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Zusammenfassung

Irreversible Schäden der Lungewie beispielsweise eine Lungenfibrose können
durch viele verschiedene Krankheiten ausgelöst werden und anhand der ver-
minderten Ventilation der Lunge festgestellt werden.Dabei liefern herkömm-
liche Methoden wie der Lungenfunktionstest keine Aussage über regionale
Veränderungen des Lungengewebes, weshalb medizinische Bildgebungsver-
fahren eine große Rolle in der Diagnose solcher Krankheiten spielen.
Im Rahmen dieser Masterarbeit wurde die Optimierung eines Bildregistrie-
rungsnetzwerkes zur Bestimmung von Referenzwerten der regionalen Venti-
lation anhand von Lungen-CT-Scans durchgeführt. Dabei dienten die Jacobi-
Determinanten des resultierenden Deformationsfeldes als Vorhersage für die
regionale Volumenänderung.
Ein Fehlermaß zur Bewertung der Bildregistrierung wurde eingeführt und
verschiedene Ansätzewurdenmiteinander verglichen.Es konnte gezeigtwer-
den dass die separate Registrierung des linken und rechten Lungenflügels, so-
wie die Verwendung vonmaskierten Bildern zu besseren Ergebnissen geführt
hat als die Registrierung der originalen CT-Scans. Der krümmungsbasier-
te Regularisierer mit einem zusätzlichen Volumenkontrollterm lieferte eine
Transformation,die der erwarteten Lungenbewegung amehesten entspricht.

Abstract

Irreversible damage of the lungs like for example a lung fibrosis can be trig-
gered by many different diseases and can be identified by a decrease in lung
ventilation. Conventionalmethods such as the pulmonary function test donot
provide information about regional changes in lung tissue,which is whymed-
ical imaging techniques play a major role in the diagnosis of such diseases.
Within the scope of this master thesis, the optimization of an image registra-
tionnetwork for the determinantion of reference values of regional ventilation
based on CT scans of the lungs was performed. Here, the Jacobian determi-
nants of the resulting deformation field served as a prediction for the regional
volume change.
I introducedanerrormeasure for evaluating image registrationandcompared
different approaches. It could be shown that the seperate registration of the
left and right lung, as well as the use of masked images, led to better results
than the registration of the original CT scans. The curvature regularizer with
an additional term for volume control provided the most reasonable transfor-
mation, which most closely matched the expected lungmotion.
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1
Introduction

In the past decade the digitalization ofmedical processes and the use of automated soft-
ware solutions especially in the field of diagnosis has becomemore andmore important.
Anearlydetectionofdisease canbe life saving for a lot ofpatients and therefore theperiod
of time inwhich the diagnosis is unknown should be as short as possible. For example the
use of neural networks inmedical image processing such as segmentation, object detec-
tion or classification results in a faster andmore precise identification of disorders while
physicians are relieved fromwork (Kermany et al., 2018).
Thiswork is part of a research project led byHoen-oh Shin from the institute of radiology
at Hannover Medical School. A problemwith diagnostic methods commonly used in the
pulmonary field such as PFT (pulmonary function testing) is that they only provide global
information regarding the ventilation of the lungs. To get more regional information of
the lungsmedical imaging techniques have to be considered. Additionally, abnormalities
in the deformation of the lungs are especially hard to spot since images are taken at a spe-
cific time and do not reflect movement. Therefore, the objective is to use lung CT scans
in total expiration and inspiration to determine reference values of regional ventilation
of the lungs.
This thesis introduces a mathematical approach to detect disruptions in the movement
of the lungswhich allows an early intervention to prevent irreversible damage of lung tis-
sue like for example fibrosis. Within the scope of this research project image registration
will be used to predict the deformation of the lungs during inspiration and expiration.
Finally, a deformation field will be calculated which provides information about the re-
gional volume change in every voxel.
The research question whether the mathematical approach of image registration can be
used for clinical diagnosis of lung diseases by predicting the regional volume change and
if this is faster than the conventional method will not be answered within the scope of
this thesis as this requires clinical studies.
Instead, I’m going to elaborate on the question, which image registration model is best
suited for imaging-based diagnosis in pulmonology and if the resulting Jacobian deter-
minants can be used as a reasonable surrogate for regional volume change.
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1 Introduction

1.1 Contribution and Structure of this Thesis

Themain focusof this thesis is theoptimizationof the image registrationof lungCTscans
whichwill be used to determine reference values for regional ventilation of the lungs. For
this purpose I will introduce an error measure to determine the quality of the different
approaches I’m going to test regarding the research goal. The different approaches are
going to be tested on a set of anonymized patient data.
The first chapter includes a short introduction to themedical background and themath-
ematical model of image registration. The theory behind the mathematical model, the
stated hypothesis and their motivation can be found in chapter 2. In chapter 3 a more
detailed description of the implemented registration network and the execution of the
experiments on patient data is provided. Finally, the results can be found in chapter 4,
the discussion of the results and a conclusion of this thesis in chapter 5.

1.2 Related Work

Theresearch question is based on a few clinical studies that examined the potential of CT-
baseddiagnosis inpneumology. In (Fuldet al., 2008) theauthors comparedCT-measured
regional volume change to regional ventilation of the lungs of anesthetized, intubated
andmechanically ventilated sheep. They could show that there is a strong correlation be-
tween the non-invasive CT-specific ventilation and the regional specific volume change.
Another study on patientswith idiopathic pulmonary fibrosis (Scharm et al., 2021) inves-
tigatedwhether regional ventilation obtained by non-linear image registration of virtual
non-contrast images in inspiration and expiration can serve as early imaging markers
for disease progression in patients with IPF. They could show that the regional ventila-
tion correlated with a future change of lung function.
The idea behind the research project that this thesis is part of comes fromHoen-oh Shin,
who participated in the study (Scharm et al., 2021). He had the idea of implementing an
automated work flow for CT scanners using image registration as a non-invasive diag-
nosis tool (Shin, 2021).
Regarding the image registration of pulmonary images in inspiration and expiration the
authors of (Ruhaak et al., 2017) introducedanalgorithmfor the registrationof pulmonary
CT scans. The alogrithmwas submitted to the EMPIRE10 challenge (Murphy et al., 2011),
which is themost comprehensive public comparison studyonpulmonary image registra-
tion world wide, where it ranked first, thereby improving the state of the art in accuracy
by 15% (Ruhaak et al., 2017).

1.3 Medical Background

This section presents a short introduction to the morphology and characteristics of the
lungs in order to explain the followingmedical problem adressed in this thesis.
The human lungs are separated into the right and left lung which is slightly smaller and
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1 Introduction

shaped differently because it shares space with the heart. Air gets inhaled through the
conducting zone,which includes all respiratory structures outside of the lungs for exam-
ple nose or trachea, and into the bronchi, bronchioles and finally alveoli where the gas
exchange takes place. The process of breathing is also called ventilation. A pleural sack
which contains two separate membranes (pleurae) with pleural fluid in between them
encases each lung. This allows the membranes to slide over each other smoothly while
breathing. The inner pleura also seperates both lungs into lobes, where the right lung
contains three and the left one two lobes.
There aremany respiratory diseases that lead to chronic damage of the lung parenchyma
such as emphysema or fibrosis. Emphysema describes large air-filled spaces that are
causedbybreakingdownof thewalls of alveoli and is amajor characteristic of chronic ob-
structive pulmonary disease (COPD). A fibrosis characterizes the scarring of lung tissue
over time and can also be a result of emphysema. Both include symptoms like cough-
ing, shortness of breath, chestpain or a feeling of thightness. In the field of diagnostics
there are only two common procedures besides a lung biopsy which pose different med-
ical challenges stated in the following paragraph.

Figure 1.1: Adiagramof the lungs showing the conductingzone,bronchi andbronchioles.
Lobes are displayed in different colors. (Patrick J. Lynch, 2006)

Medical challenges in diagnosing pulmonary diseases

There are two types ofmethods commonly used to diagnose pulmonary diseases asmen-
tioned previously. One of which is a pulmonary function test (PFT). For this non-invasive
procedure the patient has to rapidly exhale into a sensory device called spirometer for as
long as they can. This allows for detection of volume and speed of air that can be in- and
exhaled. However, this method doesn’t provide any information about regional ventila-
tion. In the case of emphysema and fibrosis which in an early state are only detectable on
a regional level, this information is essential for an early intervention. There is also some
controversy about the forcedexhalingofpatientswhich canaggravatemedical conditions
and therefore is not always applicable (Clark, 2010).
Computed tomography (CT) is particularly relevent because changes in the lung paren-
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1 Introduction

chyma are not detectable with two-dimensional X-rays. CT scans provide a high-
resolution three-dimensional image of the lungs which can be used for accurate evalua-
tion of lung function and morphology. Despite high precision and the possibility of re-
gional analysis of CT scans, patients are exposed to a relatively high amount of radiation.
While an X-ray of the chest exposes the patient to approximately 0.1 mSv (millisievert)
which is comparable with 10 days of natural background radiation, a CT scan of the chest
leads to an effective radiation dose of 6.1mSv. This equals a natural background exposure
of 2 years (North America (RSNA) and Radiology (ACR), 2021). Therefore, the number of
performed scans should be as low as possible to prevent cell damage which can lead to
cancer. This limitation complicates the capturing of movement and deformation of the
lungswhile breathing. Typically, CT scans are performed on total inspiration and expira-
tion. Additionally, the analysis of the imageshas to bedone individually for every patient.
This thesis presents an automated network to process lung CT scans, simulate the defor-
mation of the lungs using image registration and compute a deformationfieldwhichwill
be used to calculate reference values for the regional ventilation. This will reduce expert
workload and allows a faster diagnosis of lung diseases.

Figure 1.2: Left: Coronal CT scan of the lungs, Right: Coronal CT scan of the lungs with
overlayed segmentationof lung lobes labeledwithdifferent colors. Further specifications
can be find in chapter 3

Concept and Objective of the research project

As part of a research project this thesis focuses on themathematical theory, optimization
of the image registration and the implementation of the automated network. I’m going
to give somemore details about the project in this paragraph.
The main objective of this research is to use a large number of CT scans to calculate ref-
erence values for regional ventilation depending on the patient’s age and sex. Physicians
can use these reference tables to easily detect deviations from the norm. A visualization
of pathological ventilation in form of a heatmap could be an effective way to simplify the
diagnosis of lung diseases. In a recent study on patients with idiopathic pulmonary fi-
brosis the researchers could show that an abnormally high regional ventilation can serve
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1 Introduction

as an early functional imagingmarker for disease progression before the change ofmor-
phologic CTparameters or a decline in pulmonary function tests (Scharmet al., 2021). As
CT scans cannotmeasure gas exchange of the lungs directly, fractional air volume change
is used to represent lung ventilation (Shin, 2021), (Dettmer et al., 2018), (Scharm et al.,
2021).
I will use an image registration approach tomorphologically align CT images in inspira-
tion and expiration. Thiswill provide regional ventilation images in formof deformation
fields. This automated image processing network will be used in a clinical study to com-
pute the reference values for regional ventilation mentioned earlier in this section.

1.4 Mathematical Model of Image Registration

One of the biggest challenges in applied mathematics is to find a mathematical model
that fits to the given problem. In this case the considered problem consists of a medical
question in the field of radiology. As the problem calls for amodel that computes a defor-
mation from two images for this scenario CT scans of the lungs taken at different times
an image registrationmodel is the obvious choice. There is no unified image registration
model that fits for every applicationfield so in order to get reasonable solutions in an effi-
cient way specifications of the basic image registrationmodel are required (Modersitzki,
2009).
A basic image registration consists of two terms, the first one including some sort of dis-
tance measure and therefore indicating image similarity and the second one which is
called regularizer measuring the plausibility or reasonability of the computed transfor-
mation. The focus of this thesis will be testing and comparing different settings for these
two terms, variations of the input images and some parameter tuning in order to find
a model that fits the given scenario the best. For the purpose of assessing the resulting
transformations I’mgoing to define an errormeasure based on the Jacobiandeterminant
which should be minimized by the model.
Further details on the mathematical model and the motivation behind the tested ap-
proaches and the use of the Jacobian determinant can be found in the next chapter. Addi-
tionally, I will elaborate on the numerics used in order to solve the optimization problem
but since this is not the focus of this thesis I will keep this part as short as possible.

1.5 Experiments

To test the different approaches I’m going to perform experiments on anonymized pa-
tient data. Before registering the images, they are going to be preprocessed. After that
I’m going to feed these images into the image registration network. Firstly, the images
are going to be registered, then the deformation field will be computed. A visualization
of the registration and the deformation fields help to visually check if the computation
of the deformation provides a good alignment of the two images. The deformation fields
will be saved for further computations and are going to be used in a clinical study in order
to determine reference values on healthy patients. For analyzing the resulting transfor-
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1 Introduction

mations I’m going to calculate mean values and variances of the Jacobian determinants
to compare it with the quotient of volumina of the lungs in expiration and inspiration.
The threedifferent imagedata sets consist of the original lungCT scans,maskedCT scans
and last but not least masked scans separated into left and right lungs.
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2
Image Registration and Inverse Problems

In image registration the main goal is to precisely align two or more images taken for
example at different times or from different viewpoints. It is an important and often
used tool to further analyze or comparemedical images. Image registration is an inverse
problem and therefore requires regularization (Fischer and Modersitzki, 2008). In this
chapter I’m going to introduce a notation according to FAIR: Flexible Algorithms for Image
Registration (Modersitzki, 2009) and further elaborate on the question why the registra-
tion problem is so difficult to solve.

2.1 Mathematical Problem

Before I’m going to give details on how such a registration model looks like I will specify
some required notations that I will use throughout this thesis. Images are declared as
functions as follows:
The reference image or fixed image R ∶ ΩR ⊂ ℝd → ℝ and the template image also
called moving image T ∶ ΩT ⊂ ℝd → ℝ are both defined on compactly supported
domains ΩT ,R . d denotes the image dimension with d = 2 or d = 3 being the most
common cases in medicine. For this thesis I will focus on d = 3 as the images used for
the experiments are 3D scans of the lungs and the registration will also be done in 3D.
R ∶ ℝ3 ↦ ℝ will be the expirational and T ∶ ℝ3 ↦ ℝ the inspirational image. These
images map some point x ∈ Ω ⊂ ℝ3 of the image domain onto a scalar value which
represents the grayscale value at a specific voxel of the image.
The choice of the lung CT scan in expiration as reference image is motivated by themed-
ically reasonable outcome produced by this setting. Since the relaxed state of the lungs is
in expiration and the process of breathing causes the lungs to expand we expect regional
volume change values above 1 to imply expansion during ventilation. By choosing the in-
spirational image as reference the outcomewould be between 0 and 1 whichwould imply
shrinking.
With these notations we can now define a basic image registration model with the fol-
lowing objective function 2.1. Hereby, the goal is to find a transformation y ∶ ΩR → ℝ3

tomap the template image T onto the reference imageR so that the by y deformed tem-
plate is similar to the reference.
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2 Image Registration and Inverse Problems

(a) Fixed ImageR (b) Moving Image T

(c) DeformedMoving Image T (y) (d) T (y) − R

Figure 2.1: In axial view: (a) reference image in expiration with label in green, (b) tem-
plate image in inspiration with label in red, (c) with y deformed template image in red in
alignment with the label of the reference image in green, (d) difference of the deformed
template image and reference image. Curser marks corresponding voxels in all four im-
ages, showing correct alignment of inner structures like blood vessels. Further details on
the registration can be found in section 3.3.

Definition 2.1.

J(y) = inf
y

D[T (y), R ] (2.1)

Where T (y) ≔ T ∘ y ∶ Ωy(T ) → ℝ describes the transformed template image with
Ωy(T ) being the transformed image domain of the template andD ∶ ΩR × ΩT (y) ↦ ℝ a
distancemeasure in order to quantify similarity betweenT (y) andR whichwill be spec-
ified in the next section 2.2. The functional J(y) ∶ y ↦ ℝmaps the transformation y onto
some scalar value. The goal is to minimize this value during the optimization process.
Note that the objective function searches for an infimum rather than a minimum as the
existence of a minimum can’t be guaranteed. Figure 2.1 shows a registration example on
lung CT scans. The difference of the deformed moving image and the reference image
shows the similarity between the two images with small variances in the more detailed
structures like blood vessels.
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2 Image Registration and Inverse Problems

2.2 Similarity of Reference and Deformed Template

In this section I’m going to address different types of distancemeasures which represent
similarity of the reference and deformed template image in the objective function J(y).
In order to compare T (y) andR there are two differentmethods for detecting similarity
of the images: feature-based or intensity-based.
For the first method, the so-called landmark-based registration, the similarity is mea-
sured by looking at specific points of the reference image, finding the corresponding
points in the template image and calculating the distance between those corresponding
points which then will be minimized in the optimization process. A huge drawback of
this method is that the corresponding pairs of points, also called landmarks, have to be
markedmanually and the transformation is strongly dependent on the selection of land-
marks. The resulting transformation can be easily adjusted by removing or adding land-
marks but there are no rules on which combination of landmarks is the best. The choice
of landmarks is also specific for every application scenario. Additionally, the resulting
transformation is not physical, whichmeans that there is no interaction between the in-
dividual landmarks and therefore there is no guarantee for a one-on-one transformation
(Modersitzki, 2009). Anexample for landmark-based registration is the thin-plate-spline
registration (Rohr, 2001).
As the choice of landmarks is challenging and often still requires manual intervention,
intensity-based distance measures are a convenient alternative.
Acommonused intensity-baseddistancemeasure is the sumof squareddifferences (SSD)
which is defined as follows:

Definition 2.2. Given the images T (y) andR the SSDmeasure is

DSSD[T (y), R ] ≔
1
2

∫
Ω

(T (y(x)) − R (x))2dx. (2.2)

It measures the energy contained by the difference image and in order to be mean-
ingful, it has to be assumed that the gray values of corresponding points aremore or less
the same in the reference and template images (Modersitzki, 2009).
In the case of the lungs the inflowing air causes a change in density of the lung tissue
which leads to differences of several hundred Hounsfield units between corresponding
structures (Castillo et al., 2013). The Hounsfield scale is frequently used in CT scans, de-
scribes radiodensity and can be interpreted as a measurement for the attenuation of x-
rays by the tissue (Buzug, 2004). Since this characteristic of the lungs do not guarantee
comparability of the grey values the requirements for SSD are not met so a different dis-
tance measure is required.
Adistancemeasure that focuses on image edges rather than the absolute intensities is the
normalized gradient field (NGF) distance measure. In the lungs edges are represented
by the bronchial tree, blood vessels, the lung boundary and fissures and the alignment of
such structures is desired. Therefore a variant of the NGF distance measure was intro-
duced by (Ruhaak et al., 2017) for overcoming the problem of intensity change in lung CT
scans.
The definition is given by:
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2 Image Registration and Inverse Problems

Definition 2.3. For the images T (y) andR the NGF distance measure is defined by

DNGF[R , T (y)] ≔ ∫
ΩR

1−
⟨∇T (y(x)), ∇R (x)⟩2𝜂

‖∇T (y(x))‖2𝜂‖∇R (y)‖2𝜂
dx (2.3)

with ⟨f , g⟩𝜂 ≔ 𝜂2 + ∑3
j=1 fjgj and ‖f ‖2𝜂 ≔ ⟨f , f ⟩𝜂.

𝜂 > 0 being an edge parameter for suppressing noise-related edges.

Thismetric is defined tomeasure the alignment of the two gradient fields t of T and
r of R and is zero (minimal) for t = ±r and 1 (maximal) if t is orthogonal to r or one of
them is equal to 0. The authors of (Ruhaak et al., 2017) chose the NGF distance measure
because of its efficient computation, robustness and suitability for numerical optimiza-
tion.
Although therearemorekindsof intensity-baseddistancemeasures available, in this the-
sis I’m going to compare SSD and NGF with regard to pulmonary image registration.
In the next section I’m going to describe the transformations used to deform the tem-
plate images so they are as similar to the reference as possible and thereforeminimizing
the distance measure.

2.3 Parametic and Nonparametic Image Registration

In order to align the template and reference image there are different kinds of transfor-
mations commonly used in image registration. In this section I’m going to present some
types of transformations, their features and purpose with regard to image registration.
Primarily, the transformations used in image registration can be divided into affine-
linear andnon-linearordeformable transformations. Affine transformationsare charac-
terized by their line- and parallelism-preserving features and can be described as y(x) =
Ax+b for some point x ∈ Ω ⊂ ℝ3with A ∈ ℝ3×3 being an invertiblematrix and b ∈ ℝ3

the translation vector. In this setting the wanted deformation function is defined as fol-
lows: y ∶ ℝ3 × ℝ3×3 × ℝ3 ↦ ℝ3. A very important subset of affine transformations are
rigid transformationswhich additionally are length- and angle-preserving. They are also
called Euclidean transformations because the Euclidean distance between every pair of
points is being preserved and include rotations, reflections and translations. Although
these transformations are very simple and quickly computed they only provide a rough
alignment of the lungs as the complex movement of the lungs cannot be approximated
by global affine transformations. For example since the lungs “hang” inside of the tho-
rax and the ventilation process is mainly set in motion by the diaphragm at the bottom
of the lungs the deformation in the lower half of the lungs is stronger than in the upper
half. There are other features of the lungs like for example asymmetry or the texture of
lung tissue that make the movement of the lungs very complex and therefore the image
registrationmodel requires nonlinear deformation for precise alignment in a local envi-
ronment.
To further refine the registration we need deformable transformations which allow local
deformation also called ”warping”of the image. These can also be subdivided into param-
etic and nonparametic models. As the name suggests, parametic deformable transfor-

– 10 –



2 Image Registration and Inverse Problems

mations depend on afinite set of parameters (thus including affine transformations) and
therefore result in a rather small system of equation which can be solved easily and with
low computing time.
Nonparametic deformable transformations result in arbitrary mapping for each point
of the image allowing for precise local alignment. However, nonparametic image reg-
istration can lead to extensive computation time as a highly underdetermined system
of nonlinear equations has to be solved. Additionally, the nonparametic model is very
likely to get stuck in local minima and thus requires a good starting point. These de-
scribed features of parametic and nonparametic registration models lead to the obvious
and efficient combination of both models: Parametic image registration is often used
for preregistering the images in order to get a reasonable starting point for a nonparam-
etic image registration. This approach results in low computation time as the high-costly
nonparametic transformations are only used for small corrections of the transformation
computed by the preregistration.
Since a nonparametic registration model leads to a highly underdetermined system of
equations this high degree of freedom requires regularization. Before I give a few ex-
amples of often used types of regularizers I want to further decribe the problem of ill-
posedness of inverse problems.

2.4 Inverse Problems and Regularization

Image registration is one of the most complex opimization problems in image process-
ing (Modersitzki, 2009) which is strongly related to the fact that it is an inverse problem.
To give insight on the complexity of inverse problems let’s first have a look at an example
for a direct or so-called forward problem: The goal hereby is to find a point B on a map
with given directions starting from point A.The solution for this problem is easy to find
and unique to the given conditions.
The corresponding inverse problem or backward problem would be if point A and B are
given, which way did the person go to get from A to B? Not are there only infinite ways to
get from point A to B but there are also many solutions that we don’t want to consider as
they are impossible in a realistic scenario (for example flying over the buildings would be
very fast but not possible).
Further requirements in order to get a reasonable solution like stopover points or finding
the shortest connectionbetweenpointsA andBare essential. In image registrationAand
B are represented by the images wewant to align and the goal is to find a transformation
to map one image onto the other. Therefore image registration is a highly underdeter-
mined and ill-posed inverse problem.
Amathematical problem is well-posed if the following properties first introduced by
(Hadamard, 1902) apply:

Definition 2.4.

1. a solution exists
2. the solution is unique
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2 Image Registration and Inverse Problems

3. the solution’s behavior changes continuously with the initial conditions

These properties allow for a stable solving algorithm and prevent error amplifying.
Otherwise the problem is considered to be ill-posed.
Typically, regularization is a way to include prior knowledge to set restrictions or further
requirements like smoothness for the wanted function y. It is a helpful tool to ensure
a unique solution for underdetermined ill-posed problems like nonparametic registra-
tionmodels. As stated before in section 2.1 the regularizer measures reasonability of the
transformation and will now be added to the objective function 2.1 as the second term of
our registration model:

J(y) = inf
y

D[T (y), R ] + 𝛼S(y) (2.4)

with 𝛼 > 0. S(y) ∶ y ↦ ℝ is a functional mapping from the function space of the
transformation y to the space of real numbers.

An example for a regularizer commonly used in image registration is linear elastic
regularization (Broit, 1981). In this method objects in the image are considered to be
made of elastic material and the regularizer corresponds to the linear elastic potential
caused by the deformation of the elastic material. As the linear elasticity model is blind
to rigid transformations because its theory is based on relations of points, a preregistra-
tion is required (Modersitzki, 2009).
Other regularization approaches that are based on the second order derivatives are the
curvature regularizer (Fischer and Modersitzki, 2003) and the gradient-based diffusive
regularizer (Fischer andModersitzki, 2002).
A more recent form of regularization introduced by (Burger,Modersitzki, and Ruthotto,
2013) is the hyperelastic regularizer. This method can handle especially large nonlinear
deformations and guarantees diffeomorphic (bijective and continuously differentiable
map with continuously differentiable inverse) transformations as the penalty for non-
diffeomorphic transformations approaches infinity. This makes the hyperelastic regu-
larization a usefulmethod to prevent ill-posedness. The hyperelastic regularizer consists
of three parts:

Definition 2.5.

Shyper(y) ≔ ∫ 𝛼1length(y) + 𝛼2surface(y) + 𝛼3volume(y)dx (2.5)

where 𝛼i > 0 are parameters for the three components length, surface and volume
which correspond to the three invariantsgradient, cofactor anddeterminantof the trans-
formation.
This regularizer allows us to control change of length, surface and volume by weighing
and defining individual penalty functions like follows:

– 12 –



2 Image Registration and Inverse Problems

Definition 2.6.

length(y) = Φℓ(∇y), Φℓ(X ) = ‖X − Id‖2Fro,
surface(y) = Φw,c(cof∇y), Φw(X ) = (‖X ‖2F ro − 3)2, (2.6)

Φc(X ) = max{‖X ‖2F ro − 3, 0}2,
volume(y) = Φv(det∇y), Φv(x) = ((x − 1)2/x)2,

with Frobenius-Norm ‖X ‖F ro ≔ √∑ X 2
i,j and∇y being the Jacobianmatrix (see definition

2.8).

A detailed definition of the cofactor in this setting can be found in (Burger, Moder-
sitzki, and Ruthotto, 2013) and a definition of the determinant in 2.5.
The penalty chosen for controlling changes in area is the double-well functionΦw which
is zero for no change in area and positive otherwise. Since the double-well function is not
convex (Burger, Modersitzki, and Ruthotto, 2013) introduced the convex envelope Φc of
Φw and presents an existence proof for this setting. Ideally, the objective function should
be convex as standard arguments, like every local minimum of a convex optimization
problem is also a global minimum, apply (Burger, Modersitzki, and Ruthotto, 2013)(Flo-
rian Jarre, 2004). A drawback of using the convex envelope as a penalty function is that it
doesn’t penalize surface shrinkage.
The volume penalty is chosen so that shrinkage and growth are equally priced.
It is further suggested by the authors to search for transformations in the Sobolev space
W1,2(Ω, ℝ3) where cofactor and determinant are sufficiently integrable and the deter-
minant is positive (Burger,Modersitzki, and Ruthotto, 2013).
Further details on the application of this concept formy experiments can be found in the
next chapter.
In the next section I’m going to elaborate on the importance of the Jacobian determinant
and introduce an error measure to determine the quality of the image registration in or-
der to compare different approaches.

2.5 Jacobian Determinant as an Indicator for Volume Change

Regarding the research goal stated in the introduction, studies have shown that the ratio
of lung volumina in inspiration and expiration canbeused as a surrogate for lung ventila-
tion and that CT-based regional ventilation has the potential to serve as an early imaging
marker for various lung diseases (Fuld et al., 2008)(Solyanik et al., 2015)(Dettmer et al.,
2018)(Scharm et al., 2021).
In this section I’mgoing to showwhy the Jacobiandeterminant is related tovolumechange
and can further be used for the determination of reference values for regional lung ven-
tilation as it indicates volume change in every voxel for reasonable deformations.
First, since it is a key element in this thesis I’m going to give a definition for volume.

Definition 2.7. For some given set A its volume is defined as

vol(A) = ∫
A
dx (2.7)
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for x ∈ A.

Note that the set used to determine lung volume is given by the binary lung mask
provided by the automatic segmentation of the lungs (Winther et al., 2020).
Before I will discuss the relation between volume and the Jacobian determinant let’s first
have a look at the definitions of the Jacobian matrix and determinant.

As most optimization algorithms like Gauss-Newton (Bertsekas, 1995) are gradient-
basedprocesses the Jacobianmatrix is used to computefirst order partial derivatives. For
a transformation y ∶ Ω ⊂ ℝ3 → ℝ3 in a three-dimensional setting the Jacobian matrix
in a point z ∈ Ω is defined as follows:

Definition 2.8.

∇y(z) = (
∂yi
∂xj

(z))
i,j=1,2,3

=
⎛⎜⎜⎜⎜⎜⎜
⎝

∂y1
∂x1

(z) ∂y1
∂x2

(z) ∂y1
∂x3

(z)
∂y2
∂x1

(z) ∂y2
∂x2

(z) ∂y2
∂x3

(z)
∂y3
∂x1

(z) ∂y3
∂x2

(z) ∂y3
∂x3

(z)

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.8)

with x1, ..., x3 being the coordinates of a point x in the original image.

The Jacobian determinant so the determinant of the Jacobian matrix gives informa-
tion about the behavior of the transformation y in each point and is defined by:

Definition 2.9.

det∇y ≔ ∂1y1∂2y2∂3y3 + ∂2y1∂3y2∂1y3 + ∂3y1∂1y2∂2y3
− ∂1y3∂2y2∂3y1 − ∂2y3∂3y2∂1y1 − ∂3y3∂1y2∂2y1

(2.9)

with ∂iyj = ∂yj
∂xi
for i, j = 1, 2, 3.

Now back to the research question and to why we can use the Jacobian determinants
of the deformation field as a prediction for local volume change. This correlation shows
the theorem for integration by substitution for higher dimensions (Forster, 2012).

Theorem 2.10. LetΩ ⊆ ℝd be an open set and y ∶ Ω → y(Ω) ⊆ ℝd a diffeomorphism. Then a
function f on y(Ω) is integrable when the function x ↦ f (y(x)) ⋅ |det(∇y(x))|dx is integrable on
Ω. In this case the following condition applies:

∫
y(Ω)

f (z)dz = ∫
Ω
f (y(x)) ⋅ |det(∇y(x))|dx (2.10)

with∇y(x) being the Jacobianmatrix and d spacial dimension.

Aproof for this theoremcanbe found in (Forster, 2012). This especially shows that the
volume of some object in the original setting onΩ and the volume of the transformed ob-
ject on y(Ω) are connected by the Jacobian determinant. Note that the requirements for
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theorem 2.10 are met because the hyperelastic regularizer 2.5 guarantees diffeomorphic
transformations (Burger,Modersitzki, and Ruthotto, 2013).
Further, if we consider the ratio of volumina it shows that:

lim
𝜖→0

vol(y(B(x0, 𝜖)))
vol(B(x0, 𝜖) = |det∇y(x0)| =

⎧{
⎨{⎩

> 1 volume expands;
= 1 volume stays the same;
< 1 volume shrinks.

(2.11)

whereB(x0, 𝜖) is a sphere with center x0 and radius 𝜖.

In addition to this, the Jacobian determinant behaves in the same way as the ratio of
volumes if we swap reference and template images. In detail this means that we receive
the reciprocal value of the Jacobian determinant in some point by swapping the reference
and template image. To show this correlation, let’s have a look at the forward and back-
wardmapping of an image registration.
First, if we apply a forward mapping y and backward mapping y−1 on some point x ∈ Ω
we receive the identity function which maps x onto itself. This gives us the following re-
lation:

I = ∇Id(x) = ∇[y(y−1(x)] = ∇y(y−1(x)) ⋅ ∇y−1(x) (2.12)

where ∇ is the partial derivative or Jacobian, Id the identity function and I the iden-
tity matrix. In the last step the chain rule was applied.
The next step will be to apply the determinant to equation 2.12 which gives us the follow-
ing statement:

1 = det(I) = det[∇y(y−1(x)) ⋅ ∇y−1(x)] = det[∇y(y−1(x))] ⋅ det[∇y−1(x)] (2.13)

Under the condition that the determinants are unequal to 0 we can divide by
det[∇y(y−1(x))] and get:

det[∇y−1(x)] =
1

det[∇y(y−1(x))] (2.14)

Of course as det[∇y(x)] corresponds to the Jacobian determinant we showed that
the Jacobian determinant of the backwardmapping is equal to the reciprocal value of the
Jacobian determinant of the forwardmapping.
For the last step we assumed that the determinants are unequal to 0 which is fullfilled
by diffeomorphic transformations. This can be derived from a corollary of the implicit
function theorem (Forster, 2012):
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Corollary 2.11. Let U ⊆ ℝd be an open set and f ∶ U → ℝd a continuously differentiable map.
Let a ∈ U, b ≔ f (a) and the Jacobianmatrix∇f (a) be invertible.
Then there are openneighborhoodsUa ⊆ U of a andVb of b, so that f maps the setUa bijectively onto
Vb and the inverse function g = f −1 ∶ Vb → Ua is continuously differentiable or in short: f |Ua is a
diffeomorphism.

Since the Jacobian matrix is a quadratic matrix it is invertible if the determinant is
unequal to 0.
This property was used in (Burger, Modersitzki, and Ruthotto, 2013) to show that the re-
sulting deformation is diffeomorphic as all Jacobian determinants were unequal to 0.

In conclusion, a positive determinant means that the orientation stays the same (no
inversion), determinants greater than 1 can be interpreted as expansion and values be-
tween 0 and 1 as shrinkage caused by the transformation y. Negative determinants, as
well as determinants close to 0 and very large determinants are not to be expected for the
lung registration model. As the reference image is the expirational image the Jacobian
determinants are expected to be similar to the ratio of volumina of template and refer-
ence, which in most cases should be a value between 1 and 3.

For the following experiments this implies that a registration of pulmonary CT scans
in expiration and inspiration is considered to be good if the difference of the volume ratio
and the expected value of the Jacobian determinants of the resulting deformation field is
minimal, respectively goes to zero.
This leads to the following definition of an error measure for the transformation
y ∶ ΩR → ℝ3:

Definition 2.12. For given template and reference images T and R the registration error
is

error(y) ≔ ∥
vol(T )
vol(R ) − ∇y∥

2

⟶ 0 (2.15)

with ∇y ≔ 1
n ∑i ∇y(xi) and xi ∈ y(ΩR ) for i = 1, ..., n being the expected or mean value

of the Jacobian determinants and ‖ ⋅ ‖2 being the Euclidean norm.

This measure will be used for analyzing different registration models tested in the
experiments.
Before I’m going to formulate the hypotheses I want to further investigate within this
thesis, I’mgoing tomake a quick stopover tomention the numerics that are used in order
to solve the optimization problem2.4. Although the numerical implementation is not the
focus of this thesis it is a big challenge in mathematics and therefore I want to elaborate
on the numerics used for the experiments.
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2.6 Numerical Implementation

The images and the optimization problem 2.4 are defined in a continuous setting as they
are modeled in order to solve a medical problem which of course deals with continuous
properties of objects. Additionally, many image transformations require a continuous
image model since the transformed image does not align with a pixel grid (Modersitzki,
2009).
Of course the CT scans are voxel-wise measurements and therefore only available in a
discrete setting. So in order to switch betweendiscrete and continuous settings different
kinds of discretization and interpolation schemes are needed.
In this section I’m going to elaborate on the types of numerics used within the scope of
this thesis.

Discretize-then-Optimize

In order to solve a continuous problem there are two options on how to proceed. Ei-
ther optimize-then-discretize, which means finding the continuous optimality condi-
tions analytically and optimizing the resulting system of equations, or discretize-then-
optimize so optimizing the discretized optimality conditions. In the case of image reg-
istration problems, they do not allow for an analytic solution (Modersitzki, 2009) and
therefore the discretize-then-optimize approach is used to apply standard optimization
algorithms.
To get the discretized objective function it has to be defined on a grid. There are different
approaches to do so, for example evaluating the image in the centers of each cell of an
overlayed grid, a so-called cell-centered grid. For detailed descriptions of the discretiza-
tion process I’m referring to (Modersitzki, 2009).
In this setting the discretized objective function of 2.4 looks like this:

Definition 2.13.

Jh(yc) = inf
yc

Dh[T (yc), R (xc)] + Sh(yc − yRef ) (2.16)

where yc ≈ y(xc) is the current transformed grid,Dh and Sh are the discretized distance
measure and regularizer and yRef is a discrete reference for regularization for example
yRef = xc.

Note that a discretized representation of the hyperelastic regularizer can be found in
(Burger,Modersitzki, and Ruthotto, 2013).
Discretizing the optimization problem also allows for amultilevel-registration approach
where the problem is first solved on a coarse grid and the obtained solution will then be
used as a starting point for the next finer level until the original resolution of the im-
ages is restored. On a coarse grid the optimization problem is relatively easy to solve and
therefore it yields cheap computational costs. Another advantage is that by getting rid
of the details and only keeping themain features of the images it prevents the optimiza-
tion process from running into local minima. On the finer and more expensive levels
only small corrections of the before computed approximations are required which addi-
tionally leads to lower computation time. As all discrete problems are linked by the same
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continuousmodel the sequence of discrete solutions yh approximates the solution of the
continuous model (Modersitzki, 2009). As this approach reduces computation time it is
applied within this thesis.
For solving the before stated discretized optimization problem 2.16 there are different
types of Newton-based techniques available (Bertsekas, 1995). Regarding the Gauss-
Newton algorithm the approximation of the Hessianmatrix can get quite expensive and
therefore the BFGS method is a good alternative as it estimates the Hessian on the fly
(Modersitzki, 2009). From the family of quasi-Newton methods BFGS stands for Broy-
den–Fletcher–Goldfarb–Shannoandbecause it does not require an explicit computation
of the inverse Hessian its computational complexity is onlyO(n2) compared toO(n3) for
Newton-based methods (Jorge Nocedal, 2006). For optimization problems with many
variables like image registration the approximative variant of the BFGS algorithm the
limited-memory BFGS (ℓ-BFGS) is used to limit computermemory during computation.
Since the ℓ-BFGS algorithm was already employed in related works dealing with pul-
monary image registration like (Ruhaak et al., 2017) and considering its computation
time reducing properties I’m going to apply this method likewise.

Image Interpolation

Like described above, CT scans are usually available in a discrete setting and in order to
get a continuous representation of these images interpolation strategies are applied.
Themost simple interpolation scheme would be the next neighbor interpolation (Theve-
naz, Blu, and Unser, 2000) which basically is represented by the voxel-wise measure-
ments of a CT scan where a value is assigned constantly to the whole voxel (cell). This
approach is usually not applied in image registration as the derivative of the interpolant
is either undefined or 0 which leads to problems in the optimization process (Moder-
sitzki, 2009).
An intuitive approach for interpolating the image values is the linear interpolation. The
values at the cell centers are connected by section-wise defined linear functions. This
method can easily be adapted for 2D (bilinear) and 3D (trilinear) scenarios and ensures
that the interpolated values don’t exceed the span of measured values (no overshooting).
A drawback of linear interpolation is that it is only almost everywhere continuous (Mod-
ersitzki, 2009).
Amore complex approach is the spline interpolationwhere the goal is to get a smooth and
continuous representation by finding a function interpolating the data and minimizing
its bending energy (Modersitzki, 2009). This method originates in shipbuilding where
wooden slats were bent around piles without snapping. The resulting cubic spline is very
smooth but can lead to oscillatory behaviour and overshooting.
Of course there are otherways of interpolating data butwith the goal of reducing compu-
tation time in order to process huge amounts of patient data at once these are probably
the most efficient ones.
For my experiments I used the trilinear interpolation scheme as it enables matrix-free
computations and therefore further reduces computation time. Matrix-free computa-
tion is amethodwhere thematrices (for example gradient andHessian) are not explicitly
stored but are accessed throughmatrix-vector products. (Rühaak, 2017) discusses the ap-
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plication of matrix-free techniques for efficient image registration.

Now,after elaboratingonall challenges of settingupan image registrationmodel I’m
going to formulate somehypotheses Iwant to further investigate during the experiments
which are going to be described and discussed in the following chapters.

2.7 Hypotheses

With optimizing the image registration being the goal of this thesis I’m going to test and
compare different approaches regarding the minimization of the error measure defined
in 2.12. Note that an image registration is considered to be more precise than another if
the error value is smaller.
More details on the execution of the experiments can be found in the next chapter. The
discussion of the results regarding the hypotheses can be found in chapter 5.

1) Separate Registration of left and right lung

For the first hypothesis the idea is to seperately register the right and left lung. This ap-
proach can be directly derived from the morphology of the lungs. Since the left lung is
differently shaped because it shares space with the heart and only consists of two lung
lobes compared to the right lung which consists of three lung lobes (see figure 1.1) it is
also expected that it moves differently than the right lung during the ventilation process.
Therefore, the first hypothesis states that a seperate registration, which can also mean a
different set of parameters for each registration, of the right and left lung can lead to a
more precise prediction of regional lung ventilation than registering the whole lung at
once.
In order to test this hypothesis I’m going to use two sets of images where the first set
consists of the original lung CT scans and the second set consists of two subsets being
the separated left and right parts of the original images. Of course the corresponding
segmentation masks also get seperated into a left and right part. As the left and right
lung are only connected by the trachea (which isn’t a part of the lungs according to the
labeling) overlapping of the left and right part is excluded which simplifies cutting the
images.

2) Registration of masked lung CT scans

The second hypothesis is that registering the masked lung CT scans is more precise than
registering the original scans. Masked in this case means that the lung labels are used to
crop the images so only the region including the lung parenchyma remains. An example
of the cropped images can be found in figure 3.1.
This approach comes from the idea of simulating thepleural sackwhich encases the lungs
and restricts itsmovement at the boundary of the lungs. As described in the introduction
the pleural sack contains of two membranes which slide along each other while breath-
ing. By restricting the deformation to the lung region of interest the necessity of recov-
ering this non-continuous sliding motion is removed and the remaining motion inside
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of the lungs is considered to be very smooth (Ruhaak et al., 2017).
Additionally, the masked images are stored as 8-bit grayscale images which means the
image values are between0 and 255 (28 values in total) in order to save computermemory.
Another advantage of using 8-bit images for the image registration is that the contrast
of the inner structures is increased and therefore alignment of the edges should bemore
precise.
To test this hypothesis I’m going to compare two sets of images, the first one containing
the original images and the second one the cropped 8-bit images.
Of course I’ll test this approach in combination with the first hypothesis of seperately
registering the left and right lung, so there will also be masked versions of the seperated
images. In the following I’m going to refer to the original images as VNC images and to
the masked images as 8-bit images as it matches the file names created during images
preprocessing.

3) Hyperelastic Registration

The third hypothesis states that a hyperelastic regularizationmodel yields a fast and pre-
cise image registration of lung CT scans and is therefore considered as a suitable and ef-
ficient regularizer for pulmonary image registration. To test its performance I’m going
to compare it to the curvature and diffusive regularizer and show that the hyperelastic
regularizer leads to a more precise image registration while having a comparably short
computation time.
The parameters I’m going to investigate are the regularization weights 𝛼, respectively 𝛼i
for i = 1, 2, 3 of the hyperelastic regularizer.
Further details on the tested intervalls of parameters can be found in section 4.4.

4) Normalized gradient field

The fourth hypothesis states that theNGF distancemeasure yields for amore precise im-
age registration thanSSD.Like discussed before in section 2.2 theNGFdistancemeasure
is more suited to pulmonary image registration as it does not depend on absolute inten-
sities values. Additionally, the requirements for SSDare usually notmet by lungCT scans
which should lead to inaccurate results.
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In this chapter I’mgoing to specify theexperimental executionof thepreviouslydescribed
approaches in order to answer the research question and investigate the above proposed
hypotheses.
TheCT scans I usedwithin the scope of this thesiswere performed at theHannoverMedi-
cal School for retrospective analysis of clinically aquiredCTdata at thefibrosis outpatient
clinic of pneumology. These scans are three-dimensional VNC (virtual non-contrast) im-
ages of a patient’s thorax in inspiration and expiration from a base and follow-up exami-
nation and are available in the DICOM format. DICOMwhich stands forDigital Imaging
and Communications in Medicine is the international standard of medical images and re-
lated informations and is implemented in almost every medical imaging device (Horii
and Bidgood, 1993). Additionally, a neural network (U-Net) automatically segmented the
images in order to get corresponding labels of the lung region (Winther et al., 2020). As
seen in figure 1.2 the five lung lobes are labeled in different colors. After preprocess-
ing, the images and labels serve as the input of the registration network implemented
in MeVisLab (Ritter et al., 2011). More details on the image registration network can be
found in section 3.3.

3.1 Image Preprocessing

One objective of the research project of which this work is part of is to implement an au-
tomatic work flowwhich involves all preprocessing steps plus the image registration and
evaluation. Since normally, the preprocessing has to be done by hand and individually
for every patient an automated work flow for clinical use saves a lot of time and allows to
process a huge amount of patient data.
As this thesis focuses on the image registration I’m going to briefly describe the prepro-
cessing steps with an example and will not go into the work flow any further.
Image preprocessing was done using MATLAB ver. R2022a. Within the research project
I receivedMatlab scripts written by Prof. Dr. Hoen-oh Shin which needed further adap-
tions. First, the labels that were originally created by an automated lung segmentation
network (U-Net by (Winther et al., 2020)) needed some corrections as neural networks
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don’t guarantee a flawless segmentation of the pulmonary tissue. My contribution to
the preprocessing was adding the deletion and correction of wrong labels to the exist-
ingMatlab script aswell as applying all preprocessing steps on the provided patient data.
Common errors of automated segmentation networks are labels that occur outside of the
lungs, wrong labelling of lung tissue or shifting.
The next step was to mask the original CT images with the corresponding labels in order
to test the second hypothesis.
The last step was to divide all images (including original VNC images and masked im-
ages) and label images into a left and right part to test the first hypothesis.
After preprocessing there are 6 sets of images in total including the corresponding label
images: the original images, the cropped images, the original divided in left and right
images and the cropped images divided in left and right. All images and labels are now
available in the NifTI format. NifTI stands forNeuroimaging Informatics Technology Initia-
tive and is used for data exchange.
Figure 3.1 shows an example containing all three preprocessing steps.

3.2 Experiments on Patient Data

Theprovided patient data I workedwith were previously anonymized. It consists of data
from 69 patients with images in total expiration and inspiration and corresponding la-
bels from a base and follow-up examination. So 138 sets of inspirational and expirational
images in total. Using python scriptmodules I implemented an automatedworkflow for
my experiments.
First, the images were automatically loaded and fed into the lung registration module. I
used the label images to calculate the lung volume in expiration and inspiration in order
to get the volume ratio. Furthermore, by using thresholds I created label images for the
individual lung lobes which are labeled with numbers 1-5. This allowed me to addition-
ally calculate the volume of the lung lobeswhich I used for amore regional analysis of the
results. After the registration of the input images the Jacobians of the deformation field
were computed (see next section).
In addition, I documented the run time of the registration (including preregistration and
main registration).
All computations will be included in a loop over all patient data.

3.3 Image Registration Network

After preprocessing the images serve as the input for the image registration network im-
plemented in MeVisLab. MeVisLab is a framework for image processing with focus on
medical imaging. It contains a wide range of softwaremodules for segmentation, regis-
tration as well as functional analysis. For this thesis MeVisLab was chosen for the imple-
mentation because it is specialized for medical image processing and related works like
(Ruhaak et al., 2017) and (Grob et al., 2019) already used it for pulmonary image registra-
tion.
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(a) Segmented lung lobes with manually
added labeling errors

(b) Corrected segmentation

(c) Original VNC image (d) Masked image

(e) Separated VNC im-
age of the right lung

(f) Separated VNC im-
age of the left lung

(g) Separated masked
image of the right lung

(h) Separated masked
image of the left lung

Figure 3.1: Example of the automated image preprocessing on patient data. The origi-
nal CT scan was performed in total expiration at the fibrosis outpatient department of
pneumology at the Medical School Hannover. All images are displayed in axial view. The
rows represent the preprocessing steps 1-3 while the bottom two rows show an example
of each of the 6 different image sets I will use in the experiments.
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Networks implemented in MeVisLab resemble flowcharts where the individual modules
(for example for image loading or processing) are connected to result in a data-flow. The
direction of the data-flow goes from the bottom of the interface to the top so the input
nodes are on the bottom of the modules and the output nodes on the top. There is also
the possibility of groupingmultiple modules to divide the network into subnetworks for
a better overview. The created networks can be modified dynamically by Python scripts
at runtime. In the following I’mgoing to describe the implemented network in detail and
present a schematic representation in figure 3.2.

Image Registration Network

Analyze JacobianRegistration Viewer

Deformation Field

Main Registration:
Non-Parametic

Preregistration:
Parametic (Affine)

Image Preprocessing

Template Image Reference LabelReference Image Template Label

Figure 3.2: Schematic diagramm of the image registration network implemented in
MeVisLab. Rectangles represent image processing steps while rounded rectangles rep-
resent input and output images of the network. The flow chart direction resembles the
direction of data flow in theMeVisLab interface. The red boxmarks themain focus of this
thesis.

The image registration network takes four images in theNifTI format as inputwhich
would be the fixed reference image in expiration, themoving template image in inspira-
tion and the two corresponding label images. Thesewere then fed into a lung registration
module. Thismodule is a so calledmacromodule that contains a subnetwork ofmodules
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itself. First step of the image registration is imagepreprocessing to prepare the input im-
ages for the registrationmodules. Image preprocessing includes scanning forminimum
and maximum values of the images, cropping the images as well as extracting encoded
image informations. These preprocessed images were then forwarded to two different
image registration subnetworks.

Affine Preregistration

First, a preregistration using an affine registrationmodulewas performed in order to get
an initial transformation estimation for the followingmain registration. Thepreregistra-
tion parameters will not be changed during experiments and they are given as follows:
The distance measure used for the affine preregistration is the SSD distance measure, a
multi-level approachusing3 levels (with the secondfinest level as endpoint) andGaussian-
downsampling was employed and for the optimization process the Gauss-Newton algo-
rithm has been used. The resulting transformation will be forwarded to the main regis-
tration module and used as a starting point for the non-parametic registration.

Non-parametic Main Registration

The main registration consists of a nonparametic registration module which takes the
preprocessed images and the transformation computed by the affine preregistration as
inputs. This is where parameter tuning will be performed during the experiments. The
motivation behind the choice of parameters and different approaches can be recalled in
chapter 2.
First, I’m going to list the constant values that are not going to be changed during exper-
iments:
The nonparametic registration is performed as amulti-level registration with five levels.
As for the example registration in figure 2.1 the finest level and the original image size is
394× 264× 303. For the next coarser level the image dimensions are halved (decimals are
rounded down) which results in dimensions 12 × 8 × 9 for the coarsest level. Obviously
registration starts at the coarsest level and ends with the finest.
Like I mentioned in the chapter before, the interpolation scheme of choice is linear (tri-
linear for 3D images) interpolation.
The optimization algorithm chosen for the experiments is the ℓ-BFGS algorithm because
of its fast computation features presented in 2.6. Additionally,matrix-free computations
were employed in all registrations.
Thevariables thatwill be testedmainly involve the two termsof the optimizationproblem
2.4, the distance measureD[T (y), R ] and the regularizer S(y).
For the distancemeasure I will compare the NGFwith the SSD distancemeasure like de-
scribed in the fourth hypothesis and the weight is constantly set to 1, therefore it doesn’t
appear in the equation.
Forboth the curvatureanddiffusive regularizer I’mgoing to test values for the regularizer
weight 𝛼 in the intervall [0, 2.6] in steps of 0.2. An analysis of the choice of this intervall
can be found in the next chapter.
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According to the definition 2.5 the hyperelastic regularizer consists of 3 terms control-
ling length, surface and volume. The length term coincides with the diffusive regular-
izer, therefore the parameter 𝛼 becomes 𝛼1 for the hyperelastic approach. For the volume
controlling term I chose the rational function as penalty function like defined in 2.6. Al-
though there are other options for this function to test these would go beyond the scope
of this thesis. For the weight 𝛼3 I’m going to test values in the intervall [0.001, 0.002] in
steps of 0.00025.
Unfortunately, the surface controlling term is not implemented inMeVisLab, yet. There-
fore the weight 𝛼2 will simply get set to 0.

The example registration shown in figure 2.1 was performed onVNC imageswith the
following configurations: Registration was done in 3D using matrix free computations.
As distance measure normalized gradient fields (NGF) and for regularization the curva-
ture regularizer with weighting 𝛼 = 1 were used. Finally, a linear interpolation scheme
was chosen. Like described before, this registrationwas performedwith amulti-level ap-
proach.

Deformation Field and Jacobians

The output of the lung registration is a deformation field which will be used to calculate
the deformed template image but also for a further evaluation of the image registration.
These deformation fields will get saved in the NifTI format.
In order to visualize and review the results, a registration viewer was used which similar
to the example 2.1 displays the input images, the with the computed transformation de-
formed template image and the difference. There are other vizualisation options avail-
able in the registration viewer. The Jacobian was computed from the deformation field
and displayed with another viewer. Also pictured in this viewer is a histogram of the Ja-
cobians. Examples of the vizualisations can be found in the next chapter.
For the evaluation of the performed image registrations I used the output to calculate
the mean (expected) value and variance of the Jacobians over the reference label (or the
lung lobe labels for regional analysis like described in section 3.2). As mentioned before,
the mean value of the Jacobians should be approximately the same as the volume ratio
which is why I defined the error measure 2.12. A small variance of the Jacobians indi-
cates a smooth transformation. These values are used to evaluate the registration and to
compare different paramter settings.
All values including volumina, volume ratio, Jacobianmean and variance values aswell as
the computation time of the registration were saved in CSV files.
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4
Results

In this chapter I’mgoing topresent the results of theperformedexperiments considering
the in section 2.7 established hypotheses. In order to compare the different registration
approaches I will look at the evaluated error measure, the distributions of the Jacobians,
and the output of the registration network itself.
First I’m going to investigate the hypotheses considering the input images (hypothesis 1
and 2) before I’m going to compare different parameters with the goal of optimizing the
image registration.
All registration examples are from the same patient as in example 2.1 and displayed as a
2D slice in axial view.

4.1 VNC vs. 8-bit images

To test the second hypothesis that registering the masked 8-bit images is more precise
than the original VNC scans I performed all computations with two sets of images. The
first set including the VNC images and the second including the cropped and to 8-bit
converted images. I calculated themean error after definition 2.12 over all computations
and additionally documented themean Jacobian, themean standarddeviation (STD) and
average runtimeof the registration. Thecalculated values canbe found in table 4.1. Abox-
plot of the error values can be found in figure 4.2

VNCoriginal vs. 8-bitmasked
data set error volume ratio Jacobian± STD runtime in s
VNC 0.20691 1.82094 1.61617±0.43959 34.30
8-bit 0.11148 1.82094 1.81179±0.36260 34.25

Table 4.1: Comparison of the two data sets VNC and 8-bit. Note that the mean volume
ratio is equal for both sets as all computations were performed using the same patient
data.

Table 4.1 implies that using the cropped8-bit images for image registration improves
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VNC 8-bit
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Comparison of the Error Measure: VNC images vs. 8-bit images

Figure 4.2: Boxplot of the error values over all experiments, comparing the two input data
setsVNCand8-bit. Note that the three outliers in data set VNCwere computations using
the SSD distance measure.

the error and the computed Jacobians yield for a better representation of the regional vol-
ume change. While the runtime seemed not to be affected the deviation of the Jacobians
is smallerwhen registering the 8-bit images compared to theoriginalVNC images,which
implies a smoother deformation and corresponds with the error values.
A more detailed look at the error values gives the boxplot in figure 4.2. Overall, the box-
plot for the 8-bit images is more compact showing the lower deviation. Theminimum is
at 0.004,maximumat 0.118 and themedian at 0.015. For the VNCdata set theminimum
lies at 0.005, maximum at 0.293 and median at 0.021. Excluding the outliers, the maxi-
mumwould be at 0.135 which still would be higher than the maximum for the 8-bit data
set. The VNC outliers were caused by the computations using the SSD distance measure
implying that SSD is not applicable for VNC data.
Although themedians of both sets aren’t that far apart the registrationwith the 8-bit im-
ages seems to be way more stable leading to smaller deviations for all experiments and
therefore smoother deformations.
In figure 4.3 a registration example is shown to compare the effect of the VNC and 8-bit
input images on theoutcome. Theregistrationwasdoneusing theNGFdistancemeasure
and the curvature regularizer with 𝛼 set to 1. Like described before, all experiments were
done using a trilinear interpolation scheme and the ℓ-BFGS optimization algorithm.

Looking at the deformed template images in figure 4.3 both registrations fit the ref-
erence labelwell. There’s only onepart at the bottomhalf of the left lung (which is the lung
on the right in the images) where the deformed template does not fitwithin the reference
label which occurs for both VNC and 8-bit input images.
Regarding the difference images the main dissimilarity is that the difference image for
the VNC images is higher in contrast especially at the outline of inner structures like
along blood vessels, bronchial tubes or lung fissures. This implies a less precise align-
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(a) deformed template (8-bit) (b) deformed template (VNC)

(c) difference T (y) − R (8-bit) (d) difference T (y) − R (VNC)

Figure 4.3: Example registration performedwithNGFdistancemeasure, curvature regu-
larizer and𝛼 = 1 for comparisonofVNCand8-bit input images. a)-b) showthedeformed
template images and c)-d) thedifferences of thedeformed template and the reference. All
images are displayed in axial view.

ment of inner structures for the VNC data set.

All in all, considering the results in table 4.1 andfigure 4.3 the 8-bit images yieldmore
suitable results for calculating reference values for regional ventilation. For the following
analysis of the results only computations with the cropped 8-bit images are used.

4.2 Separated lung registration vs. whole lung registration

In order to test the first hypothesis that the separated registration of the left and right
lung is more precise than registering the whole lung at once I performed all computa-
tions for the whole and the separated lung.
For comparing the error values and Jacobian determinants I calculated mean values of
the results of the separated left and right registrations displaying them under the term
“separated”. Additionally, I’m going to compare the runtime of the whole lung registra-
tionwith the sumof the runtimeof the individual registrations of the left and right lungs.
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The results can be found in table 4.4 with the 4th row representing the values for the sep-
arated registration.

Whole lung vs. separated lung registration
data set error volume ratio Jacobian± STD runtime in s
whole 0.03222 1.86992 1.83992±0.35603 51.95
left 0.02313 1.94248 1.92433±0.36019 20.89
right 0.00971 1.82033 1.8159±0.33188 24.98

separated 0.01642 1.86992 1.87012±0.34604 45.87

Table 4.4: Comparison of the image registration of the whole lungs and separated lungs.
Note that the values for “separated” are mean values of the values for the left and right
lung except for the runtime which of course is the sum of the runtime of left and right
and the volume ratio which was taken from the first row for comparison.

Table 4.4 shows, that the separated registration is indeed more precise considering
the error value. The error for both the right and left lung registration is smaller than the
error for registering the whole lungs and therefore themean error for the separated reg-
istration is smaller, too. Considering the Jacobian determinants the standard deviation
for the separated registration is smaller implying a smoother deformation.
For further analysis of the Jacobian determinants I displayed the corresponding boxplots
in figure 4.5.

Figure 4.5: Boxplot of the Jacobian determinants over all computations using cropped
8-bit images, comparing the registration of the whole lungs with the registration of the
separated left and right lungs. The yellow dashed line corresponds to the volume ratio of
the whole lung.
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The boxplots in figure 4.5 show that themedian of the Jacobian determinants for the
separated registration is closer to the volume ratio than for the registration of the whole
lungs while also having a smaller deviation.
What canalso be read fromtheboxplots is that the left lung seems tohave amore complex
movement than the right lung as there aremore outliers and over all awider distribution.
As the left lung shares space with the heart themovement is restricted or even disturbed
which lead to the stated hypothesis. As this complication in themovement of the left lung
corresponds with the results in table 4.4 and figure 4.5 the separated registration is rea-
sonable and allows for an individual optimization of the regularization term. The results
of the different regularization approaches can be found in section 4.4.

4.3 SSD vs. NGF

In figure 4.3 the outliers in theVNC image setwere caused by the computations using the
SSD distancemeasure which led to the statement that SSD isn’t suitable for the registra-
tion of th original unmasked images. In this section I’m going to show that NGF is the
distancemeasure of choice for registering CT scans of the lungs as it does not depend on
the absolute intensity values and instead aims for an alignment of edges.
For this experiment I used the 8-bit images, including the whole and separated lung
images. The curvature regularizer with 𝛼 = 1 was employed and additionally a vol-
ume controlling term with a rational function penalty like described in section 2.4 and
𝛼3 = 0.00125.
The results can be found in table 4.6.

SSD vs. NGF distancemeasure
image set distance measure error volume ratio Jacobian± STD runtime in s

whole SSD 0.01606 1.82155 1.80766±0.34149 43.51
NGF 0.00640 1.82155 1.82306±0.47684 50.83

left SSD 0.01468 1.89599 1.88226±0.37489 17.35
NGF 0.00887 1.89599 1.89325±0.53277 18.08

right SSD 0.00602 1.77204 1.76633±0.33923 20.63
NGF 0.00434 1.77204 1.77536±0.44655 21.67

Table 4.6: Comparisonof the twodistancemeasuresSSDandNGF.Theregistrationswere
performed using the 8-bit data set.

Although the runtime for all image sets is lower for the computations with the SSD
distancemeasure, it isn’t as precise as the onewhere I applied theNGFdistancemeasure.
The calculated error values are smaller using NGF implying a more precise prediction of
the regional volume change by the Jacobian determinants. For further analysis of the dis-
tance measures let’s have a look at an example registration.

Figure 4.7 shows that the registration for both distancemeasures yields a good align-
ment of the lung boundaries to the reference label. Regarding the differences of the de-
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(a) deformed template (NGF) (b) deformed template (SSD)

(c) difference T (y) − R (NGF) (d) difference T (y) − R (SSD)

Figure 4.7: Example registration performed with curvature regularizer and volume con-
trolling term (𝛼 = 1, 𝛼3 = 0.00125) for comparisonof theNGFandSSDdistancemeasure.
a)-b) showing the deformed template images and c)-d) the differences of the deformed
template and the reference. All images are displayed in axial view.

formed template and the reference image displayed in the second row of the figure, the
NGF distance measure is able to align the inner structures like blood vessels or bronchi
like predicted in the hypothesis while the SSDmeasure fails to do that.

Looking at the Jacobians of the deformation fields in 4.8, it shows what can be seen
in the differences in figure 4.7, aswell. The SSD distance measure only leads to a defor-
mation of the lung boundaries to fit the reference label but not to a desired alignment
of the inner structures. Therefore, NGF is the distance measure of choice for registering
lungCT scans because it leads to a reasonable deformation of the lung tissue aligning the
inner structures.
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(a) Jacobians (NGF) (b) Jacobians (SSD)

Figure 4.8: Comparison of the Jacobians of the deformation fields using NGF and SSD
distance measures. The deformation fields result from the image registrations per-
formed in figure 4.7.

4.4 Comparison of different regularization approaches

After the conclusion in section 4.2 I’m now going to compare different regularization ap-
proaches with the goal of optimizing the registration results for the left and right lungs
individually.
In the tables 4.9, 4.12 and 4.15 I only listed registrations that led to an error value< 0.01
except when there weren’t any values < 0.01 for one type of regularizer. In this case I
listed some examples with error values above 0.01.
For the curvature and hyperelastic regularizer I tested values for 𝛼, respectively 𝛼1 in
[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, 2.6].
For 𝛼3 I tested values in [0.001, 0.00125, 0.0015, 0.00175, 0.002] but the hyperelastic reg-
ularization yielded the best results for 𝛼3 = 0.00125893whichwas the inital weight given
by the nonparametic registration module.
Like mentioned before in section 3.3, the hyperelastic regularizer usually consists of a
length, surface and volume controlling term, but since the surface term is not yet im-
plemented in MeVisLab the weight 𝛼2 is constantly set to 0. The length controlling term
coincides with the diffusive regularizer. Besides the diffusive, curvature and hyperelas-
tic approach I additionally tested the curvature regularizer in combinationwith a volume
controlling termwith a rational function aspenalty function (the sameas employed in the
hyperelastic regularizer).
For further analysis of the performed registrations with the smallest error I’m going to
compare the registration outputs in figures 4.10, 4.13 and 4.16 and 3D bar plots of the
Jacobians for one slice of the deformation in axial view including histogramms of the Ja-
cobians in figures 4.11, 4.14 and 4.17 for each set of images.
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Optimization of the Regularization for the left lung

In this paragraph I’m going to compare the different regularization approaches for the
registration of the left lung.

Diffusive vs. Curvature vs. Hyperelastic (left)
regularizer 𝛼/𝛼1 𝛼3 error volume ratio Jacobian± STD runtime
diffusive 1.0 0.0 0.03987 1.98896 1.95877±0.07462 26.60

0.0 0.00125893 0.01073 1.98896 1.99278±0.45362 26.73hyper 0.2 0.00125893 0.01842 1.98896 1.97354±0.27392 22.42
1.0 0.0 0.00673 1.98896 1.98947±0.41753 16.06
0.4 0.00125893 0.00822 1.89599 1.89588±0.43920 23.84
0.6 0.00125893 0.00821 1.89599 1.89449±0.41657 22.00
0.8 0.00125893 0.00830 1.89599 1.89431±0.40210 19.63
1.0 0.00125893 0.00887 1.89599 1.89325±0.37834 18.08
1.2 0.00125893 0.00847 1.89599 1.89335±0.37169 17.52
1.4 0.00125893 0.00840 1.89599 1.89320±0.34918 16.79
1.6 0.00125893 0.00893 1.89599 1.89260±0.34654 16.72
1.8 0.00125893 0.00927 1.89599 1.89189±0.32415 16.48
2.0 0.00125893 0.00909 1.89599 1.89204±0.32326 16.29
2.2 0.00125893 0.00900 1.98896 1.98597±0.29727 15.63
2.4 0.00125893 0.00893 1.98896 1.98588±0.28839 15.47

curvature

2.6 0.00125893 0.00947 1.98896 1.98527±0.27418 15.47

Table 4.9: Comparison of the different regularization approaches for the left lung. “Hy-
per” stands for the hyperelastic regularizer (diffusive + volume control term). Note that
the surface controlling term is not yet implemented in MeVisLab which is why 𝛼2 is con-
stantly 0 and doesn’t appear in the table. The best results of the error measure for each
regularizer approach are marked in yellow.

Table 4.9 shows that the smallest error is achieved by the curvature regularizer with
𝛼 = 1.0 while also being faster than the other highlighted regularizations. In general
the use of the curvature regularizer, whether with or without a volume controlling term,
yields a smaller error than using the diffusive regularizer (or hyperelastic,which also em-
ploys the diffusive regularizer as length controlling term). The errors for the hyperelastic
regularizer were higher than 0.01 for every performed registration whereas the curva-
ture regularizer almost always (except for 𝛼 = 0.0 and 𝛼 = 0.2, which therefore are not
displayed in the table) generated a value below 0.01.
The smallest deviation is given by the diffusive regularizer which also has the biggest er-
ror. This implies that the diffusive regularizer overall leads to a rather weak deformation
and the registration result is not expected to be reasonable. It is also noticeable that the
deviation of the Jacobians gets smaller with increasing the regularization weight 𝛼 and
therefore increasing the smoothness of the resulting transformation.
For further interpretation of the registration results, let us have a look at the deformed
template and difference images in figure 4.11.
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What catches the eye first when looking at the deformed template images T (y) in
figure 4.10 is that the one generated by the diffusive regularizer does not fit the reference
label very well and there is a lot of overhang compared to the others.
Regarding the difference images, the best job at aligning the inner structures of the lungs
does the curvature with volume control approach, which can be best seen at the branch-
ing targeted by the cursor.
Finally, I’m going to compare the Jacobians themselves in form of 3D bar plots resem-
bling the deformation for one slice in axial view and histogramms of the Jacobians in
figure 4.11.

The color coding chosen for the 3D bar plots shows that all deformations in 4.11 are
reasonable in the sense of the regional volume change, because themajority of Jacobians
imply volume expansion or no volume change which is expected when choosing the ex-
pirational image as reference.
The hyperelastic regularization displayed in subplot c) does not result in a smooth defor-
mation. Since the smallest error was given for 𝛼1 = 0.0 a diffeomorphic deformation
is not guaranteed because the length controlling term of the hyperelastic regularization
has been diminished.
As expected the diffusive regularizer approach in a) results in a overall weak deformation
and the small deviation can be seen in the histogramm which shows a really steep peak
at approximately 1.9.
Both approaches using the curvature regularizer generated smooth deformations. Al-
though the error for the curvature regularizerwithout volumecontrolling term is smaller,
the one with volume controlling term displayed in g) better reflects the structure of the
left lung. I noticed that the deformation resulting from the curvature regularizer in e)
sort of “leaks” into the background so that the shape of the lung is not completely visible.
Whereas the deformation in g) is able to not only resemble the shape of the left lung but
also the fissure dividing the lung into two lobes is visible.
After comparing these different approaches I choose the curvature regularizer including
a volume controlling term with 𝛼1 = 0.6 and 𝛼3 = 0.00125893 as the best approach and
a good compromise between error minimization, computing time and reasonability re-
garding the research goal.
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(a) diffusive (b) hyperelastic (c) curvature (d) curvature + volume
control

(e) diffusive (f) hyperelastic (g) curvature (h) curvature + volume
control

Figure 4.10: Registration outputs of the different registration approaches highlighted in
table 4.9. a)-d): deformed template images T (y), e)-h): the difference of the deformed
template and reference images T (y) − R . From left to right: diffusive with 𝛼 = 1.0,
hyperelastic with 𝛼1 = 0.0 and 𝛼3 = 0.00125893, curvature with 𝛼 = 1.0 and curvature
+ volume controlling term with 𝛼1 = 0.6 and 𝛼3 = 0.00125893. The cursor points at
corresponding voxels.
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(a) Diffusive regularizer with 𝛼 = 1.0, error=0.03987
(b) Histogramm of the Jacobians for 𝛼 = 1.0

(c) Hyperelastic regularizer with 𝛼1 = 0.0 and 𝛼3 = 0.00125893, er-
ror=0.01073 (d) Histogramm of the Jacobians for 𝛼1 = 0.0 and 𝛼3 = 0.00125893

Figure 4.11: left: 3D bar plots of the Jacobians for comparison of the three regularization approaches that had the smallest error for
registering the left lung. A Jacobian of 1 represented by green coloring indicates no volume change, a Jacobian higher than 1 represented
in warm colors (yellow and red) indicates volume expansion and Jacobians between 0 and 1 represented with blue coloring indicates
volume shrinkage. right: histogramm of the Jacobians and fitted normal density function in red.
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(e) Curvature regularizer with 𝛼 = 1.0, error=0.00673
(f) Histogramm of the Jacobians for 𝛼 = 1.0

(g) Curvature regularizer with 𝛼1 = 0.6 and volume control term with
𝛼3 = 0.00125893, error=0.00821 (h) Histogramm of the Jacobians for 𝛼1 = 0.6 and 𝛼3 = 0.00125893
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Optimization of the Regularization for the right lung

After looking at the registration results for the left lung I will now compare the different
regularization approaches for the right lung.
The tables and figures are analogous to the ones for the left lung.

Diffusive vs. Curvature vs. Hyperelastic (right)
regularizer 𝛼/𝛼1 𝛼3 error volume ratio Jacobian± STD runtime
diffusive 1.0 0.0 0.01643 1.86863 1.86326±0.07712 31.65

0.0 0.00125893 0.00761 1.86863 1.87616±0.33522 33.47
0.2 0.00125893 0.00523 1.86863 1.86780±0.23431 27.31hyper
0.4 0.00125893 0.00888 1.86863 1.86494±0.16605 22.40
1.0 0.0 0.00419 1.86863 1.8722±0.27208 19.70
0.0 0.00125893 0.00679 1.77204 1.77861±0.29682 31.76
0.2 0.00125893 0.00623 1.77204 1.77789±0.28923 30.94
0.4 0.00125893 0.00522 1.77204 1.77663±0.27945 29.35
0.6 0.00125893 0.00465 1.77204 1.77594±0.26597 25.08
0.8 0.00125893 0.00449 1.77204 1.77560±0.24807 22.65
1.0 0.00125893 0.00434 1.77204 1.77536±0.23306 21.67
1.2 0.00125893 0.00435 1.77204 1.77525±0.22542 21.08
1.4 0.00125893 0.00416 1.77204 1.77496±0.21346 20.01
1.6 0.00125893 0.00408 1.77204 1.77484±0.20592 19.77
1.8 0.00125893 0.00407 1.77204 1.77463±0.19939 19.18
2.0 0.00125893 0.00412 1.77204 1.77449±0.19264 19.06
2.2 0.00125893 0.00400 1.86863 1.87121±0.20749 18.43
2.4 0.00125893 0.00404 1.86863 1.87106±0.20207 18.74

curvature

2.6 0.00125893 0.00405 1.86863 1.87098±0.19747 20.51

Table 4.12: Comparisonof thedifferent regularizationapproaches for the right lung. “Hy-
per” stands for the hyperelastic regularizer (diffusive + volume control term). Note that
the surface controlling term is not yet implemented in MeVisLab which is why 𝛼2 is con-
stantly 0 and doesn’t appear in the table. The best results of the error measure for each
regularizer approach are marked in yellow.

Looking at table 4.12, the smallest error is given by the curvature regularizerwith vol-
ume controlling term with 𝛼1 = 2.2 and 𝛼3 = 0, 00125893. Additionally, this approach
also yielded the shortest computation time.
Analogously to the left lung registration, the smallest deviation of the Jacobian determi-
nants is given by the diffusive regularizer.
Comparing the registration of the two lung halves, the registration of the right lung leads
to a smaller error in general while having a longer computation time. On one hand this is
due to the expected more complex movement of the left lung and on the other hand the
right lung is bigger as the left lung in general and therefore it takesmore time to compute
the deformation.
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What is also interesting to see, is that the smallest error for the hyperelastic regu-
larization approach is achieved by 𝛼1 = 0.2 for the right lung and therefore we expect a
much smoother deformation as the one generated by the hyperelastic regularizer for the
left lung.

(a) diffusive (b) hyperelastic (c) curvature (d) curvature + volume
control

(e) diffusive (f) hyperelastic (g) curvature (h) curvature + volume
control

Figure 4.13: Registration outputs of the different registration approaches highlighted in
table 4.12. a)-d) show the deformed template images T (y) and e)-h) the difference of the
deformed template and reference images T (y) − R . From left to right: diffusive with
𝛼 = 1.0, hyperelastic with 𝛼1 = 0.2 and 𝛼3 = 0.00125893, curvature with 𝛼 = 1.0 and
curvature + volume controlling term with 𝛼1 = 2.2 and 𝛼3 = 0.00125893. The cursor
points at corresponding voxels.

Comparing the registration outcomes in figure 4.13 the deformed template image
generated by the diffusive regularizer, similar to the results infigure 4.10 for the left lung,
does not fit the reference label very well compared to the other approaches.
Regarding the difference images, for the right lung the small inner structures of the lungs
are best aligned by the hyperelastic and curvature with volume control regularizations
resulting in relatively even difference images compared to the others. In fact, it is hard
to spot a difference between the difference images in f) and h).
To further compare these two regularization methods, let’s have a look at figure 4.14.

– 40 –



4
Results

(a) Diffusive regularizer with 𝛼 = 1.0, error=0.016453
(b) Histogramm of the Jacobians for 𝛼 = 1.0

(c) Hyperelastic regularizer with 𝛼1 = 0.2 and 𝛼3 = 0.00125893, er-
ror=0.00523 (d) Histogramm of the Jacobians for 𝛼1 = 0.2 and 𝛼3 = 0.00125893

Figure 4.14: left: 3D bar plots of the Jacobians for comparison of the three regularization approaches that had the smallest error for
registering the right lung. A Jacobianof 1 representedbygreen coloring indicatesno volumechange, a Jacobianhigher than 1 represented
in warm colors (yellow and red) indicates volume expansion and Jacobians between 0 and 1 represented with blue coloring indicates
volume shrinkage. right: histogramm of the Jacobians and fitted normal density function in red.
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(e) Curvature regularizer with 𝛼 = 1.0, error=0.00149
(f) Histogramm of the Jacobians for 𝛼 = 1.0

(g) Curvature regularizer with 𝛼1 = 2.2 and volume control term with
𝛼3 = 0.00125893, error=0.00400 (h) Histogramm of the Jacobians for 𝛼1 = 2.2 and 𝛼3 = 0.00125893
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The deformations displayed as 3D bar plots in figure 4.14 are all relatively smooth
compared to the ones of the left lung in figure 4.11.
The behavior of the transformations generated by the diffusive and curvature regularizer
is analogous to the ones of the left lung. Although the registrations of the right lung gen-
erally led to better outcomes (more precise alignment) than the registrations of the left
lung.
As I mentioned earlier while describing the difference images in figure 4.13, the best
alignment of inner structures is achieved by the hyperelastic regularizer and the curva-
ture regularizer with volume controlling term. Therefore, I will now have a closer look at
the Jacobians of the deformations generated by these twomethods.
The biggest difference thatmeets the eye is along the boundary of the lung. The Jacobians
in c) imply volume expansion along the lung boundary (meaning the most outward lung
tissue inside of the pleural sack), whereas the Jacobians in g) imply no volume change
or small volume expansion along the boundary. Since we expect the main expansion of
the lungs take place in the internal lung tissue rather than the tissue along the bound-
ary as the outward expansion is limited by the pleural sack and rib cage, the deformation
yielded by the curvature regularizer with volume control seemsmore reasonable.

Best separated Registration vs. best registration of the whole lungs

I analogously investigated the results for the whole lung and will briefly list the best reg-
ularization approaches in table 4.15.
After I compared the image registration results and the 3D bar plots and histogramms of
the Jacobians I came to the conclusion that the approach with curvature regularizer and
volume controlling term leads to the most reasonable deformation for the whole lungs,
aswell. For this type of regularization the smallest error was achieved for 𝛼1 = 2.4 and
𝛼3 = 0.00125893.
The corresponding plots can be found in figure 4.16 and 4.17.

Diffusive vs. Curvature vs. Hyperelastic (whole)
regularizer 𝛼/𝛼1 𝛼3 error volume ratio Jacobian± STD runtime
diffusive 1.0 0.0 0.06224 1.91829 1.85652±0.06807 66.23
hyper 0.0 0.00125893 0.00841 1.91829 1.92342±0.32815 63.04

curvature 1.0 0.0 0.00503 1.91829 1.92096±0.35558 39.84
2.4 0.00125893 0.00576 1.91829 1.91919±0.23891 47.83

Table 4.15: Listing of the regularization approaches with the smallest error for the whole
lung. “Hyper” stands for the hyperelastic regularizer (diffusive + volume control term).
Note that theweight for the surface controlling term𝛼2 is constantly 0 anddoesn’t appear
in the table.

Finally, I will compare the best image registration of the whole lung with the best
separated registration individually optimized for the left and right lung. Since the re-
search goal is to use the Jacobian determinants to predict the regional volume change I
will compare the registration of thewhole lungwith the separated registration on amore
regional level. Therefore, I will list the registration results for the 5 lung lobes (region 1-5)

– 43 –



4 Results

(a) Deformed template T (y) curvature +
volume control

(b) DifferenceT (y)−R curvature + volume
control

Figure 4.16: Registration outputs for 𝛼1 = 2.4 and 𝛼3 = 0.00125893. The cursor points at
corresponding voxels.

in order to see if the separated registration of the lungs yields a more precise prediction
of volume change on a regional level than the registration of the whole lung.

The tables 4.18-4.22 show, that the error for the lung lobes 2,3 and 4 could be reduced
by the separated registration.
What can also be read from the tables is that the lung lobe labeled with 5 in the left lung
caused the largest error. It is also where the most movement or regional volume change
takes place as the volume ratio is higher than 2 implying an expansion tomore than twice
the initial volume in expiration.

As a conclusion the separated registration shows thepotential of amore regional reg-
istration in order to get amore precise prediction for regional volume change and there-
fore an individual registration of the 5 lung lobes comes into consideration.
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(a) Curvature regularizer with 𝛼1 = 2.4 and volume control term with 𝛼3 = 0.00125893,
error=0.00576

(b) Histogramm of the Jacobians for 𝛼1 = 2.4 and 𝛼3 = 0.00125893

Figure 4.17: 3D bar plot and histogramm of the Jacobians of the best regularization ap-
proach for the whole lung. A Jacobian of 1 represented by green coloring indicates no
volume change, a Jacobian higher than 1 represented in warm colors (yellow and red) in-
dicates volume expansion and Jacobians between 0 and 1 represented with blue coloring
indicates volume shrinkage. A normal density function (red) is fitted to the histogramm.

Separated vs. whole lung registration region 1
registration method error volume ratio Jacobian± STD

whole 0.04851 1.84888 1.85896±0.16260
separated 0.05012 1.84888 1.85988±0.17791

Table 4.18: Results for the separated and whole lung registration in region 1 (lung lobe
labeled with 1 in the right lung)
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Separated vs. whole lung registration region 2
registration method error volume ratio Jacobian± STD

whole 0.09383 1.78471 1.73967±0.14236
separated 0.08727 1.78471 1.73952±0.12965

Table 4.19: Results for the separated and whole lung registration in region 2 (lung lobe
labeled with 2 in the right lung)

Separated vs. whole lung registration region 3
registration method error volume ratio Jacobian± STD

whole 0.05159 1.95803 1.98281±0.22348
separated 0.04783 1.95803 1.98274±0.23707

Table 4.20: Results for the separated and whole lung registration in region 3 (lung lobe
labeled with 3 in the right lung)

Separated vs. whole lung registration region 4
registration method error volume ratio Jacobian± STD

whole 0.06084 1.94613 1.90859±0.18858
separated 0.05313 1.84431 1.81014±0.26676

Table 4.21: Results for the separated and whole lung registration in region 4 (lung lobe
labeled with 4 in the left lung)

Separated vs. whole lung registration region 5
registration method error volume ratio Jacobian± STD

whole 0.10826 2.06559 2.12049±0.37941
separated 0.12210 2.04086 2.06673±0.66660

Table 4.22: Results for the separated and whole lung registration in region 5 (lung lobe
labeled with 5 in the left lung)
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5
Discussion and Conclusion

In this chapter Iwill conclude the results I presented in the chapter before anddiscuss the
hypotheses from section 2.7 aswell as the execution of the experiments. Additionally, I’m
going to comment on the research goal and the outlook regarding the research project.

5.1 Discussion

In this section Iwill first discuss the outcomes for the different hypotheses I set up before
the experiments, then I will go into detail about the execution of the experiments and
critically assess my approaches.

Hypothesis 1: separated vs. whole lung registration

Regarding the first hypothesis the results in section 4.2 and 4.4 show, that the separated
registrationoverall leads to a smaller error and faster computation. Additionally, the sep-
arated registration allows for an individual optimization for the left and right lung. The
results in tables 4.9 and 4.12 confirm that the left and right lung in fact differ in their be-
havior. While the registration of the right lung seems relatively stable in the sense that
the different regularization approaches yield comparably good registration results for all
tested parameters, the registration of the left lung seemsmore complex and therefore the
registration results vary more.
All observations indicate that a separated registration is reasonable and can lead to a
more precise representation of the regional volume change of the lungs. Although the
results tend to support the hypothesis I would even suggest a lobe-wise registration, es-
pecially for the left lung to see if the approachof amore regional registration is reasonable
regarding the research goal.

Hypothesis 2: VNC vs. 8-bit images

The idea behind the second hypothesis was to simulate the features of the pleural sack
by masking the images with the corresponding labels and therefore prevent folding at
the boundary of the lungs. Additionally, by converting the images into a 8-bit format we
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wanted to achieve a reduction of the requiredmemory space and an improvement of the
alignment of the inner structures like blood vessels and bronchi as the 8-bit images are
higher in contrast. Higher contrast implies stronger edges of the small structures which
then can be alignedmore easily.
The results in section 4.1 showed that the registration of the 8-bit images led to a smaller
error and deviation implying a smoother deformation. The examples for the deformed
template and difference images in figure 4.3 showed that the registration outcomes are
similar but the registrationof the8-bit imagewasmoreprecise. Moreprecise in the sense
that the overhang of the deformed template and the reference labelwas smaller and there
were less deviations in the alignment of the inner structures.
Therefore, the results strengthend the hypothesis.

Hypothesis 3: Regularization

The most reasonable results were achieved by the curvature regularizer with an added
volume controlling term.
Against the expectations, the hyperelastic approach did not lead to a faster computation
time or a significantly smaller error. One problem that occured with the defined error
measure was that the best results for left (and whole) lung were achieved by the hypere-
lastic regularizerwith𝛼1 = 0.0. Since the errormeasures thedistance between the actual
volume ratio and the mean Jacobian value it is expected that a registration only regular-
ized by a volume controlling term yields a good prediction of the regional volume change
but in this case it did not lead to a smooth deformation. For the registration of the right
lung the hyperelastic regularizer achieved the best result for 𝛼 = 0.2 and therefore led to
a smoother deformation as for the left lung which can be seen in figure 4.14 showing the
potential of the hyperelastic approach. I could not show that the hyperelastic regularizer
is better or more precise for pulmonary image registration and predicting the regional
volume change than the other approaches.
The curvature regularizationwith volume control overall provided satisfying registration
results and lowcomputation time,which is analogous to the regularizationapproachem-
ployed by the authors of (Ruhaak et al., 2017) whose algorithm ranked first in the EM-
PIRE10 challenge.

Hypothesis 4: NGF vs. SSD

Since the lungCT scans donotmeet the requirements for the SSDdistancemeasurement
because the absolute intensity values of the expirational and inspirational images are not
comparable due to the change in density caused by the inflowing air, it was expected that
a registration with SSD does not yield a good alignment of the inner structures of the
lungs.
This assertion could be verified in figures 4.7 and 4.8 and I could also show that the NGF
distance measure is suitable for lung image registration strengthening the hypothesis.
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Experiments

Regarding the performed experiments I’m going to address some sources of errors and
challenges I had to overcome during the process.
First, the error measure I defined for the experiments was chosen based on the idea that
the mean value of the Jacobian determinants should be equal to the volume ratio of the
inspirational and expirational lungs. The definition I chose was simple and all in all the
registration approaches resulting in a reasonable deformation also lead to a small error.
A drawback of this error measure was that a small error value did not guarantee a trans-
formation with good features (e.g. continuous, diffeomorphic) and therefore leading to
unsatisfying results (see results for diffusive and hyperelastic regularizer). In order to
investigate the volume change on a more regional level an error measure based on the
lung lobes, e.g. comparing the volume ratio and mean Jacobian for the individual lung
lobes, could be purposeful. Another idea was to include information about the distances
of adjacent Jacobians in order to penalize unsmooth deformations.
Considering the optimization of the regularization I could have tested more parameters
at smaller intervalls byfirst testing the parameters on a small batch of images beforehand
instead of using all available patient data. Additionally, it would have been interesting to
see a comparison of the different regularization approaches on an example that yields an
above average error.
One challenge I had to overcomewas that due to technical issues during the experiments
I lost someof the patient data (CT scans taken at follow-up examination)which iswhy the
volume ratio in the results varies. I decided to include the volume ratio in all tables so that
it can be compared to the mean value of the Jacobians. This could imply that some of the
results are biased. Since the error values of the smaller data set do not vary much from
the results of the original data set and I still used data from every patient the results still
seem significant. An idea to clear up the results would be to consider only every second
result of the 138 patient data, thus reducing the data set to 69 patients for the analysis.
Leaving out the follow-up examinations would lead to uniform volume ratios (since the
follow-up data got lost), thus I would have been able to repeat the experiment with more
patient data afterwards.
Nevertheless, the experiments led to reasonable and satisfying results.
In conclusion, besides the implementation of the previously missing surface controlling
term of the hyperelastic regularization approach in MeVisLab it would be interesting to
see if a lobe-wise registration potentially leads to a more precise prediction of the re-
gional volume change of the lungs. Finally, defining amore complex errormeasure could
be useful to better detect reasonability of the computed deformations.

5.2 Conclusion of the Research Goal

To answer the research question of this thesis if the mathematical model of image reg-
istration is able to simulate the pulmonary movement in such a way that the resulting
Jacobian determinants of the deformation field can serve as a surrogate for regional ven-
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tilation, I would say yes. Although there is no option to compare the computed deforma-
tionwith some sort of groundtruth or actualmovement of the lungs I could show that the
registration network is able to register the lungs in an efficient and preciseway. The opti-
mized registration network was able to generatemean error values below 0.01 for a total
of 138 sets of patient data where the error value represents the average distance between
the by the Jacobians predicted volume ratio and the actual volume ratio of the lungs.
The fact that researchers could already show that CT-based regional ventilation has the
potential to serve as an early imagingmarker for various lung diseases (Fuld et al., 2008)
(Scharm et al., 2021) suggests that the clinical use of precise and efficient pulmonary
imaging registration could have a significant effect on the diagnosis of these diseases.
For further validation of the results produced within this thesis a comparison of the re-
sults with the pulmonary function test data of the patients is planned. Additionally, the
efficiency of the registration network (precision and speed) will be compared with a pro-
totype implemented in ANTs (Advanced Normalization Tools).

5.3 Outlook

Finally, in this section I’m going to give a short outlook onwhat are the next steps for this
research project and conclude this thesis in a few sentences.
As I alreadymentioned in the introduction,onegoal of this researchproject is to integrate
the image registration network into an automatic work flow to process large amounts of
patient data. Thiswill include the automatic preprocessingof theCT scans andgenerated
label images, the pulmonary image registration networkwith the Jacobian determinants
as output and a vizualisation using ITK-SNAP (Yushkevich et al., 2006). This work flow
will be used for a clinical study on healthy patients in order to calculate reference values
for regional ventilationof the lungs. Theultimategoal is to implement a software applica-
tion for CT scanners that simplifies the detection of abnormalities of the lung ventilation
indicated by deviation from the reference values generated by the clinical study. Whether
this finally leads to a faster diagnosis and therefore to a better outcome for the patients
has to be shown in follow-up studies comparing the novel registration-based diagnosis
tool to the standard procedure.
Additionally, the tool can be extended for example by adding lung perfusion information
in order to cover more types of diseases.
In conclusion, this thesis presented reasonable results for pulmonary image registration
generating a good representation of the volume change by the Jacobian determinants.
The results also reflected howcrucial the choice of themathematicalmodel and especially
the choice of the regularization is in order to get reasonable outcomes. In the future of
imaging-based diagnosis image registration has the potential to be employed in many
other clinical applications.
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