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Abstract

Vessel segmentation is an important tool in medical applications such as diagnosis, treat-
ment delivery and prognosis formulation and evaluation. It is also a central part of the
research project presented in this work, which focuses on assessing liver function in pa-
tients with primary sclerosing cholangitis based on magnetic resonance data of patients.
The aim is to investigate whether an automated approach of liver function estimation
can replace a manual region-of-interest-based analysis. In this context, vessel segmen-
tation helps to obtain a segmentation of the pure liver parenchyma, leading to a more
accurate computation of local liver function. This thesis presents the development of
an algorithm for automatic liver vessel segmentation which can be applied within this
project. Furthermore, the developed model as well as the whole workflow for liver func-
tion computation is evaluated in comparison to manual measurements. The results of
the automatic approach show high correlation with the manual measurements, indicating
that this is a promising approach for the analysis of hepatobiliary function.

Kurzfassung

Die Segmentierung von Blutgefidfien ist ein wichtiger Bestandteil in vielen medizinischen
Anwendungen, wie Diagnose, Beurteilung des Behandlungsverlaufs und bei der Erstel-
lung und Auswertung von Prognosen. Sie ist auch ein zentraler Teil des Forschungspro-
jektes, das in dieser Arbeit présentiert wird und sich mit der Bewertung der Leber-
funktion anhand von Magnetresonanz-Tomographie Daten von Patienten mit primér
sklerosierender Cholangitis beschéftigt. Ziel ist es, herauszufinden, ob ein automa-
tisierter Ansatz zur Schitzung der Leberfunktion die manuelle "Region-of-Interest'-
basierte Analyse ersetzen kann. In diesem Kontext kann mithilfe einer Geféfisegmen-
tierung das reine Lebergewebe segmentiert werden, was eine genauere Berechnung der
lokalen Leberfunktion ermoglicht. Diese Arbeit beschreibt die Entwicklung eines Al-
gorithmus zur automatisierten Segmentierung der Leber-Gefdafle fir die Anwendung
in diesem Projekt. Auflerdem wird das entwickelte Modell sowie der gesamte Work-
flow zur Leberfunktionsberechnung im Vergleich zu manuellen Messungen ausgewertet.
Die Ergebnisse des automatisierten Ansatzes liefern hohe Korrelationswerte mit den
manuellen Messungen. Dies zeigt, wie vielversprechend dieser Ansatz fiir die Analyse
der Leberfunktion ist.
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Chapter 1: Introduction

1.1 Motivation

The assessment of liver function plays an important role in diagnosing patients with
chronic liver disease such as primary sclerosing cholangitis (PSC). In recent years, the
computation of liver function based on manually drawn regions of interest (ROIs) in
magnetic resonance imaging (MRI) data has emerged as an alternative to medical scores
based on blood values. This is a promising approach, as it provides not only global but
also local information of the liver function as visualized in Figure [T} In this project, it
is investigated whether an automatic workflow for the computation of liver function on
MRI data can replace the ROI-based analysis. This thesis is complemented by the work
of a medical student who performed the manual measurements of liver function and the
evaluation of the automated workflow from a clinical point of view.

In the context of the automatic workflow, vessel segmentation plays an important role.
The main focus of this Master’s thesis is the development of a vessel segmentation model
based on Deep Learning (DL), optimizing the automatic workflow for liver function com-
putation. The output of the model is aimed to be subtracted from a liver segmentation
mask to provide a segmentation of pure liver tissue. This application differs from the
aim of existing vessel segmentation models that are mainly developed to visualize the
course of the vessel structure, e.g., for operation planning. The new application requires
to prefer overestimation of the segmentation to underestimation. This is the main chal-
lenge addressed in the development of the new model. Other challenges addressed in
this thesis are the complex structure of the vessels and the application of the model
on MRI data, in contrast to other acquisition processes, as this comes with intensity
inhomogeneities that render learning more difficult.

1.2 Contribution

The following section [I.3] provides a brief overview of the medical background to this
project. In particular, the function of the liver as a human organ and important as-
pects of its structure relevant for the following chapters are addressed. Furthermore,
some information on the liver disease PSC is given. In section the current state
of research for the assessment of liver function in PSC patients is summarized. Section
[I.5] presents the MRI data of PSC patients and control group used for the evaluation
of the liver function computation and the dataset used for the training and evaluation
of the vessel segmentation models. In section the computational environment is
described including the different steps in the CuraMate workflow for automatic liver
function computation.

The main part of this thesis is the development of a vessel segmentation model adapted
to the application in the workflow for computation of liver function. In chapter 2] the
development process is explained in detail. In section [2.I] the motivation and challenges
of the segmentation of vessels for the given application are presented. In section [2.2
an overview of existing vessel segmentation models is given. The following two sections
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Figure 1: On MR images not only global but also local liver function can be assessed
via manual set ROIs (image provided by Sina Dornbusch).

contain detailed information about the methods used for the development of the segmen-
tation model. For this, a baseline threshold segmentation is investigated in section [2.3]
As another more promising approach, a U-Net is trained with different preprocessing
methods and parameters as explained in section [2.4] Section [2.5] concerns the evaluation
of the vessel models on test data and the selection of the best models for additional
evaluation by the medical student. Based on this evaluation, the models are advanced
with two improvement methods described in a subsection of section 2.5

In chapter [3] the best vessel segmentation models are integrated into the full work-
flow, and their impact on the computation of liver function is evaluated. Furthermore,
the correlation results of the automatic approach with the manual measurements are
presented.

The last chapter [f] summarizes the evaluation and results of this work and provides
an outlook on potential future improvements.

1.3 Medical Background
1.3.1 Function and Structure of the Liver

The human liver fulfills many important functions including metabolism, production of
bile, filtration and storage of blood, storage of nutrients and blood clotting . The
anatomical structure of the liver plays a role in later sections of this work, particularly
with regard to its vascular system and the division of the liver into segments. Therefore,
a short overview is given in this section.

Three blood systems run through the liver: The portal vein (pv) carries blood from
gut, spleen and pancreas to the liver, the hepatic artery runs parallel to the pv carrying
oxygenated blood to the liver, and the hepatic vein (hv) drains blood from the liver into
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Figure 2: The liver contains three blood systems — the portal vein, the hepatic artery,
and the hepatic vein (image source: “Cenveo - Drawing Liver anatomy and vascular-

isation - English labels” at AnatomyTOOL.org by Cenveo, license: Creative Commons
Attribution).

the vena cava. The bile ducts (bd) run parallel to the portal vein as well, which plays a

role for the manual annotations described in section [14]. Figure [2 visualizes the
vessel structure.

In the context of this work, not only global but also local liver function is considered,
for which the liver is divided into smaller segments. Couinaud classifies the liver into
eight segments based on the vascular structure of the portal and hepatic vein systems
8]. This classification is visualized in Figure

The eight territories according to Couinaud are combined to four segments or two liver
lobes in . These classifications are presented in Table[l] It should be noted that liver
segment I is not included in the division into four sections, but is considered separately.

Anatomical term Couinaud segments
Left lateral section 11, 1T
Left medial section IVa, IVb

Right anterior section 'V, VIII
Right posterior section VI, VII
Left liver I-1V
Right liver V — VIII

Table 1: Relation between the eight liver segments according to Couinaud and the
division into four liver sections or two liver lobes (see also Figure (3)).

In this project, all three described classifications are applied and evaluated to bal-
ance segmentation quality and accuracy of the local assessment of liver function. The
motivation and evaluation are presented in more detail in chapter [3
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o~ Falciform ligament

Figure 3: The liver can be divided into eight segments by Couinaud based on the ves-
sel structure of the portal vein (PV) and the hepatic vein (HV). IVC denotes the in-
ferior vena cava (image source: “Radiopaedia - Drawing Hepatic segments - Number
labels” at AnatomyTOOL.org by Azza Elgendy, license: Creative Commons Attribution-
NonCommercial-ShareAlike; labeling of the vessel systems added for this thesis).

1.3.2 Primary Sclerosing Cholangitis

PSC is a chronic progressive liver disease that comes with inflammation of the bile ducts.
The illness is poorly understood so far, the causes are still unknown and the variable
course of the disease makes it difficult to diagnose. It is therefore also known as “black
box of hepatology” [37]. No medical therapy has been found for PSC yet, there is only
liver transplantation as last resort in case of malignancy . For diagnosis, MRI offers
the possibility to assess changes in the bile ducts in patients with PSC and to visualize
changes in the liver parenchyma, making it an important diagnostic tool for PSC .

1.4 Related Work: Liver Function

In clinical practice, the liver function of PSC patients at an advanced stage of the disease
can be assessed by medical scores . In recent years, the model for end-stage liver
disease (MELD) and the Mayo score have been widely used. These are based on various
blood parameters such as bilirubin, albumin or serum creatinine . These medical
scores can especially help to determine the stage of the disease and the timing of a liver
transplantation .




1.5 Data and Manual Ground Truth

In recent years, contrast-enhanced MRI has been investigated as an alternative method
for determining liver function. MRI is chosen as acquisition method since it provides a
good visualization of organs and soft tissues. In contrast to the medical scores mentioned
above, MRI allows assessing not only global but also local liver function. This is a great
advantage, as in PSC patients, certain liver segments can be more affected than others
[3].

In [2], different methods for signal intensity-based liver function measurement are pro-
posed, including Relative Enhancement (RE) and Normalization to a reference organ
such as the spleen or a muscle. They are based on the signal intensities of the MRI
volumes in native phase (SI,..) and of the volumes taken after contrast agent admin-
istration (SIppst). In this thesis, two liver function scores are of particular relevance.
Firstly, the change in signal intensity:

Slpost — Slpre. (1)
Secondly, the relative enhancement (RE), which is defined in [2] as

SIpost - SIpre

2
o (2)

For measuring the signal intensities, Schulze et al. [4§] describes the method of drawing
small ROIs manually in tissue-only regions of the liver. These ROIs can be defined in all
liver segments (as classified by Couinaud, see section [1.3.1]) to assess local liver function.
Such measurements are made and evaluated as part of this project by the medical student
(see Figure |1)) and compared to the measurements presented in [48] to evaluate inter-
reader variability and the value of the results as long-term prognostic biomarker in
patients with PSC. The manual measurements show good correlation with several blood
parameters and clinical outcomes. These results will be published in the medical part of
this project. In this thesis, it is considered if this manual approach can be replaced by
an automatic workflow. For this, the manual measurements serve as ground truth. The
process of determining manual measurements is visualized in the diagram in Figure [4

1.5 Data and Manual Ground Truth
1.5.1 Data for Liver Function Estimation

For the evaluation of liver function estimation, a historical patient cohort (March 2012
until March 2016) with 111 patients diagnosed with PSC (83 male, 28 female; mean age
45 years) has been provided by the Hannover Medical School [48]. For each patient,
the dataset includes two T1-weighted MRI volumes, a native sequence before and one
taken approximately 20 minutes after administration of the contrast agent (gadoxetate
disodium). Additionally, 141 patients (93 female, 48 male; mean age 47 years) were
chosen who fulfill the following necessary criteria to qualify as control group (February
2012 until January 2025): These are liver and kidney healthy patients at the age of 18
or older where both MRI phases have been taken and the contrast agent gadoxetate
disodium has been used.
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Manually drawn ROIs in the MR volume (see Figure [1)
- in each liver segment
- in native and hepatobiliary phase

h
Computation of mean liver function scores (e.g. RE)
based on the intensities values measured within the ROIs

b
Inter-reader variability:
Correlation with
measurements in [48]

Vv
Long-term prognostic biomarker:
Correlation with blood parameters
and clinical outcomes

v
Ground truth for the evaluation
of the automatic workflow

Figure 4: Process of determining manual measurements of liver function on MR images.
The aspects in the green boxes are evaluated by the medical student of this project. The
relation of the manual measurements to the automatic workflow (blue) is evaluated in
this thesis.

On both datasets, signal intensity measurements were performed manually by drawing
ROIs in every liver segment at corresponding positions before and after contrast agent
administration. For PSC data, two independent measurements by two readers were
performed. Furthermore, data on associated blood values, MELD score results and
clinical outcome is included.

For the evaluation of the automatic estimation of liver function in this work, the
manual measurements are used as ground truth values. The correlation with several
PSC specific surrogate parameters and clinical endpoints has been shown on PSC data
in the medical part of this project (not published yet).

1.5.2 Data for Training of the Vessel Segmentation Models

The SIRTOP dataset that is used in the supervised learning algorithm for the develop-
ment of a vessel segmentation model was originally provided by the Municipal Hospital
Dresden (internal dataset, utilized in [29]). It contains 69 MRI volumes and 93 computer
tomography (CT) volumes in the hepatobiliary phase (after contrast agent administra-
tion) obtained for patients scheduled to undergo a Selective Internal Radiation Therapy
(SIRT). These data contain various cases with large lesions, as SIRT is mainly per-
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formed on non-operable tumors [29]. This supports learning of image structures on data
of patients with liver disease. The dataset is annotated with masks for the two largest
vascular systems of the liver — hepatic and portal vein — and includes the bile ducts and
hepatic artery running parallel to the portal vein.

1.6 Computational Environment

For the computation of liver function, a team of Fraunhofer MEVIS implemented the
basic workflow within the browser-based toolkit CuraMate (formerly SATORI) [2§].
In this project, it has been further developed and now consists of the following steps:
First, the two MRI volumes of native phase (before contrast agent administration) and
the hepatobiliary phase (about 20 minutes after contrast agent administration) of the
patient dataset are selected and loaded into the viewer. Then, the native sequence is
registered to the hepatobiliary phase with elastic registration [56, [54].

For the segmentation of the liver, the DL model proposed by Haensch et al. in [15]
is applied. The calculation of liver territories is done using a DL algorithm which is
trained on annotated data, taking the liver segmentation as input. It is contour-based
and depends on the quality of the liver segmentation. The computation of the four liver
sections and the liver lobes are based on the same algorithm and merge the corresponding
segments (as described in section .

In the next step, lesions and vessels are segmented. For the segmentation of lesions,
there is a semi-automatic One-Click segmentation algorithm that computes the segmen-
tation based on a manually set seed point [16, [17]. The vessel segmentation model has
been developed in this thesis and is described in more detail in chapter [2]

The last step is the computation of liver function values based on the lesion- and
vessel-free segmentation of the liver. This is evaluated for each liver segment with the
two formulas for subtraction of signal intensities and relative enhancement (defined in
. Figure |5 shows snapshots of the workflow visualizing the different steps.
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Chapter 2: Vessel Segmentation

2.1 Motivation

The automatic computation of liver function on pure liver tissue requires a lesion- and
vessel-free segmentation of the liver. Existing liver and lesion segmentation approaches
are applied as described in section The model for automatic segmentation of liver
vessels on MRI is developed in this work. Compared to CT, there are much less vessel
segmentation models available for MRI so far [32, 5] and the application of vascular
segmentation as a tool to calculate pure liver tissue differs from the applications presented
in other research projects [5].

Three major challenges emerged during the development of the vascular model in this
work:

1. The geometry of vessels is more complex than other organs. Thus, their long
thin structures with different thickness and various branches are more difficult to
segment accurately [13].

2. The development of a segmentation model on MRI data is more challenging than
for other modalities such as CT. This is due to the acquisition process where
inhomogeneities in the magnetic field can lead to varying signal intensities resulting
in a nonuniform intensity distribution in MRI images [13].

3. The vessel segmentation model needs to fit to the application task as described
above. In this case, over-estimation rather than under-estimation is preferred to
remove as much vascular structure as possible from the tissue. This prevents the
segmentation of liver tissue remaining after subtraction from containing vessels
that could affect the subsequent calculation of liver function values.

This chapter explains how these challenges can be overcome with different data process-
ing methods and well-chosen parameters when training a U-Net based model.

2.2 Related Work: Vessel Segmentation

Vessel segmentation models are used in all stages of medical practice: diagnosis, treat-
ment planning, during the procedure, and for the evaluation of the treatment outcome.
A main application field of hepatic vascular segmentation models is the treatment of
liver cancer, where the knowledge of the exact vessel structure can help in planning
surgical procedures or radiotherapy [5]. For example in [29], an ML model for segmenta-
tion of hepatic artery was trained on CT data for planning a selective internal radiation
therapy. Other clinical application fields are the planning of liver transplantation [42] or
mixed reality technologies that offer live images to surgeons while operating [53|. In all
these applications, the focus is on the accuracy of the skeleton structure of the vessels
to understand the topology. The aim in this study differs from those applications, as
the ultimate purpose of the model output is to act as an additional mask on the liver
segmentation.

11
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Review papers [5, |40} 7] show a variety of vessel segmentation methods and differentiate
between Machine Learning (ML) models and non-ML models. Methods without ML are
mainly Hessian-based filters, threshold methods, region-growing and tracking methods.
Those approaches have been increasingly outperformed by ML-based methods in recent
years as comparisons between the results of the different methods have been shown [5,
24]. In |24], the authors compare two different methods for hv and pv segmentation
on CT data. It is shown that their DL-based algorithm (CNN) has superior accuracy
compared to the tracking-based algorithm and saves time. Both methods are based on
the three steps of semantic segmentation, extraction of the center voxels and a tracking
step.

Vessel segmentation models trained on CT data reach Dice Similarity Coefficient
(DSC) scores of 0.90 for portal vein and 0.94 for hepatic vein [24]. In comparison,
DL models based on MRI reach DSC scores of 0.63 & 0.09 (pv) and 0.53 £ 0.12 (hv) in
[64] where a nnU-Net was trained on single phase MRI and DSC values of 0.61 £ 0.03
(pv), 0.70 £ 0.05 (hv) and 0.58 £ 0.15 (bd) in [43] with training a Residual U-Net on
contrast-enhanced MRI. A very large DSC for MRI models with 0.87 + 0.01 is reached
in [65] with a two-stage two-stream graph attention U-Net (TTGA U-Net). This U-
Net contains a CNN that is trained to locate vessels as first-stage network. With a
3D simple linear iterative clustering algorithm, a graph structure is generated from the
segmentation results. The second-stage network extracts graph node features through
two parallel branches of a graph spatial attention network, weighting different image
areas and a graph channel attention network, weighting different image features. These
two streams are merged with a feature fusion module replacing skip connections of the
U-Net. The DSC scores of all models mentioned above are listed in Table 2l It should
be noted that the models were presented in different papers and were therefore trained
and evaluated on different datasets.

Model Modality DSC scores

U-Net [24] CT pv: 0.90, hv: 0.94

nnU-Net [64] MR pv: 0.63£0.09, hv: 0.53 £0.12

Res. U-Net [43] MR pv: 0.61 £0.03, hv: 0.70 £0.05, bd: 0.58 +0.15
TTGA U-Net [65] MR 0.87 +0.01

Table 2: Comparison of DSC scores of existing vessel segmentation models. The TTGA
U-Net shows the best DSC scores among the models for MR images.

In recent years, different types of U-Nets such as Residual U-Net [43], nnU-Net [19,
64] as well as other foundation models [61] have emerged. In this work, the 3D U-Net
architecture proposed in [6] is chosen as a basis for considering and evaluating different
preprocessing methods and loss functions.

12



2.4 Method: U-Net

2.3 Method: Threshold Segmentation

As basic method, in this work, a threshold segmentation on the SIRTOP dataset is
tested. Typically, a threshold is applied to the subtraction between the registered native
and hepatobiliary images. As there is no native phase of SIRTOP data available, the
arterial phase is used to be subtracted and the liver mask is applied to create a vessel
segmentation. Both phase volumes are normalized before subtraction. In Figure [6] the
result is visualized for different thresholds. The segmentation masks show many voxels
that are incorrectly labeled as vessels (false positives) and with increasing threshold the
number of voxels that are erroneously labeled as background (false negatives) increases.
Several vascular branches are discovered leading to mean metric values of, e.g., 0.13 for
recall as well as for precision for a threshold of 0.55. The box plots on the right of Figure
[0] are created on a dataset containing 15 patients of SIRTOP data which is also used as
test dataset in section[2.4] The choice of the metrics is explained in more detail in section
Clearly, there is potential for improvement of the vessel structure. Therefore, in
the following section, models trained with a U-Net architecture are proposed.

2.4 Method: U-Net

U-Net architecture

In this thesis, a U-Net structure is applied to develop a vessel segmentation model
fulfilling the criteria mentioned in section [2.1} The original U-Net architecture was
proposed by Ronneberger et al. in [45] and adapted to 3D input data in [6]. The
architecture of the U-Net used in this work is visualized in Figure[7] It has three scales.
At each scale, convolution layer and batch normalization [18] are applied, followed by
ReLU (Rectified Linear Unit) activations. For better generalization, spatial dropout [60]
is applied in the upstream path of the U-Net.

Implementation Details

The U-Net is trained based on an implementation template by Fraunhofer MEVIS using
the keras/tensorflow library. The individual loss functions are pre-defined by Fraunhofer
MEVIS as well and combined in different ways with various parameter settings in this
thesis. Pre- and postprocessing are implemented inside the research and development
platform MeVisLab [38]. The evaluation of the models, plots of metrics and Precision-
Recall curves are performed in Python.

2.4.1 Preprocessing

Data preparation
On the whole dataset, normalization and resampling is applied before further use. For
normalization of the image intensities, the 2nd and 98th percentiles of the voxel value
distribution are mapped to the range of 0 to 1 and afterwards, the data is clipped to the
interval [0, 1] to reduce artifacts.

The U-Net is trained on input data resampled to the voxel size 2mm X 2mm X 2 mm
as the original data predominantly has this resolution in the slice thickness direction
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(c) Threshold: 0.61
Figure 6: Results of the threshold segmentation on a sample of SIRTOP data for different
The number of true

thresholds (left). With increasing threshold values, the number of false positives (red)
decreases while the number of false negatives (green) increases.

positive voxels (yellow) remains low, which shows that these segmentation results are
not satisfactory. This can also be seen in the low metrics values of the box plots (right)
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Figure 7: U-Net structure used in this work for the development of vessel segmentation
models (template provided by Farina Kock and Felix Thielke).

and the chosen U-Net architecture assumes isotropic voxels for optimal performance.
Resampling is done with the Lanczos3 algorithm . The vessel mask is scaled to
the same size with the Nearest Neighbor method to guarantee that the label values are
maintained.

Data augmentation
Different augmentation techniques are applied to the patches to obtain a greater variety
of training data.

Augmentation Parameter Prob. per patch
Rotation rotation angle o € [—15, 15] 0.2
Multiplicative Brightness | multiplication factor ¢; € [0.75,1.25] 0.15
Contrast Transform multiplication factor ¢z € [0.75,1.25] 0.15
Gamma Transform v € [0.7,1.5] 0.3
Gaussian noise variance o1 € [0,0.1] 0.1
Gaussian blurring variance og € [0.5,1] 0.2
Low Resolution Transform | sampling factor s € [0.5, 1] 0.25

Table 3: Augmentation techniques and corresponding parameters applied on the training
dataset. The parameters are drawn from a uniform distribution on the specified interval.
The last column shows the probability of application to a patch. The augmentation
methods are also used in combination.

In the following, the augmentation techniques are defined in the way they are used in
this project. For the application, a MeVisLab module for data augmentation (provided
by Fraunhofer MEVIS) has been used with predefined values as listed in Table 3] This
module is based on the implementation and definitions in .
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Let sample z have mean T and minimum and maximum value z,,;, and Z,,q;. Then,
the rotation of the image is given by

Trotation(xa a) = Ryx (3)

where R, denotes the rotation matrix for angle o around all three axis.
For factor c1, the transformation for multiplicative brightness is given by

Tbrightness (ZE, Cl) =C X (4)

For changing the contrast of the input image, the contrast transform is used:

Teontrast (.1,‘, 02) = Chpx(c2 : (‘T - j) + E) (5)
Tmin Y < Tmin
with clipx(y) =<y Y € [Tmin, Tmaz) (6)

Tmaz Y > Tmax

where co denotes the brightness factor.
The gamma transform is applied on the normalized image, which results in the following
definition:

T — Tmin

v
Tgamma(xa '7) = < > : (:L‘maz — Tmin + 6) + Tmin (7)

Tmaz — Tmin T €
with € = 1 x 1077, This value would not be necessary for our dataset, as it does not
contain single-color images, but is implemented in this way by default.

Furthermore, the images are noised or blurred by the addition of Gaussian noise n with
variance o1,

Tnoise(xa Ul) =z+n, (8)
or the application of a Gaussian filter g,, with kernel size 2 - (batchsize - 02) + 1 and

variance oo,

Tblurring (.T, 0-2) =T * Joy- (9)

The Low Resolution Transformation is computed by downsampling the image with factor
s with the Nearest Neighbor method and subsequently, upsampling the result to original
size with bi-cubic spline interpolation.

2.4.2 Number of Labels

In section [I.3] the two largest vessel systems in the liver — hepatic and portal vein — are
described. In the SIRTOP dataset, the annotations distinguish between the two vessel
systems with two different labels. The models evaluated in this thesis are trained with
one joint label for “vessels” as for the application no differentiation between hepatic and
portal veins is necessary.

16



2.4 Method: U-Net

2.4.3 Loss Function

The loss function is the basis for learning the right structures in U-Nets as it measures
how similar the predicted segmentation is to the reference. It is the objective function to
be minimized by the optimizer and therefore decides how the network handles errors. In
recent years, several loss functions for different segmentation tasks have been proposed.
As described in |22, 35], the choice of the loss function can have a major impact on
the results of the network and it is important to adapt it to the application. A main
challenge is to account for input and output imbalance. As part of this thesis, various
loss functions are analyzed and evaluated. The focus here is on the challenges mentioned
in section 2.1} especially to develop a model that recognizes the long thin structures of
the vessels and over-estimates the segmentation rather than under-estimating it.

Combo Loss

A main challenge in many medical segmentation tasks and especially in segmenting ves-
sels is that the vessels are very small structures compared to the liver tissue. This results
in different class distributions of the two labels as there are typically more background
than foreground voxels. This is taken into account in region-based losses such as the
Dice loss [62]. The Dice loss is defined for binary reference y and prediction § as

sz']il Yi - Ui
Zi]\il Yi + Zi\;l Ui +e€

Lpice(y,9) =1 — (10)

where y; € {0,1} and §; € [0, 1] denote the value of y and ¢ in voxel i for i =1,..N. N
is the number of voxels of y and § and € is a small positive value to avoid division by
zero [57).
This loss function measures the overlap between predicted and ground truth region. The
loss function can be expressed as a fraction dependent on the number of true positive
(TP), false positive (FP), and false negative (FN) voxels. The sum over y; yields the
number of voxels annotated as vessels in the reference which is the number of TP and
FN. The sum over ; indicates the number of voxels labeled as vessels in the prediction
which is the number of TP and FP. This shows that the loss function is not affected by
the number of true negatives (TN) which would be large in case of input imbalance.
Nevertheless, using Dice loss as loss function can lead to an output imbalance. This
means that the model either segments too much or too less, because FP and FN are
treated equally in Dice loss. FP increases when FN decreases and the other way round.
This symmetry of FP and FN in Dice loss makes it difficult to improve the model with
regard to recall or precision [59].

In distribution-based loss functions such as cross entropy loss, the error between ground
truth and prediction is computed pixelwise and therefore offers a better trade-off between
FP and FN. The categorical cross entropy (CCE) loss is defined as

A 1 &
Leen(y,9) = =5 22 2 Gien(pic) (11)
ceCi=1
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where N denotes the number of voxels of y again and C is the set containing the class
labels. g; . is the binary ground truth value for voxel ¢ and class c,

1y =
gie=1{_ 7% forallie{l,..,N}. (12)
’ 0 else

Dic is the predicted “probability” for voxel i to have class label ¢ [62].
Considering only two labels for foreground and background, the CCE loss reduces to
binary cross entropy (BCE) [62] loss with C' = {0,1}

N
Loop(y:9) =~ 3 (i) + (1 - y) In(1 — 53] (13)
i=1

While the cross entropy loss function handles the output imbalance better, it does not
solve the problem of input imbalance here [59]: The sum of the pixel-wise errors depends
on the number of voxels with y; # ¢ for every class label ¢ € C. Therefore, if the number
of labeled voxels of the background class with label ¢ = 0 is significantly larger than
the number of class ¢ = 1, then, assuming similar probabilities, the sum 3" ; y; In(;) is
significantly larger than Zfil(l — ;) In(1 — g;). This results in an overrepresentation of
samples where background voxels are misclassified and therefore a sensitivity to frequent
class labels.

To handle both the input and output imbalance, a combination of Dice loss and BCE loss
is often used in segmentation tasks and proposed as Combo loss in [59]. This combined
loss function is defined as

Lcombo(y, J) = aLpice(y,9) + (1 —a)Lpce(y, ) (14)

for a weighting parameter a € (0,1). In [59], an additional weighting parameter £ is
included in the equation but has been set to 0.5 for the application in this thesis
as the weighting of FP and FN is regulated with various parameters in the following
section.

Focal Tversky loss

The Tversky loss function proposed by Salehi et al. in [46] is based on the Dice loss with
additional weighting of false positive and false negative which improves output balance.
It is defined as

LTversky(y7 ?)) =1-Th (y; Q) (15)
Zi]\il Gi.cPi,c

Sy GiePie + O Cy GieDic + BN Gighie + €

where ¢ = 1 denotes the class of the vessels, T'I. is the Tversky index for class ¢ and ¢

denotes the opposite class of ¢ [46]. This can solve the problem of equally treated FP
and FN and allows improvement of the model with special regard to recall or precision.

with T'1.(y,9) = (16)
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Thus, the recall of the model can be improved for this application and like this, enhances
the output structure to be overestimated rather than underestimated. In [1], the authors
propose the use of the Focal Tversky loss with additional exponent ~p:

1
L FocTver (y7 :’3) = Z [1 - TIC] RES (17)
ceC

for vr € [1, 3].
This improves handling of input imbalance as the parameter vr can equalize the influence
of background class by giving more weight to hard examples of foreground class.

Focal Loss
The same principle as in the Focal Tversky loss is applied to the CCE loss in the Focal
loss which is defined by
1 N
LFocal(y7 g) = N Z Z(l - pi,c)vng,c ln(pi,c) (18)

ceC i=1

proposed by Lin et al. in [33]. With the parameter v, harder examples of the foreground
class can be weighted more than samples from the background class. Therefore, output
imbalance can be avoided.

Skeleton Recall Loss
The Skeleton Recall loss is proposed by Kirchhoff et al. in [27] and is defined as

N
. i—1skel(gic) - pi,
LSkeletonRecall(yvy) =1- Z El y (gl C) - (19)

ceC Z’jbil Skel(gi,c)

skel(-) describes the operation of determining the skeleton of the structure. This is
realized by a MeVisLab module for skeletonization which is based on the publication by
Selle et al. [49]. The authors describe the method as a successively symmetrical erosion
of the surface voxels in such a way that the topology of the vessel structure is preserved.
The Skeleton Recall metric measures how much of the skeleton of the annotated vessel
structure is predicted as vessel in the model output. This loss function gives more weight
to the vessel structure itself and therefore, simplifies learning of long thin structures as
vessels.

Tested Loss Functions

Based on the above-mentioned advantages and disadvantages of the individual loss func-
tions, segmentation models with the following loss functions are trained as part of this
Master’s thesis.

1. The Combo loss is mainly used in existing models |21} 59] and therefore, has
been evaluated in this thesis to be comparable to these models.

2. The Tversky loss has been chosen as comparison to the Combo loss as it can be
considered as generalization of the Dice loss with improved output imbalance.
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Figure 8: In this slice of an MRI volume of the hepatobiliary phase of a PSC patient,
varying intensity values within the liver are visible, especially in the lower left.

3. The combination of Focal Tversky loss + Focal loss is considered as an al-
ternative to the Combo loss, where both Dice loss and BCE are generalized and
can be evaluated with different weighting parameters. This loss function is also
denoted as Hybrid Focal loss in [62].

4. The Skeleton Recall loss has been evaluated in combination with Focal Tver-
sky loss and Focal loss here. In existing models, it is often combined with the
Combo loss . However, as the combination of Focal Tversky loss and Focal loss
show better results for this application, the Skeleton Recall loss is combined with
these in this thesis.

All loss functions are evaluated with different parameters in section [2.5.1

2.4.4 Global Intensity Non-linear Augmentation

A striking feature in MRI images of the late phase of PSC patients are varying intensity
values within the liver tissue 3] as visualized in Figure To account for this in the vessel
segmentation model developed in this work, the application of the global intensity non-
linear (GIN) augmentation method presented in [44] is evaluated. GIN augmentation
transforms the input images into images with different intensity values to imitate various
acquisition methods and to pay more attention to the content, i.e., the shapes of the
anatomical structures, during training.

This is done via a shallow 3D convolutional network with the following structure:

1. The image of the training dataset on which GIN augmentation is performed is
denoted as input x.

2. A shallow multi-layer convolutional network is applied with a number of hidden
channels and hidden layers, each containing
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2.4 Method: U-Net

a. convolution with random kernels 6 selected from Gaussian distribution N'(0, I)
b. application of Leaky ReLU f(x) = max(0.1 -z, x) as non-linearity.

In the following, the output of the convolutional network is denoted as gév ().

3. The original image = and the output gév el(z) are combined linearly:

Go(z) = agh(z) + (1 — a)z.

4. Finally, the output is re-normalized to have the same Frobenius norm as the original
input:
go(x
go(z) = (@)

= — . lx|lp.
To@ylr 1

In this work, the MeVisLab module for GIN augmentation (provided by Fraunhofer
MEVIS) has been used with 2 hidden channels and 4 hidden layers in the convolutional
network. The kernel size is chosen as 1 in every layer, as there is a risk that the narrow
vascular structures will disappear when convolving with a larger kernel. While a convo-
lution with a kernel size of 1 is typically viewed as performing channel-wise scaling, the
application of LeakyReLU introduces nonlinear transformations that can produce out-
puts resembling different modalities. Therefore, the GIN augmentation method remains
effective even with this kernel size.

Another advantage of GIN augmentation is that a larger amount of data could be
used for training. Due to the independence of acquisition processes that the network
learns, CT images are suitable training data as well. Therefore, in this work, both MRI
and CT images of the SIRTOP dataset are used for training the models in which GIN
augmentation is used. GIN augmentation is applied to 50% of the training and validation
data. The test dataset is the same as described in section [2.4.6]still containing only MRI
data, because the application is specifically designed for this modality and to allow for
a meaningful comparison with other models.

2.4.5 N3: Nonparametric Nonuniform Intensity Normalization

The nonuniformity of signal intensities in MRI data appears due to inhomogeneity in the
main magnetic field and can result in 10 — 20% variations in image intensities. This has
little impact on visual assessment but can significantly influence the results of automatic
DL segmentation models [52].

Different methods exist to reduce intensity nonuniformity in MRI data, but the non-
parametric method for automatic correction of intensity nonuniformity (N3) proposed
by Sled et al. in [52] neither requires longer acquisition time nor further hardware, e.g.,
for measuring the radio frequency field, which makes it universally applicable.

For N3, the nonuniformity is modeled as a smooth multiplicative field f in

v(z) = u(x) - f(z) +n(z) (20)
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where v denotes the measured signal, u the true signal and n is white Gaussian noise
assumed to be independent of u. In the noise-free case, the equation simplifies with
a(z) = log(u(z)) to an additive model

d(z) = a(z) + f(z). (21)

Under the assumption that @ and f are independent or uncorrelated random variables,
the distribution V of o = @ + f is given by

V(o) = (F*U)(v) (22)

with U and F' the probability densities of @ and f . This characterizes the nonuniformity
distribution F' as blurring of the true intensity distribution U. Based on these theoretical
assumptions, the authors in [52] develop the N3 method which alternatingly estimates the
nonuniformity field f and the distribution U. The space of possible fields f is restricted
to be smooth and slowly varying and therefore, based on the evaluation of different MRI
data, the distribution F' is assumed to be approximately Gaussian. F' is approached by
deconvolution of Gaussian distributions from estimated U in each iteration. In this way,
the entire space of possible distributions for U corresponding to Gaussian distributions
of F' can be searched as every Gaussian distribution can be described as convolution of
two Gaussians. The method consists of the two following alternating iteration steps:

1. The first step is the estimation of the field f for given distribution U which is
realized by

fs(0) = s{0 — Elalo]} (23)

where the expected value E[4|0] of 4 given ¥ can be computed based on the dis-
tributions U and F' and the measured signal ¢ which is explained in more detail
in [52]. The subtraction o — E[¢|0] is computed at each location x and then, a
smoothing operator S is applied to remove high-frequency components, as f is
assumed to be smooth and slowly varying.

2. The second step is the estimation of the distribution U. For this, the convolution
in equation 22] is considered in the Fourier space, becoming a multiplication

F(V)=F(F)FU) (24)

where F(-) denotes the Fourier transform. Then, U can be estimated pointwise in
Fourier space with the following deconvolution filter

FF)”

N

F(V) (25)

where * denotes the complex conjugate and Z a constant term for limitation of the
magnitude.
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Figure 9: Original MRI image of a patient from the SIRTOP dataset (left) and results
after application of N3 (right), resulting in less inhomogeneity of the intensity values.

The distribution V' that is required for the computations in step 2 is estimated by a
triangular Parzen window based on histogram values with equal-size bins. To reduce
computational costs, the MRI data v is resampled to lower resolution.

In this work, a MeVisLab module for N3 (provided by Fraunhofer MEVIS) has been
used for the implementation. The subsampling factor has been chosen as 2. For his-
togram sharpening, the number of bins has been selected as 200 with a width of 0.15 for
the deconvolution kernel and a regularization of 0.01.

The N3 method offers the possibility to be applied on a masked area of the MRI
volume which could lead to even more compensation of the nonuniformity. Nevertheless,
in this work, the method is without mask as it was not yet certain how well the liver
segmentation algorithm would run on the PSC data in particular and therefore, without
liver mask, the vessel segmentation model is independent of the accuracy of any liver
segmentation model. Figure [9] shows an MR image before and after the application of
N3.

2.4.6 Training

To train the U-Net, the set of MRI volumes of SIRTOP data described in section [I.5.2]is
split into 46 samples for training, 8 samples for validation and 15 for test. The volumes
are divided into approximately 400.000 patches of size 128 x 128 x 128 for training and
approximately 100.000 patches of size 52 x 52 x 52 with zero-padding 20 x 20 x 20 for
validation. The batch size is chosen as 4 and the number of iterations as 25.000. In the
following, the optimizer and the learning rate used for training are described in more
detail.
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Optimizer
For the training of the U-Net, the NovoGrad algorithm is used as optimizer. NovoGrad
is an optimization algorithm based on stochastic gradient descent, which was proposed
by Ginsburg et al. in [12] and especially developed for the training of deep networks.
The idea of this optimization method is to combine the advantages of Adam [26] and
Stochastic Gradient Descent (SGD) with momentum [58] to create a method that per-
forms well for different DL tasks and is more robust to the choice of the initial learning
rate [12]. The authors show in [12] that NovoGrad performs equal or better than popular
algorithms such as SGD with momentum, Adam and AdamW. The main difference to
SGD and Adam is that the algorithm uses layer-wise gradient normalization to be more
robust to noisy gradients. This idea has been proposed in several papers, e.g., |63} 51]
and in case of NovoGrad is combined with the Adam method.

For each layer, new weights w1 are computed based on modified first moments mff
and second moments v} as known from the Adam algorithm. In iteration ¢ for layer I,
the following computation steps are performed:

v = B2 v+ (1= B2) - llgtl®, (26)

R | gi d.w 97

m; = Bl m; y + \/7 + Wil ( )
Vi + €

Wi =wh— X\ my. (28)

The variable g} contains the gradient gl = V;L(wy) of the loss function, ); is the learning
rate and (1, B2 and d are weighting parameters. In this work, the implementation from
the tensorflow library has been used with standard parameters 81 = 0.9, 8o = 0.999,
€ =1x1077 and d = 0.0. The learning rate \; choice is described in the following
paragraph.

Learning Rate
As learning rate, polynomial decay has been applied which is defined by
o Y

/\Z—)\o-(l—N) (29)
for i =1,..., N where N denotes the number of iterations. Ag is the initial learning rate
and p the power [39]. In this thesis, the power is chosen as p = 0.9 since this value
has been used in [34, 4] and showed good performance regarding training duration and
model accuracy. The number of iterations is N = 25000. For Ag, two different values
are tested, A\g € {0.01,0.1}, but no major impact on the result is observed. In Figure
the loss plot is compared for A\g = 0.01 and Ay = 0.1 for the Combo loss function. It can
be seen that the resulting training and validation loss is nearly the same for both values,
although for A\g = 0.1 the loss curve is more noisy at the beginning. The evaluation
on the test data indicates nearly the same results as shown in the comparison plots
of various metrics between reference and prediction in Figure The mean metrics
values are the same apart from a deviation of 0.01 in the recall value and there are
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: Loss evolution for learning rate Ay = 0.01 (above) and Ag = 0.1 (below) using
the Combo loss. The evolution for Ay = 0.1 shows strong variations in training and
validation loss, while for A\g = 0.1 the evolutions are much smoother. Nevertheless, the
resulting values after 25000 iterations are nearly the same.
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Figure 11: The evaluation results of the models trained with the Combo loss for learning
rate Ao = 0.01 (left) and Ao = 0.1 (right) show only minor differences in the variance

and median values of the box plots. The mean metrics values (listed with underscore in
the labels) are — apart from a minimal deviation in the recall value — the same (metrics

defined in section [2.5.1]).
only minor differences in the variance and median values over the test dataset. In [12],
the robustness of NovoGrad to the initial learning rate is confirmed. Therefore, in the

following, Ag is chosen as 0.01 for all trainings.
Threshold method for uncalibrated output
In [47], it is shown that deep learning models can have inferior calibrated probabilities as
output under certain conditions such as application of Dice loss or batch normalization.

In , the authors propose a temperature calibration to avoid this problem. However,
in this thesis, the simple method of varying the threshold after the softmax function

is evaluated. This threshold is typically at 0.5: voxels with output values above this
threshold are labeled as vessels and below as background. As in this application high

recall is required, a lower threshold than 0.5 is chosen to receive more voxels labeled as

vessels.
In section different thresholds are applied and studied based on Precision-Recall
curves and a suitable threshold is chosen for the clinical evaluation of the models.
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2.5 Evaluation of Vessel Segmentation Models
2.5.1 Evaluation on Test Data

In this thesis, a U-Net with 9 loss function parameter settings is trained on the SIRTOP
dataset presented in section The dataset is preprocessed in three different ways:
the MRI dataset with preprocessing methods as described in section [2.4.1] the same
dataset with additionally N3 applied, and the MRI dataset combined with CT data and
GIN augmentation applied. This results in a total of 27 models as listed in Table[d For
the evaluation on the test dataset, for each model eight different metrics are computed.
The selection of suitable metrics is presented in the following paragraph. Based on the
results on test data, the best models are selected for a clinical evaluation performed by
the medical student of this project on the dataset for liver function computation. This
evaluation is presented in section [2.5.2]

Metrics for Evaluation

The choice of the metrics for evaluation of segmentation results depends on the task.
For the evaluation on the test dataset, the following metrics are considered.

A widely used metric for semantic segmentation tasks is the DSC [9]. It measures the
overlap between reference y and prediction ¢ and is defined as

_2-lynyl

P = Tl

(30)

where |y| denotes the number of voxels in y with value 1 (analog for §) and |y N §| the
number of voxels with value 1 in both volumes z and y [36].

The DSC is based on the two metrics for measuring the precision and the recall [36] that
are defined as

N lyng
Tprec(yay> = ’ |Q‘ ’ (31)

. Ny
Trecall(ya y) = ’y|yy’ . (32)

Tyrec evaluates what fraction of the voxels that are predicted as vessels are in fact
annotated as vessels in the ground truth. T,...; indicates what fraction of the voxels
labeled as vessels in the reference are predicted as vessels.

However, in the presence of very small structures as given in case of vessel segmentation,
DSC, recall and precision can be inadequate [36, 50] as thin structures have less impact
on the metrics in comparison to larger regions.

In [50], the authors propose a variant of DSC for measuring the overlap between
two tubular-shaped structures, the centerlineDice (clDice). It is based on the Topology
Precision metric Ty pre. (skelPrecision) and the Topology Sensitivity metric TskeiRrecail
(skelRecall) which are computed based on the skeleton of the reference (s(y)) and pre-
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dicted segmentation (s(9)):

o lyns@)l
T =77 33
ClPTeC(y7 y) ‘S(’g)‘ ( )
o Isy) gl
T =2 7 34
skelRecall (f% y) ‘S(y)‘ ( )
With Ty prec and TsieiRecail, clDice is defined as
2-T y) - T J
chice(y, @) _ clPrec(ya Z/) skel Recall (yv y) (35)

TclPrec(y7 Z?) + TskelRecall (y7 :&)

and ClDice(y, @) =0 if TClPrec(y7 @) + TskelRecall(ya Q) =0 I50]
In addition, False Discovery Rate (FDR) and False Negative Rate (FNR) are considered
in the context of skeleton metrics. They are defined as

FDR(y, @) =1~ TclPrec(y7 Zj) (36)
FNR(?J, .79) =1- TskelRecall(yy ?j) (37)

As mentioned above, for the segmentation of vessels, it can be more adequate to con-
sider skeleton metrics, as they give more weight to small structures. However, in this
application, the evaluation of the metrics without skeleton — recall, precision and DSC
— can still be interesting as not only the main vascular structure and branching pattern
but also the boundary areas of the vessels are relevant. Therefore, in the following all
metrics defined above are considered.

For the selection of the best model, the focus is on the recall and skelRecall metrics
as they express how many of the (skeleton) voxels that are annotated as vessels are
predicted to be vessels and as explained in section [2.1] overestimation is preferred in
the application of this project. In the skelRecall, small thin structures are given more
weights. In the recall metric, the accuracy near the boundary of the segmentation is also
considered.

Impact of preprocessing methods

The model with the highest recall value — Model 7a — is trained on the dataset pre-
processed with GIN augmentation. In general, it is observed that GIN augmentation
increases the recall values in all models where Focal Tversky loss and Focal loss are
included in the loss function. As these loss functions have already larger recall values in
comparison to models 1 and 2, GIN augmentation seems to strengthen the effect of high
recall values.

However, increasing recall values come with decreasing precision values. The plot in
Figure 12| corresponding to the model with the largest recall shows a very low precision
of 0.05 and the segmentation on the MRI image in Figure [[3]indicates that the predicted
segmentation contains a lot of tissue outside of the liver. This phenomenon appears in
several models in this work especially in those with GIN augmentation combined with
the Skeleton Recall loss contained in loss function (Model 6a to 9a) and the one with
higher weighting of FP (larger value for f7) in Tversky loss (Model 4a).
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Model Lossfunction Parameter GIN N3 Liver Dice Recall Precision skelRec skelPrec  FDR  FNR clDice
la dice+cce a=0.5, b=0.5 v oox X 0.49 0.45 0.54 038 0.57 043 0.62 0.45
la dice+cce a=0.5, b=0.5 voox v 053 051 059 038 065 035 062 047
1b dice+cce a=0.5, b=0.5 x voox 051 0.46 06 041 063 037 059 049
1b dice+cce a=0.5, b=0.5 x v v 0.55 0.51 06 041 0.65 035 0.59 0.49
1c dice+cce a=0.5, 5 x x x 0.52 0.46 0.62 0.4 0.65 0.35 0.6 0.48
1c dice+cce a=0.5, b=0.5 x x v 0.56 0.52 0.63 0.41 0.66 0.34 0.59 0.49
2a tversky o;=03,B;=0.7,y;=1 v ox X 049 0.55 0.46 0.47 0.53 047 0.53 0.48
2a tversky 0;=0.3,B3;=0.7,y;=1 voox v 0.52 0.59 049 047 0.58 0.42 0.53 0.5
2b tversky ar=0.3,B;=0.7,y;=1 x voox 0.53 0.57 051 052 058 042 048 053
2b tversky 0r=0.3,B3;=0.7,y;=1 x v v 0.56 0.62 0.52 0.52 0.59 041 048 0.54
2c tversky 0;=0.3,B;=0.7,y;=1 x x x 0.54 0.55 0.54 0.47 0.6 04 053 052
2c tversky 0r=0.3,B3;=0.7,y;=1 x x v 0.57 0.6 0.55 0.47 0.61 039 0.53 0.52
3a tversky+focal a=0.5, b=0.5, a;=0.3, B; = 0.7, yr = 1, y;=2 voox x 0.51 0.58 046 0.49 0.5 0.5 0.51 0.48
3a tversky+focal a=0.5,b=0.5,a7;=0.3, B;=0.7, yr =1, y=2 voox v 0.55 0.62 05 049 0.58 042 0.51 0.52
3b tversky+focal a=0.5, b=0.5, a;=0.3, B; = 0.7, yr = 1, y=2 x v ox 0.53 0.56 0.53 0.51 0.59 0.41 0.49 0.54
3b tversky+focal a=0.5, b=0.5, a;=0.3, B; = 0.7, yr = 1, y=2 x v v 0.56 0.6 0.54 0.51 0.61 039 049 0.54
3c tversky+focal a=0.5, b=0.5, a;=0.3, B; = 0.7, yr = 1, y=2 x X x 0.52 0.54 0.52 0.49 0.57 043 0.51 0.52
3c tversky+focal a=0.5, b=0.5, a;=0.3, ;= 0.7, yr = 1, y;=2 x x v 0.55 0.59 0.53 0.49 059 041 051 0.52
4a tversky+focal a=0.5, b=0.5, a; = 0.1, B; = 0.9, yr = 2, y=2 v ox X 0.3 0.7 0.2 0.64 0.18 0.82 0.36 0.27
4a tversky+focal a=0.5, b=0.5, a;=0.1, B; = 0.9, y; = 2, y;=2 voox v 049 073 037 0.64 047 053 0.36 0.53
4b tversky+focal a=0.5, b=0.5, a; = 0.1, B; = 0.9, yr = 2, y=2 x v x 0.51 0.67 041 0.63 0.51 049 0.37 0.55
4b tversky+focal a=0.5, b=0.5, ar=0.1, By = 0.9, yr = 2, yy=2 x v v 053 071 043 063 053 047 037 057
4c tversky+focal a=0.5, b=0.5, a;=0.1, B;=0.9, y; = 2, ;=2 x x X 0.5 0.66 0.41 0.61 0.5 0.5 039 0.54
4c tversky+focal a=0.5, b=0.5, a;=0.1, B; = 0.9, y; = 2, y;=2 x x 4 0.52 0.71 042 061 0.53 047 0.39 0.56
5a tversky+focal a=0.5, b=0.5, a; = 0.1, B; = 0.9, yr = 3, y=2 v ox X 042 071 0.3 0.65 035 0.65 0.35 0.44
5a tversky+focal a=0.5, b=0.5, a;=0.1, B; = 0.9, y; = 3, y;=2 voox 4 048 0.74 037 0.65 045 055 035 0.52
5b tversky+focal a=0.5, b=0.5, a; = 0.1, B; = 0.9, y; = 3, y=2 X voox 0.5 0.67 041 0.62 0.52 048 038 0.56
Sb tversky+focal a=0.5, b=0.5, a; = 0.1, B; = 0.9, y; = 3, y=2 x v v 052 071 042 0.62 0.54 0.46 0.38 0.57
5¢c tversky+focal a=0.5, b=0.5, a; = 0.1, B; = 0.9, y; = 3, y;=2 x x X 0.5 0.65 0.42 0.6 0.5 0.5 0.4 0.53
5c tversky+focal a=0.5, b=0.5, a; = 0.1, B; = 0.9, y; = 3, y=2 X x v 0.52 0.69 0.43 0.6 0.53 047 0.4 0.55
6a tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.3, B; = 0.7, y; = 1, y;=2 v x X 0.19 0.72 0.12 0.73 0.1 09 0.27 0.17
6a tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.3, By = 0.7, y; = 1, yg=2 v ox v 043 077 031 0.73 037 063 0.27 0.47
6b tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.3, By = 0.7, y; = 1, y;=2 x v o ox 0.48 0.65 0.39 0.66 043 057 0.34 0.52
6b tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.3, By = 0.7, y; = 1, y;=2 x v v 0.52 0.71 0.42 067 0.47 053 033 0.54
6C tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.3, By = 0.7, y; = 1, y;=2 x x x 0.48 0.64 0.4 0.63 0.44 0.56 0.37 0.5
6c tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.3, B; = 0.7, y; = 1, y=2 x x v 0.51 0.69 0.42 063 0.47 053 037 0.52
7a tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.1, B; = 0.9, y; = 2, y;=2 v ox X 0.09 078 0.05 0.77 0.06 094 023 0.1
7a tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.1, B; = 0.9, y; = 2, y=2 v o ox v 0.37 0.82 0.24 0.78 031 0.69 0.22 0.43
7b tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.1, By = 0.9, y; = 2, V=2 x v o ox 0.44 073 032 0.73 0.4 06 027 0.51
7b tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.1, B; = 0.9, y; = 2, y=2 x v v 046 0.78 034 073 0.43 057 027 0.54
7c tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.1, By = 0.9, y; = 2, y;=2 x x x 0.43 0.71 0.32 0.68 039 061 032 0.49
7c tversky+focal+skeleton a=0.3, b=0.3, c=0.4, a; = 0.1, B; = 0.9, y; = 2, y=2 x x v 0.46 0.76 0.34 0.69 0.44 056 031 0.52
8a tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.3, By = 0.7, y; = 1, y;=2 v ox X 03 067 0.2 0.66 0.18 0.82 0.34 0.26
8a tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.3, ;= 0.7, y; = 1, y=2 voox v 0.49 0.72 0.39 0.66 0.43 057 034 0.51
8b tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.3, By = 0.7, y; = 1, y;=2 x v o ox 0.52 0.62 0.46 0.62 049 051 038 053
8b tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.3, ;= 0.7, y: = 1, y=2 x v v 0.55 0.67 0.47 0.62 051 049 038 0.55
8c tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.3, By = 0.7, y; = 1, y;=2 x x x 0.51 0.6 0.45 0.59 048 052 041 052
8c tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.3, ;= 0.7, y; = 1, y=2 x x v 0.54 0.65 0.47 059 0.5 05 041 0.53
9a tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.1, By = 0.9, y; = 2, y¢=2 v ox x 0.16 0.74 01 0.72 0.11 0.89 0.28 0.17
9a tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.1, By = 0.9, y; = 2, y;=2 voox v 043 0.78 03 073 039 061 027 0.49
9b tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.1, By = 0.9, y; = 2, y=2 x v ox 0.48 0.68 0.38 0.67 046 0.54 0.33 0.54
9b tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.1, By = 0.9, y; = 2, y;=2 x v v 0.5 0.73 0.39 0.67 0.48 052 033 0.55
9c tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.1, By = 0.9, y; = 2, y=2 x x X 0.47 0.68 037 0.65 0.46 054 035 0.52
9c tversky+focal+skeleton a=0.4, b=0.4, c=0.2, a; = 0.1, By = 0.9, y; = 2, y;=2 x x v 0.5 0.72 0.38 0.65 048 052 035 0.54

Table 4: Overview of all evaluated models.

is best suited for the application considered in this thesis.

For each selected loss function

and param-
eter combination, three models are trained on a differently preprocessed dataset and
evaluated with and without application of a liver mask. The best values in each column
are marked in red showing that Model 7a has the highest recall values. Thus, this model
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Model 7a (tversky+focal+skeleton, GIN, liver mask)
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Figure 12: Model 7a shows very low precision and skelPrecision values as visualized in
the boxplot on the left. Therefore, a liver mask is applied resulting in larger precision

values as can be seen on the right.

It seems like there has not been enough background in training. But — although
the patches are chosen as “foreground patches” which means they are only included for
training if they contain structures annotated as vessels — the patch size is large enough to
include background voxels in the patches. Additionally, the fact that this phenomenon
only appears in context of GIN augmentation in combination with certain loss functions

rather suggests that it is related to the augmentation method or the usage of CT data.

Since in this project the aim is to segment pure liver parenchyma and therefore, liver
segmentation is required in the automatic workflow, the liver segmentation model
can be used for masking the predicted vessel segmentation and in this way improving

the precision for the models mentioned above. For reasons of comparable results, the
liver mask is applied to all model results and evaluated additionally to the predicted
output. The mask is chosen as the largest connected component of the union over the
liver segmentation and the predicted vessel segmentation. Thus, it contains the region
of the liver and additionally all regions that are predicted as vessels and connected
to the mask of the liver segmentation. This choice aims to include the vessels in the
marginal area of the liver segmentation to compensate for any inaccuracies in the liver
segmentation. The results for the masked vessel segmentation are shown in Table [ with
an appropriate sign in column “liver”. In model 7a, the precision value increases to 0.24
in case of application of the liver mask. The skelRecall value is 0.82, then, and the value
of the recall is 0.78 which is even higher than without liver mask.
The N3 method also improves the recall values but not as much as with GIN aug-
mentation. The application of N3 increases the recall in the average by only 0.03 but

actually improves the values for all loss functions except the Combo loss.
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Figure 13: Model 7a segments many erroneous background structures outside of the liver
(left). With application of a liver mask (red contour), the segmentation is reduced to
the region of the liver (right). FP is yellow, TP is green and FN is blue.

Overall, the two preprocessing methods — GIN augmentation and N3 — improve the
vessel segmentation models with regard to the application in this project. Therefore,
the models based on these methods are preferred in the selection of the best models.

Impact of the Loss Function
As already mentioned in section the choice of the loss function can have a high
impact on the model output. This is confirmed by considering the evaluation results.

The models trained with the Combo loss, which is often applied for vessel segmen-
tation, show the highest precision and skelPrecision values in comparison to the other
models evaluated within this thesis. They reach mean precision values of 0.59 (without
liver mask applied) and 0.61 (with liver mask) in comparison to 0.5 (without liver mask)
and 0.52 (with liver mask) or below in the other models. The skelPrecision value is also
larger with mean values of 0.62 (with liver mask) and 0.65 (without liver mask) in the
models with Combo loss as loss function and mean values of 0.57 and 0.59 or below in
the other models. This difference is not surprising, as in this work the loss function is
improved based on the Combo loss in order to increase the recall.

For the Focal Tversky loss function, parameters ar = 0.3 and S = 0.7 are chosen
first. This increases the recall values by 0.10 in the mean and precision decreases in the
mean by 0.08 in comparison to the model with Combo loss. The application of Focal loss
changes these values only marginally. However, increasing the weight for FP to 8 = 0.9
(and decreasing ar = 0.1) and choosing the exponent 7 as 2 or 3 increases the recall
values considerably.

The addition of Skeleton Recall loss to the combination of Focal Tversky and Focal
loss increases the recall values even more. This is to be expected, as the definition
of this loss function is based on the measurement of the skelRecall metric. The recall
and skelRecall values of the models increase with a higher weighting of the Skeleton
Recall loss function. At the same time, precision decreases. This can be observed in
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the comparison of models 7a-c to models 9a-c¢ where Focal Tversky loss, Focal loss and
Skeleton Recall loss are weighted with 0.3, 0.3 and 0.4 vs. 0.4, 0.4 and 0.2.

These results show that we could adapt the vessel segmentation model step by step to
the given task. We improved the loss function starting with Combo loss and changing
it with several weighting parameters and additional losses resulting in a combination of
loss functions which shows large recall values. In particular, the weighting of FP and
FN as well as the addition of Skeleton Recall loss improve the model the most. Thus,
these models have great potential for the application in the automatic workflow and are
preferred in the model selection presented in the next paragraph.

Model selection
In Table [5] the model selection for the clinical evaluation is presented. In the following,
the selection criteria are explained.

Model Selection criterion

1 7a largest recall and skelRecall value

2 7b largest recall and skelRecall without GIN augmentation
3 4b largest clDice

4 4c largest clDice without N3

5 a direct comparison of all three preprocessing methods,

6 9b . . . .

7 9c relatively high recall and precision at the same time

8 5b largest clDice (same as model 4b)

Table 5: This table gives an overview over the models selected for the clinical evaluation.

The model with the highest skelRecall (0.77) and the largest recall value (0.78) is
model 7a with the combination of Focal Tversky loss, Focal loss and Skeleton Recall loss
as loss function and GIN augmentation applied in preprocessing. To reduce the effect
of segmenting structures outside of the liver segmentation described above, the model
with the highest recall among all models without GIN augmentation is identified. This
is model 7b with a skelRecall value of 0.73 and a recall value of 0.73 without liver mask
and 0.78 with liver mask. For this model, N3 is applied on data before training and as
loss function the combination of Focal Tversky loss, Focal loss and Skeleton Recall loss
is used as in model 7a.

In addition to the recall, the clDice is taken into account in the model selection to
evaluate whether larger precision values are required on PSC and control group data.
The models with the largest clDice are models 4b and 5b. In both models, N3 is applied
as preprocessing. For better comparison of the different preprocessing methods, model
4c is selected as well as model with the largest clDice among all models without N3.

Furthermore, the models 9a-c are selected to have a direct comparison of training on
all three datasets and since these models show relatively high recall and precision values
at the same time. In the following, the selected models are numbered from 1 to 8 as in
the first column of Table [l
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Comparison with existing models
In this paragraph, the models proposed in this thesis are compared to existing models
for vessel segmentation on MRI, specifically to the models discussed in section

The highest DSC scores of the proposed models are achieved by model 2¢ (with liver
mask) with a value of 0.57 and model 1c, 2b and 3b with a value of 0.56. These are
approximately in the same range as the DSC scores of the model proposed by Zbinden et
al. in [64] with values of 0.634 for pv and 0.532 for hv. For model 1c, even the precision
values are very close to the ones in [64]. The Precision-Recall curves visualized in the
paper by Zbinden et al. show almost linearly decreasing precision values for increasing
recall. Nevertheless, there are no exact values for recall given, making the comparison
more difficult. Furthermore, based on the arguments above, the models with higher
recall such as model 7a or 7b are selected for further use in this thesis.

Compared to the model proposed by Oh et al. in [43], the models in this thesis
deviate more strongly in DSC values. However, there are again no recall values given in
the work by Oh et al. as the aim of this application is different and does not focus on
over-estimation. For the kind of application presented in this thesis, no published model
is found. The model proposed by Zhao et al. in [65] shows the best DSC, precision and
recall values with 0.8724, 0.8776 and 0.8648. All metrics values are presented in Table
[6] for direct comparison.

Model DSC score Recall  Precision
nnU-Net [64] 0.634/0.532 (pv/Lv) - -
Residual U-Net [43] 0.61/0.70/0.58 (pv/hv/bd) - -

TTGA U-Net [65] 0.8724 0.8776  0.8648
Model 1c (ours) 0.56 0.52 0.63
Model 2b (ours) 0.56 0.62 0.52
Model 2¢ (ours) 0.57 0.6 0.55
Model 3b (ours) 0.56 0.6 0.54
Model Ta (ours) 0.37 0.82 0.24
Model 7b (ours) 0.46 0.78 0.34

Table 6: Comparison of DSC scores of existing vessel segmentation models. The TTGA
U-Net shows the best DSC scores among the models for MR images.

To sum up, the models proposed in this thesis show slightly worse DSC scores compared
to existing vessel segmentation models. However, the comparison of the more relevant
precision and recall values is difficult because of missing values and different application
tasks. The model by Zhao et al. demonstrates a considerably better balance between
recall and precision and therefore shows ways that can potentially lead to better results.
It would be interesting to train and test our models and the model by Zhao et al. on
the same dataset. The results of the direct comparison could help to further improve
our models, but this is beyond the scope of this thesis. Instead, a clinical evaluation in
context of the given application is done. This enables detailed feedback on the models
providing ideas for further improvement.
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2.5.2 Evaluation on PSC and Control Group Data

The eight models selected based on the criteria mentioned above are evaluated by the
medical student of this project based on the rating scale in Table [7] This scale focuses
on the question whether the vessel segmentation can be used for the estimation of liver
function. Therefore, it is less significant if too much tissue is segmented. Instead, the
segmentation is rated poorly if parts of the vessel structure are not recognized.

0 poor segmentation
results not usable or only partially usable — unreliable RE values

1 fair segmentation, many/large errors
results generally usable — relevant influence on RE values possible

2 good segmentation, some (small) errors
results usable and generally accurate — irrelevant influence on RE values assumed

3 very good segmentation, minimal or no errors
results very accurate — reliable RE values

Table 7: This rating scale is used for the evaluation on PSC and control group data.

The evaluation is performed on a dataset of 10 PSC patients and 10 patients of the
control group. The results are presented in Table [§ and show that models 1, 2 and 5
perform best as those have the largest evaluation scores. Nevertheless, there is scope for
further improvement especially for the segmentation on PSC data containing some “0”-
ratings. Overall, the main vessels are detected very good but abnormalities and varying
intensities especially in MR images of PSC patients are difficult to segment leading to
“0” or “1”-ratings. Therefore, results on PSC data are worse than those of the control
group. The cases rated with score 2 mainly contain the whole vessel structure with some
inaccuracies on the boundary of the vessels or small vessels with bright intensities that
can hardly be distinguished from liver tissue are not detected. In the following, we take
a closer look at possible sources of error.

First of all, for some cases, all eight models provide already good results as they
are mainly rated with score 2. This is visualized in Figure It can be seen that,
although the differences in segmentations are very small, models 1, 2 and 5 have the
largest volume of segmented vessels, as they also recognize very thin vessels that are
barely distinguishable from the tissue. This fits with the previous observation that these
models show the largest recall values in the evaluation on test data. However, all models
segment the main vessel structures without any gaps or inaccuracies in the marginal
region.

In contrast to the control group, on the dataset of PSC patients, an underestimation
occurs in many cases resulting in bad rating results due to parts of the vessels not being
recognized as such. This is visualized in Figure for example, where dilated bile
ducts are not segmented, or even stronger in the case presented in Figure [[5b] Here,
liver parenchyma is very inhomogeneous and leads to large parts of the vessels not being
segmented. These models are trained on datasets preprocessed with GIN augmentation
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(g) Model 7 (h) Model 8

Figure 14: An example case of the control group, where the eight selected models show
very good results segmenting all main structures of the vessels. There are only small
differences in the segmentations as models 1, 2 and 5 recognized slightly more structures
and are therefore best suited for this application.
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Model | 0 1 2 3 | Total Model |0 1 2 3 | Total
1 (7a) 4 4 2 - 8 1 - 4 6 - 16
2 (7b) T 2 1 - 4 2 1 3 6 - 15
3 (4c) 8 - 2 - 4 3 6 3 1 - 5
4 (4b) 8 - 2 - 4 4 6 4 - - 4
5 (9a) 6 2 2 - 6 ) 3 4 3 - 10
6 (9b) 8 2 - - 2 6 4 4 2 - 8
7 (9c¢) T3 - - 3 7 6 3 1 - )
8(5b) [10 - - - 0 8 6 3 1 - )
(a) Evaluation on PSC Data (b) Evaluation on Control Group Data

Table 8: The eight best vessel segmentation models are clinically evaluated. These
tables show the number of ratings with value “0” to “3” for each model separated into
evaluation on PSC and control group data. The number in “Total” is computed by
summing up all scores for the corresponding model.

(a) Model 1 (b) Model 1

Figure 15: In this figure, two cases of underestimation are shown. On the left, abnormal
bile ducts are not segmented and on the right, large vessels are not recognized due to
the strong varying intensities within the slice.

and N3 to reduce the dependency on inhomogeneity in data, however, the model is
not adapted sufficiently to this type of inhomogeneity with strongly varying intensities
within a slice.

In Figure [16], another case of underestimation is presented. Here, parts of the largest
vessels are not detected. This error appears mainly in the results of the segmentation
models with GIN augmentation while the models with N3 segment the whole vessel.
In contrast, the segmentation result of model 2 (with N3) contains gaps in long thin
structures which are segmented better by model 1 and 5 (with GIN augmentation).
Therefore, in the next section, the combination of the different models as improved
model for vessel segmentation is evaluated.

Another error appearing in Figure [16] is that marginal areas are not accurately seg-
mented everywhere. This is probably due to the fact that the annotations on SIRTOP
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(c) Model 5

Figure 16: Different forms of underestimation. While model 1 and model 5 show prob-
lems in segmenting large vessels completely, the segmentation of model 2 shows gaps in
narrower vessel structures.

data partly contain similar inaccuracies as can be seen in Figure To enhance the
models with regard to this error, a threshold method is applied in the next section seg-
menting more voxels as vessels to improve the error of underestimation especially in
marginal areas.

Beside the error of underestimation, also some cases of overestimation appear as vi-
sualized in Figure[I8 In[I8a] parts of a lesion are segmented and in [I8D] a ligamentary
structure is partly recognized as “vessel”. These structures are no vessels but should be
subtracted from liver segmentation in this application anyway. Therefore, in the follow-
ing, the focus is kept on improving underestimation, as these errors have more impact
on the resulting liver function values.
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Figure 17: In a few cases, the vessel annotations of SIRTOP data (left) show marginal
inaccuracies in the boundary area of the vessels. This can be seen in comparison with
the corresponding slice without annotations (right).

(a) Model 1

(b) Model 1

Figure 18: These two slices show forms of overestimation. In the case above, a lesion is
partly segmented and below, the segmentation contains parts of a ligamentary structure.
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2.6 Improvement Methods

In this work, two strategies for improvement are proposed and applied on the models
1, 2 and 5 evaluated to be the best in section 2.5.2] It is investigated whether the
two approaches can improve the previous results, both on the test data with direct
comparison to the true annotations and in the clinical evaluation.

Threshold Method for Calibration
As explained in the last paragraph of section [2.4.6] a threshold method is applied on the
models within this work for better calibration of the output.

To evaluate the impact of changing the threshold in ML models, the receiver operating
characteristic (ROC) curve is widely used [10, 11]. The ROC curves for all models of
Table [4 are visualized in Figure The curves indicate the fraction of vessels truly an-
notated as vessels — the true positive rate (TPR) — and the fraction of background voxels
erroneously labeled as vessels — the false positive rate (FPR) for changing threshold [11].
Different ROC curves can be compared by measuring the area under the curve (AUC)
[11]. For our models, the AUC values are very large indicating a good performance as
the optimal AUC value is 1. However, in the ROC curves, the class imbalance between
vessels and background is not taken into account as voxels that are erroneously labeled
as vessels are considered as fraction of all background voxels leading to overoptimistic
results.

Therefore, the Precision-Recall (PR) curve is computed based on the test dataset to
determine the best threshold. This is a method to visualize the trade-off between recall
and precision of a model [66]. Figure [20| shows the PR curves for all models of Table
again, comparing the application of GIN augmentation, N3 and “None” (indicating
that neither N3 nor GIN augmentation is applied). The value in brackets indicates the
average precision (AP) which is a metric taking into account recall and precision value.
It is defined as the area under the PR curve:

APG) = [ plrir 39

where p(r) denotes the PR curve as function assigning a precision to each recall value
[66]. In the implementation, the discrete version is computed.

For optimal trade-off between precision and recall, the AP value would be 1. For N3
and “None”, the AP is slightly larger than 0.5 for all models except Model 2. Considering
the plot of Model 7a-c evaluated to be the best in the clinical evaluation, the slope of
the curve changes for the approximate recall value of 0.8. For higher recall values, the
precision is decreasing faster, especially for the N3 method.

For GIN augmentation, the AP is below the values of N3 and “None” as these plots
are created based on the vessel segmentation without liver mask. The application of the
liver mask increases the precision for higher recall values as can be seen in Figure
Here, all three preprocessing methods show very similar results, with GIN augmentation
showing the best precision values for the largest recall values. This confirms the previous
evaluation results.
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Figure 19: The mean ROC curves over all test cases for all models in Table The AUC
values are indicated in brackets showing good results for all models. However, these
results can be overoptimistic in case of class imbalance as given in this application.
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Figure 20: The mean PR curves over all test cases with the AP values indicated in
brackets. The models with “N3” or “None” preprocessing outperform those with GIN
augmentation due to the phenomenon of low precision values described in section [2.5.1]
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Figure 21: The mean PR curves for all models with masked prediction and reference
with the AP values indicated in brackets. All plots show approximately linear curves,
making it difficult to choose a suitable threshold for model calibration.
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The PR curves with liver mask are approximately linear making it difficult to choose
a suitable threshold. To nevertheless assess the effects of a change in the threshold, 0.1
is chosen as threshold value for the clinical evaluation. This results in an increase of the
recall values of the models selected to be the best in the clinical evaluation as visualized
in the box plots in Figure

As an outlook of this work, it would be interesting to find a way to increase the AP
value and thus achieve a higher precision with high recall at the same time. Ideas for
this are discussed in section 4l

The threshold method also improves the results of the clinical evaluation as presented
in Table[9] The improved models segment more voxels especially in the marginal regions
of the vessels. Furthermore, they improve the segmentation of larger vessels. Thus, the
error of underestimation described in section is reduced. However, at the same
time more liver tissue is segmented by the improved models, so that a further reduction
of the threshold is probably not useful.

Model |0 1 2 3| Total Model |0 1 2 3 | Total
1 4 4 2 - 8 1 - 4 6 - 16
1 impr | 4 1 5 - 11 1 impr| - 3 6 1 18
2 T2 1 - 4 2 1 3 6 - 15
2 impr | 5 3 2 - 7 2 impr |1 2 7 - 16
) 6 2 2 - 6 5 3 4 3 - 10
5 _impr [ 5 2 1 2 10 5 impr [ 3 3 4 - 11
(a) Evaluation on PSC Data (b) Evaluation on Control Group Data

Table 9: Comparing the results of the clinical evaluation of the previous version of
models 1, 2 and 5 with those where the threshold method is applied, the improved
models (1__impr, 2_impr and §_impr) are rated better.

Model Ensembles

In section [2.5.2] it is shown that the models with GIN augmentation (1 and 5) in some
cases segment more parts of long thin vessels than the model with N3 applied (2),
however, model 2 performs better when segmenting large vessels. Therefore, combining
two or all of the three best models is considered to improve the result further. This is
realized by joining the regions of the corresponding predictions.

The ensembles show better recall values compared to the original recall values as can
be seen in the box plots in Figure The largest recall value of the models before the
improvement is achieved by model 1 with 0.82 and skelRecall value of 0.78. These values
are exceeded for all model ensembles. At the same time, precision decreases only slightly
in comparison to the corresponding original models.

In the clinical evaluation, the ensemble of model 1 and 2 is rated the best among all
model combinations of two models. It is not surprising that the ensemble of all three
models — Model 14+2+5 — yields the largest recall value combining the predictions of the
other models. The exact evaluation results are shown in Table As intended, the

43



VESSEL SEGMENTATION

deed LT L

0.8
0.6
o
0.4 4 ° 0.4 4
o o ° °©
(<] ° o
<]
0.2 4 ° 0.2 4
0.0 T T T T T 0.0 T T T T

& o 2 & = B2 I & Iy IS Iy R

S S S i s S S S < S = o

H‘I’ af NF EQ 'nl' ‘n‘_r ’_1!' al Nr ‘n‘_r hr a!

T £ T = T £ T £ T E T €

S 7 g ~' g o g J g ~ g o

= ~ = ] = n = ~ = o~ = Ly

) o o 7] o )

o S © © © ©

] = <] <] <] <]

= = = = =

Models Models
(a) Recall (b) skelRecall
1.0 4 1.0 1
0.8 4 0.8 4
0.6 0.6 4
T
0.4 0.4
02 1 % 0-2 ]
o
0.0 T T T T T .0 T T T T T
I 08 3 2 2 3 g § & & & 3
<) o o o 1 o o o o o o o
' 1 ' i I ' 1 i I ' ]
~ 5 ~ g. Bl I ~ 5 ~ I o] 5
3 £ I £ 7 £ I £ 3 £ T £
S " K} N § i g " S N g =
= - = I} 0 = i 2 o~ £ 0
T © T T T T
o S ] b ] b
S 5 S S S S
= = = = =
Models Models
(d) skelPrecision

(c) Precision
Figure 22: The application of the calibration method (__impr) with threshold 0.1 on the

selected models 1 (7a), 2 (7b) and 5 (9a) shows an improvement of the recall values in
comparison to the original models while the precision values decrease slightly. Thus, this
method improves the models slightly with regard to the application in this project.
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model ensembles improve the previous models, reducing underestimation. This becomes
visible in Figure where the segmentation results of the ensembles are compared to
the singular models. The improved models segment in this case both large vessels as
well as narrow structures almost completely.

Model [0 1 2 3 | Total Model |0 1 2 3| Total
1+2 2 3 5 - 13 1+2 - 2 8 - 18
1+5 5 3 1 1 8 1+5 1 3 6 - 15
2+5 3 3 2 2 13 245 1 2 7 - 16
14245 |2 2 3 3 17 1+245 | - 2 8 - 18
(a) Evaluation on PSC Data (b) Evaluation on Control Group Data

Table 10: The combination of the best models 1,2 and 5 into model ensembles increases
the rating scores in the clinical evaluation.
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Figure 23: The model ensembles increase the recall and skelRecall values in comparison

to the original models while the precision and skelPrecision values decrease only slightly.

This shows that the method of combining the models can visibly improve the results.
Therefore, these models are preferred over the old models in the application of this

project.
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(a) Model 1 (b) Model 2 (¢) Model 5

(d) Model 142 (e) Model 245

(f) Model 145 (g) Model 14+2+5

Figure 24: The model ensembles of the best models 1, 2 and 5 improve the vessel
segmentation with regard to underestimation.
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Chapter 3: Results: Liver Function Estimation and
Impact of Vessel Segmentation

3.1 Automatic Workflow for Liver Function Estimation

The liver segmentation has been evaluated on the hepatobiliary phase first as the algo-
rithm is developed for this. But due to problems with varying intensities on PSC data,
it is run on the native phase (second rating) for the results presented in section The
segmentation on the native phase is rated better in the clinical evaluation. The rating
scores are presented in Table

Model |01 2 3 Model 012 3
Liver -3 6 1 Liver -1 3 6
Liver Territories | 10 - - - Liver Territories | 10 - - -
Liver Lobes 1 - 3 6 Liver Lobes - - - 10
(a) PSC Data (initial rating) (b) Control Group Data (initial rating)
Model (0 1 2 3 Model 0 1 2 3
Liver -1 2 7 Liver -1 1 8
Liver Sections | 3 1 3 3 Liver Sections | 1 - 2 7
Liver Lobes 1 - 2 7 Liver Lobes - - 2 8
(c) PSC Data (second rating) (d) Control Group Data (second rating)

Table 11: These rating scores of liver segmentation and the computation of liver sections
and liver lobes are assigned by the medical student. Running the liver segmentation on
the native phase, improves the results (c,d) compared to the initial rating phase (a,b).

The computation of the territories by Couinaud does not show good results (ref. to
Tables and is not usable within this application. Therefore, the division into
four liver sections and two liver lobes is implemented as described in section In
this thesis, the liver function is evaluated globally on the whole liver segmentation but
the good rating scores for liver sections and liver lobes create a good foundation for the
computation of local liver function.

3.2 Automated vs. Manual Analysis of Liver Function

The segmentation methods described in section as well as the vessel segmenta-
tion models developed in chapter [2| complete the automatic workflow enabling a user-
independent determination of liver function values based on the dataset of PSC and
control group patients. In this work, as liver function score, the Relative Enhancement
(RE) is evaluated as defined in section In the following, the results of the auto-
matic workflow are analyzed in terms of their correlation with the manually determined
ROI-based measurements.
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Bland-Altman-Plot, Vessels Included
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Figure 25: The Bland-Altman plot shows high similarity between the results of the
automatic computation and the manual measurements of liver function (plot provided
by Sina Dornbusch).

Comparing the RE values of the automatic and the manual approach, both methods
show very similar results. This is visualized in a Bland-Altman plot in Figure [25] For
this plot, five outliers have been removed because of very large (in the scale of 1000)
or negative RE values in the automatic computation. These issues arise, for instance,
during the registration process, leading to slices filled with zero values, and therefore
resulting in invalid segmentations. The remaining data of 237 patients show only small
differences between automated workflow and manual ROI-based measurements, with
deviations of 0.0259 + 0.026 in the mean. This data is provided by the medical student
of this project.

The intraclass coefficient (ICC) assesses how similar the automatically and the man-
ually determined RE values are among all cases [31]. The ICC values are computed by
the medical student. As some outliers have been removed in the results of the automatic
workflow, the One-Way Random-Effects model has been applied to compute the ICC
values. This model can be used if not each subject is rated by all raters [31]. The ICC
value for the automatic workflow is already very large with 0.946 and a 95% confidence
interval of [0.930, 0.958] as presented in Table So, even without consideration of a
vessel segmentation model there is a high correlation between the liver function values
of manual and automatic method.
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Bland-Altman-Plot, Vessel Model Ensemble 1+2+5
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Figure 26: The Bland-Altman plot for the RE values with vessel segmentation model
142+5 applied shows similar results to the plot with vessels included (plot provided by
Sina Dornbusch).

3.3 Influence of Vessel Segmentation on Liver Function Calculation

In the following, the impact of the different vessel segmentation models on the compu-
tation of liver function is analyzed. Considering the Bland-Altman-Plot in Figure [26] for
the results with application of vessel segmentation model 14245, it shows very similar
differences between manual and Al-based measurements as without exclusion of vessels.
The mean difference decreases a bit to 0.012540.26 in comparison to the mean difference
of 0.0259 £ 0.026 with vessels included, indicating a slight improvement by applying the
vessel segmentation model.

The ICC also changes only slightly for application of different vessel segmentation
models. Contrary to expectations, the model calibration by a threshold method in
models 1__impr, 2_impr and 5_impr decreases the ICC slightly despite better rating
scores than the previous models 1, 2 and 5. This can be seen in comparing the values in
Table This decline is probably due to the fact that the improved models segment not
only more vessels but also more liver tissue especially in the marginal area of the vessels
leading to variations in the ICC values. However, the differences are marginal and the
improved models still show similar or better ICC values than for the computation of
liver function without exclusion of vessels.

The model ensembles show also very similar results as displayed in Table All ICC
values are above 0.9 and therefore indicate very good correlation results.
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Model ICC 95% CI
Vessels Included | Single Measures ~ 0.897 [0.869, 0.919]
Average Measures 0.946 [0.930, 0.958]
1 Single Measures ~ 0.900 [0.873, 0.922]
Average Measures 0.948 [0.932, 0.959]
1_impr Single Measures  0.897 [0.869, 0.919]
Average Measures 0.946 [0.930, 0.958]
2 Single Measures ~ 0.900 [0.873, 0.922]
Average Measures 0.948 [0.932, 0.959]
2_impr Single Measures  0.897 [0.869, 0.920]
Average Measures 0.946 [0.930, 0.958]
5 Single Measures ~ 0.901 [0.874, 0.922]
Average Measures 0.948 [0.933, 0.960]
5_impr Single Measures 0.898  [0.870, 0.920]
Average Measures 0.946 [0.931, 0.958]
1+2 Single Measures ~ 0.900 [0.873, 0.922]
Average Measures 0.948 [0.932, 0.959]
1+5 Single Measures ~ 0.900 [0.873, 0.922]
Average Measures 0.948 [0.932, 0.959]
2+5 Single Measures ~ 0.901 [0.874, 0.922]
Average Measures 0.948 [0.932, 0.960]
14245 Single Measures ~ 0.900 [0.873, 0.922]
Average Measures 0.948 [0.932, 0.959]

Table 12: There is a high correlation between the liver function results of the automatic
workflow and the manual measurements. The improved models 1 _impr, 2 _impr and
5__impr show marginally lower ICC values than models 1, 2 and 5 and the model en-
sembles (data provided by Sina Dornbusch).
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3.3 Influence of Vessel Segmentation on Liver Function Calculation

Model Liver Tissue (mm?3) Vessels (mm?)
Vessels Included 1,663,230.1 -
1 1,449,862.6 213,367.5
P 1,459,384.0 203,846.1
) 1,493,849.8 169,380.4
1_impr 1,306,832.2 356,397.9
2 impr 1,334,449.0 328,781.1
5_ impr 1,369,043.1 294,187.0
1+2 1,399,929.1 263,301.1
1+5 1,428,736.5 234,493.7
2+5 1,429,689.7 233,540.4
14245 1,389,316.3 273,913.9

Table 13: Mean volume of the liver tissue and the vessels over all patients in the PSC
and control group dataset showing that the vessel masks of the different models make
up a notable part of the liver mask.

The low impact of excluding the vessels from the liver mask on the estimation of liver
function is surprising, as the image intensities of the liver tissue differ considerably from
those of the vessels. Comparing the mean volume of the excluded vessels to the liver
volume in Table[L3]shows that a relevant amount of voxels is segmented as vessels which
accounts for approximately 12-20% of the original liver mask. This would also suggest
a larger effect of the vessel mask on the correlation results. To explain the similar
correlation results, a clinical evaluation of the entire dataset instead of only 20 patients
could be helpful and provide more detailed information on possible reasons. Furthermore,
lesion segmentation is not considered in these results, yet, which is discussed in more
detail in the following chapter.
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Chapter 4: Conclusion and Discussion

The results of the automatic workflow for computation of liver function presented in this
thesis show strong correlation with the manual ROI-based measurements. This is a solid
basis for future applications of this kind of assessment of the liver function in clinical
practice. However, for medical application, the correlation with clinical endpoints would
be interesting.

The vessel segmentation models developed within this work improve the correlation
results slightly as explained in chapter [3] The model ensemble of models 1, 2 and 5
shows the highest recall values on the test dataset, the highest rating scores in the
clinical evaluation by the medical student and strong correlation results. Nevertheless,
computing the segmentation results of three models increases the computation time
significantly, taking three times as long as computing the results of a singular model.
Therefore, it could be interesting to use the best singular model — model 1__impr. This
shows equivalent correlation results within this work and is less time consuming.

As prospect, it would be interesting to train model 1 again with cases from the PSC
dataset as additional training data. For this, the segmentation results of the existing
model on PSC data could be corrected and these annotations could be used as new ref-
erence. In this way, the model could learn to avoid the errors made before. The new an-
notations could be done as correction for under- and overestimation and would probably
improve recall and precision at the same time. This could improve the Precision-Recall
curves and especially the AP value described in section 2.6l However, as the segmen-
tation models presented in this work did not show a high impact on the resulting liver
function values in the workflow, it is questionable whether further improvement of the
models can have more influence.

Another remaining issue is the impact of lesion segmentation on the liver function
results. As described in section [I.6] for the lesion segmentation, a seed point needs to
be set manually in each lesion structure. This is very time consuming and could not be
taken into account within this thesis. In the long-term, a fully automatic segmentation
could simplify the workflow. However, since the vessel segmentation has low impact on
the correlation results, the impact of a lesion segmentation might similarly be lower than
expected. A higher impact of both — vessels and lesions — could appear in the evaluation
of local liver function. This is done as part of the work of the medical student as this
requires more detailed rating results of all cases to evaluate which liver territories or
sections are suitable for accurate results.

Although there are still some ideas for advancing the models and improving the results,
several goals were achieved in this work. Various vessel segmentation models have been
developed and improved with the best models reaching large recall values and good rating
scores. Furthermore, high correlation results of the automatic workflow to the manual
ROI-based analysis have been shown. All in all, the results show that this approach of
automatic computation of liver function is promising and worth to be pursued further.
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