℓ ← u(nstop) and

vℓ ← vℓ−1 − uℓ
⊲ Optional: Check stopping criteria

end for
Return: (u0, ..., um)

The last question that needs to be addressed is the initialisation of the hierarchical decomposition.
To distribute the information of f to several different instances, clearly λ0 > 0 should be chosen “rather
small”. In Section 4.3, however, I introduced an approach to initialise the hierarchical (BV,L2) decom-
position such that the information of possibly missing scales are captured in a “backward initialisation
procedure”: In this, the first BV result û0 is iteratively decomposed by [ûℓ−1, uℓ] = arg min

û+u=ûℓ

J(ûℓ, 2
ℓ−1λ0)
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until ‖û−m0‖BV ≈ 0. Afterwards, the “normal forward decomposition” is continued. A description of
this enhanced procedure is given in Algorithm 3. It is consistent with the schematic illustration of the
hierarchical decomposition sketched in Figure 4.1. Visual results on this procedure are briefly discussed
in Section 6.2, see especially Figure 6.9.

Algorithm 3 Forward procedure with backward initialisation to compute a hierarchical (BV,L2) de-
composition
Given:

(
fi,j
)

where i = 1, ..., N1, j = 1, ..., N2 , m, m0 ∈ N and λ0 > 0

Choose: τinit > 0, initialisation and stopping strategy for each ROF decomposition
Approximate [û0, v0] = arg min

û+v=f

J(f, λ0) using Algorithm 1 where û0 ← u(nstop) and v0 ← f − û0

for ℓ← 0 to −m0 + 1 do
Approximate [ûℓ−1, uℓ] = arg min

û+u=ûℓ

J(ûℓ, 2
ℓ−1λ0) using Algorithm 1 where ûℓ−1 ← u(nstop) and

uℓ ← ûℓ − ûℓ−1

if ‖ûℓ−1‖BV ≤ τinit then
m0 ← −ℓ+ 1

break
end if

end for
u−m0 = û−m0 ⊲ Last residual becomes u−m0

for ℓ← 1 to m do
Approximate [uℓ, vℓ] = arg min

u+v=vℓ−1

J(vℓ−1, 2
ℓλ0) using Algorithm 1 where uℓ ← u(nstop) and

vℓ ← vℓ−1 − uℓ
⊲ Optional: Check stopping criteria

end for
Return: (u−m0

, ..., u0, ..., um)
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6
Numerical results
In the last chapter of this thesis, I present some results from the numerical experiments I made: First
in Section 6.1, I will discuss some observations regarding the one-time ROF decomposition of an image
as described in Chapter 3. This includes the behaviour and iterative development of the fixed point
iterative method from Section 5.2, the influence of the choice of initial data u(0) and weighting parameter
λ, and the decomposition of some exemplary images. Afterwards in Section 6.2, I will discuss results on
the hierarchical (BV,L2) decomposition leading to a multiscale representation of images as described in
Chapter 4. There, I focus on the resolving of texture throughout the decomposition steps, and present a
visual analysis of the backward initialisation of Section 4.3.

For my numerical experiments, I implemented the methods described in Chapter 5 for approximating
the solution of (ROF) and computing a hierarchical decomposition. All code is written and executed in
MATLAB (Version R2020b) [15] and published on GitHub [13].

6.1 Results on the one-time ROF decomposition

If not mentioned otherwise, for the different computations I used the Gauss-Seidel scheme described in
Section 5.2, with initialisation u

(0)
i,j := fi,j and stopping tolerance τstop = 10−8 for stopping strategy

“update size” (5.12). All computations are done with regularising parameter ε2 = 10−6.
Figure 6.1 shows the process of the fjord picture’s ROF decomposition with the results u(n) and v(n)

obtained after n = 1, 15, 50 and 300 steps for two different values of λ. Furthermore, the development of
the target functional Ef,λ and its components ‖u‖22 and λ ‖v‖22 during these 300 iteration steps is plotted.
In order to have the programme run for 300 iterations, τstop was set to 10−11 here.

It can be seen that between all four iteration instances, some changes occur and the method does not
“arrive” precisely at the (ROF) minimiser after few iterations. However, despite some more information
being transferred to v, the visual difference between the results after 50 and 300 steps appears rather
small to me. Thus, the choice of a smaller tolerance τstop = 10−8 by which the procedures end after 63
resp. 30 iterations seems reasonable – also in view of the obtained progress in the target functional Ef,λ.

When comparing the final results for the different values of λ, the image f was much stronger
smoothened in case of the smaller λ than when decomposed at a larger scale. This meets the expectations
of Chapter 3 and especially Theorem 3.4. Furthermore, the result in the “stronger smoothening” case
λ = 1 · 103 obtained after 15 steps looks quite similar to the final one for λ = 4 · 103. This is numerically
interesting when considering to compute only very few steps and instead choosing a smaller value for λ
– at least when initialising with u

(0)
i,j := fi,j .

Next, I want to give an example in which the functional Ef,λ evaluated at the initial data u(0) is
smaller and thus the latter a priori a more “precise” starting value when choosing u(0)i,j := αf

(0)
i,j +(1−α)f̄

with “optimal parameter” α ∈ [0, 1] as in (5.15), instead of u(0)i,j := f
(0)
i,j (i.e. α = 1). This is the case for

instance for the fjord picture at λ = 2 · 102 where the “optimal parameter” is given by α ≈ 0.47. The
initialisation data and the approximated ROF decomposition after 50 steps is shown in Figure 6.2, as well
as the development of Ef,λ and its components.
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λ = 1 · 103 λ = 4 · 103

n = 1

u(n) v(n) + 0.5 u(n) v(n) + 0.5

n = 15

n = 50

n = 300

Performance f Performance

Figure 6.1: Approximation to the uλ and vλ components of the ROF decomposition obtained in the fixed
point iterative procedure after n = 1, 15, 50, 300 iterations for parameter λ = 1e3 and 4e3. At the bottom,
the development of the target functional Ef,λ and its components during the iteration is shown.
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α = 1

u(0) u(50) v(50) + 0.5 Performance

Ef,λ

(

u(50)
)

= 2.8003

α ≈ 0.47

Ef,λ

(

u(50)
)

= 3.5183

Figure 6.2: Approximation to the ROF decomposition for λ = 2e2 obtained after 50 steps when initialising
with u(0) := f (top) vs. the “optimal combination” suggested in Section 5.2 (bottom). To the right, the
development of the target functional Ef,λ and its components during the iteration is shown.

As the graphs show, in the beginning of the iteration, Ef,λ is smaller for the “optimal combination”.
This is due to the smaller total variation in u(0) and despite the residual v(0) being relatively large.
However, after a couple of iterations this turns as the total variation of u decreases rapidly in both cases,
whereas the size of the residual remains almost unchanged for α ≈ 0.47. Thus – at least in this example –
the fixed point iterative method performs well in smoothening the original image, but fails in recovering
parts of it from a “too smooth” initialisation data. Instead, the “greyish” character of the initialisation
data with α ≈ 0.47 remains even after 50 iterations almost unchanged.

So far, the behaviour of the used fixed point iterative method was only discussed in terms of the energy
functional Ef,λ. However, in Section 5.2 I mentioned that the accuracy of the computed approximation
could also be viewed under Theorem 3.4 by measuring (5.14). The development of the latter together
with the quantities “update size” (5.12) and “improvement in Ef,λ” (5.13) in the decomposition of the
fjord picture at λ = 103 is visualised in Figure 6.3, with logarithmic y-axes. Again, τstop = 10−11 here.

Update size (5.12) Improvement (5.13) Accuracy (5.14)

Figure 6.3: Development of the quantities “update size”, “improvement in Ef,λ” and “accuracy in terms
of Theorem 3.4” during the iteration. Under these, the convergence and performance of the procedure
can be evaluated. The computation is from the decomposition of the fjord picture at scale λ = 1e3.
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The graphs show, how – at least in this computation – the used Gauss-Seidel scheme does yield a
more and more accurate result with increasing number of iterations. In my opinion, especially the last
criterion gives a good impression on the behaviour of the procedure and that after at most 100 steps
the optimal result is almost obtained, as it directly corresponds to the question, how well the (ROF)
minimiser’s property of Theorem 3.4 is satisfied by its computed approximation.

Finally, I want to give a short notion on the applicability of the ROF model in general. In Figure 6.4, I
present the computed (ROF) decompositions of different example images at manually chosen scales λ > 0:
Since the minimisation of total variation is expected to remove highly oscillating components of a signal
(cf. Example 2.9), the ROF model is especially suitable for denoising images – the field it also originates
from [cf. 20]. Therefore, on the one hand, I show the decomposition of four noisy images. The resultant
u(nstop)s represent denoised versions of them, whereas the residual v(nstop) mainly consists of the removed
noise. The first two images are modifications of the fjord picture, to which I artificially added two different
levels of Gaussian noise, the third corresponds to an example from [5] and mainly serves as object of
comparison, and the last one is the noisy version of a square. It shows, how especially (almost) piecewise
constant images are reconstructed well by the ROF model.

On the other hand, I want to focus on the interpretation of the ROF model as separation of “essential
features” from texture. Therefor four images without artificial noise are decomposed at a relatively small
scale. The first one again is the fjord picture, the second corresponds to an example from [22] which
will be used more in Section 6.2, and the third is an x-ray image from the FAIR toolbox [17]. The
last example shows the decomposition of a simple square without noise. Here, there is no texture to be
extracted, instead it illustrates how the ROF model “moves” the edges of the square in a way that the
shape approaches a circle. This behaviour of “object shifting and minimisation” is not surprising since
the perimeter corresponds to the total variation ‖u‖BV (see e.g. [11, Theorem 5.9]), and – in case of the
square – is also obtained when analytically solving (ROF), as described for instance in [4, pages 292-293].

In my interpretation, the observations from Figure 6.4 show that the ROF model can give (at least
visually) very useful results in the contexts of image reconstruction and denoising, as well as for the
smoothening, simplification and texture extraction of images. But in some scenarios, it may also shift
the edges of objects, change their form or reduce their size.

6.2 Results on the hierarchical (BV,L2) image decomposition

Last but not least, I will present some results that are obtained when iteratively decomposing an image by
(ROF) as described in Chapter 4 and Section 5.3. The resultant multiscale representation is exemplarily
shown for three images: In Figure 6.5, the hierarchical decomposition of the fjord picture is given. It
illustrates, how more and more information are captured with each refinement step: Starting with the
coarse silhouettes of the scenery, until at last even the texture details of the trees in the bottom right
corner are resolved. The remaining residual after 10 steps, v9, on the other hand is nearly empty, so in
the end, the original image f is mainly reobtained.

In comparison to that, Figure 6.6 shows the hierarchical decomposition of a noisy version of the
fjord picture. The noise – associated with oscillations of smallest period [22] – is kept longest in v and
only starts reappearing in uℓ at higher scales when most texture is already contained in some previous
instance of u. The first results, on the other hand, are relatively similar to the non-noisy version since
the ROF model is effective especially in the reduction of noise. At ℓ = 5, the residual vℓ finally consists
mainly of noise, and after further iterations, the noisy image would be entirely recovered in u.

The third image is the main example from [22]. Its use is advantageous here: On the one hand to
easier compare the results, but also because it consists of much differently fine texture which is resolved
clearly visible step by step. In Figure 6.7, the different components of the image’s hierarchical (BV,L2)

decomposition at different levels of m are given with a simultaneous visualisation of the cumulative results
∑m

ℓ=0 uℓ, the sole new information um and the remaining residual vm.
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f

λ = 8 · 103 λ = 1 · 103 λ = 1 · 103 λ = 2 · 101

u(nstop)

v(nstop)

+0.5

f

λ = 1 · 103 λ = 2 · 103 λ = 5 · 102 λ = 2 · 100

u(nstop)

v(nstop)

+0.5

Figure 6.4: Approximated ROF decomposition of different images. The top four examples show the
reconstruction of noisy images, and the four at the bottom the extraction of texture from “clean” images.
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f u0
∑1

ℓ=0 uℓ

∑2
ℓ=0 uℓ

∑3
ℓ=0 uℓ

∑4
ℓ=0 uℓ

∑5
ℓ=0 uℓ

∑6
ℓ=0 uℓ

∑7
ℓ=0 uℓ

∑8
ℓ=0 uℓ

∑9
ℓ=0 uℓ v9

Figure 6.5: Hierarchical decomposition of the fjord picture for 10 steps with λ0 = 2e2. In each step, more
information are resolved and included in the resultant representation.

f u0
∑1

ℓ=0 uℓ

∑2
ℓ=0 uℓ

∑3
ℓ=0 uℓ

∑4
ℓ=0 uℓ

∑5
ℓ=0 uℓ v5

Figure 6.6: Hierarchical decomposition of a noisy version of the fjord picture for 6 steps with λ0 = 2e2.
At first, the noise is removed effectively and results resemble the ones of Figure 6.5, but after 4 steps
when most texture was already resolved, the noise starts reappearing.
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m
∑

ℓ=0

uℓ

m = 0 m = 1 m = 2 m = 3

um

(+0.5)

vm

+0.5

m
∑

ℓ=0

uℓ

m = 4 m = 5 m = 6 m = 7

um

(+0.5)

vm

+0.5

Figure 6.7: The different components (cumulative result, latest information, remaining residual) of the
hierarchical decomposition of the picture of a woman, λ0 = 2e2.
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f = f̃ + f̄
Component size at

τstop = 10−8

Component size at
τstop = 10−12

∞
∑

ℓ=0

(

1
λℓ

‖uℓ‖BV
+ ‖uℓ‖

2
2

)

Figure 6.8: Middle: Development of total variation and energy of uℓ and vℓ during the iteration of the
hierarchical decomposition of f̃ for different stopping tolerances, λ0 = 2e2. Right: Accuracy of the
resultant decomposition for both tolerances in terms of the energy distribution of Theorem 4.2.

It illustrates how the various “texture elements” of any vm are resolved bit by bit with every following
newly scaled iteration, so the residual shrinks with every step, whereas the cumulative result gets closer
and closer to the original image f . After eight iterations (at m = 7), the remaining residual is not
noticeable any more. Note especially the development of texture detail at the top of the image where the
different scales of the scarf’s and chair’s texture determine, at which step they are included in u.

In Section 4.2, I stated some properties on the convergence of
∑∞

ℓ=0 uℓ to f and the distribution of
energy in the decomposition, especially that for f ∈ BV (Ω) it holds

∑∞
ℓ=0

(
1
λℓ
‖uℓ‖BV + ‖uℓ‖

2
2

)

= ‖f‖
2
2

(4.9). It is expectable that in case of the numerical approximations on each minimiser uℓ, this equation
will not exactly hold – but the more accurate the approximations are (i.e. the smaller τstop), the smaller
the discrepancy will be. Precisely this behaviour could be observed in my experiments, and is exemplarily
illustrated in Figure 6.8 for the 128x128 pixel mean value adjusted image of the woman f̃ . The mean
value adjustment by which f̃ takes values in [−f̄ , 1− f̄ ], is done to reduce the size of ‖f‖22 and ‖u0‖22, so
the actual differences become more visible.

In fact, the less accurate the approximation, the more does the left hand side of eq. (4.9) exceed
∥
∥f̃
∥
∥
2

2
. The reason for this supposedly is the initialisation u(0)i,j := f

(0)
i,j in every step, yielding u(nstop)s with

rather too high variation. Thus, “too many information” for the current scale λℓ are contained in each
uℓ. The quantities shown in Figure 6.8 also make up the possible criteria to end the iteration mentioned
in Section 5.3: It was proposed to either measure ‖uℓ‖22 or ‖vℓ − 1‖

2
2 − ‖vℓ‖

2
2 below some preassigned

value. Visually, in Figure 6.7, vℓ appears “empty” after 10 steps, so afterwards no significant changes
should occur, and this corresponds to the rapid decrease of ‖uℓ‖BV , ‖uℓ‖22 and ‖vℓ‖22 after for ℓ ≥ 10.

Finally, I compare the plain forward decomposition of Algorithm 2 used so far with the results yielded
by the additional backward initialisation described in Section 4.3 and Algorithm 3. To do so, I decompose
the same image as before on the one hand five steps forward, starting at λ0 = 2 · 102 and finishing at
λ4 = 3.2 · 103, and on the other hand three times backward and once forward, starting at λ0 = 1.6 · 103,
thus scaling down until λ−3 = 2 · 102 and afterwards going up to λ1 = 3.2 · 103. By that, the image
is evaluated at the same scales in both cases, and should optimally result in very similar hierarchical
decompositions. The results are visualised in Figure 6.9 and show, how well my proposed initialisation
procedure for capturing possibly missing scales in this case works, as both procedures yield visually very
similar images at each corresponding scale.
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Plain forward decomposition Forward decomp. with backwards initialisation
u0 v0 û−3 = u−3 v−3

∑1
ℓ=0 uℓ v1 û−2 =

∑

−2
ℓ=−3 uℓ v−3

∑2
ℓ=0 uℓ v2 û−1 =

∑

−1
ℓ=−3 uℓ v−1

∑3
ℓ=0 uℓ v3 û0 =

∑0
ℓ=−3 uℓ v0

∑4
ℓ=0 uℓ v4

∑1
ℓ=−3 uℓ v1

Figure 6.9: Cumulative results and residuals of the hierarchical decomposition at the same scales, when
applying the procedure without (left) and with (right) backward initialisation. Here, λ0 = 2e2 resp.
λ0 = 1.6e3.
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7
Conclusion
In this thesis, I discussed why BV (Ω) is a proper space to represent “essential features” of an image
f ∈ L2(Ω), and how these may be extracted in an image decomposition f = uλ+vλ [20]. The discussions
in Chapters 2 and 3 and the results from Section 6.1 show that this ROF model on the one hand is
effective in removing noise and other spurious oscillations from images, since these are associated with a
high total variation as stated in [22] and described in Example 2.9. On the other hand, the minimisation
of total variation yields a relatively simplified and smoothened image in terms of Lemma 2.12 b) that
can be approximated by smooth functions (Lemma 2.12 a)). The values of uλ remain in the range of f
[16, page 36], and the ROF model does usually not “produce new discontinuities” [4, page 295].

However, most importantly in the context of this thesis is the following interpretation of the ROF
model: Roughly speaking, by minimising (ROF), the information of an image that can properly be
described and represented in the BV space – particularly edges and large homogeneous regions – are
being separated from the rest, for instance from noise and texture. To this notion, Theorem 3.4 [cf. 16]
gives an essential statement on the nature of the decomposition: It shows how the tuning parameter λ > 0

sets a cut in the ROF model’s distinction between “cartoonish parts” and “texture”. Image components
“down to scale” 1/2λ are captured in uλ, whereas the texture “below this scale” remains in the residual
vλ. Thus, the parameter λ determines which elements belong to which part of the decomposition, and
Theorem 3.4 even quantifies this behaviour in terms of the dual norm ‖·‖∗.

In the second part of the thesis, the hierarchical (BV,L2) decomposition of an image [22] was
discussed. It yields a multiscale image representation f ∼

∑m
ℓ=0 uℓ in which the various components of f

are captured in different instances: Starting with a very simplified, “cartoonish” version of the image, its
texture is resolved step by step, until the original image is finally reconstructed. In which instance uℓ each
component ends, is thereby determined by the corresponding scale λℓ = 2ℓλ0: According to the results
of Theorem 3.4, uℓ consists precisely of the elements of f which lie between scale 1/λℓ and 1/2λℓ. The
visual results from my experiments in Section 6.2 show, how this theoretical character of the hierarchical
decomposition resolving finer texture in each step, can also be observed in practice.

Quoting [22], the sum f ∼
∑m

ℓ=0 uℓ “provides a multilayered description of f” which lies precisely
in the “intermediate scale of spaces, in between BV and L2”, and this multiscale (BV,L2) expansion
“is particularly suitable for image representations”. Furthermore, as discussed in Theorem 4.1, the sum
converges weakly to the original image f ; if f is of bounded variation, even strong convergence is attained
(cf. Theorem 4.2). In fact, in my experiments already after few decomposition steps, the original images
were reconstructed (cf. Figure 6.5 and Figure 6.7). In addition, the effects characteristic for the ROF
model still apply to the hierarchical decomposition: Especially in the first instances, potential noise is
effectively removed from an image – as shown in Figure 6.6.

Since a proper choice of the initial parameter λ0 > 0 might be difficult, I proposed a backward
initialisation procedure in Section 4.3, inspired by [22]. It can be used to capture a hierarchical represen-
tation of the missing larger scales if λ0 was chosen “too large”, meaning that u0 is already a too detailed
description of f . At least in my experiments, this concept visually worked well: The decomposition with
backward initialisation yielded resultant images similar to the forward decomposition at corresponding
scale, see Figure 6.9.
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