
Numerical Methods for Constrained Systems of Equations

Numerische Verfahren für Gleichungssystememit Nebenbedingungen

Masterarbeit

verfasst am
Institute of Mathematics and Image Computing

im Rahmen des Studiengangs
Mathematik in Medizin und Lebenswissenschaften
der Universität zu Lübeck

vorgelegt von
JohannesVoigts

ausgegeben und betreut von
Prof. Dr. Jan Lellmann

mit Unterstützung von
Dr. FlorianMannel

Lübeck, den 15. März 2024

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich diese Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Johannes Voigts

– ii –

Zusammenfassung

Gleichungssysteme mit Nebenbedingungen sind eine wichtige Klasse von Prob-
lemen, für deren Lösung verschiedene Familien von numerischen Verfahren ex-
istieren. Verschiedene Verfahren eignen sich für verschiedene Arten von Proble-
men. In dieser Arbeit analysieren wir zwei Klassen von Verfahren theoretisch und
numerisch. Die erste Klasse basiert auf dem LP-Newton Verfahren, welches sich
für nichtglatte Probleme mit nicht-isolierten Lösungen eignet. Die zweite Klasse
basiert auf dem Verfahren der konjugierten Gradienten, welche sich zusätzlich für
hochdimensionale Probleme eignen, allerdings voraussetzen, dass die Probleme
monoton sind. Unsere Analyse ergänzt bestehende theoretische Resultate und
identifiziert in einigen Fällen Schwachstellen in diesen.

Abstract

Constrained systems of equations are an important class of problems for whose
solution various families of numerical methods exist. Different methods are suited
for different kinds of problems. In this thesis, we analyse two classes of methods
for these systems theoretically and numerically. The first class is based on the
LP-Newton method which is suited for nonsmooth problems with non-isolated
solutions. The second class are Conjugate Gradient methods that are addition-
ally suited for large scale systems, but require the problem to be monotone.
Our analysis contributes further theoretical results and, in some cases, identifies
weaknesses in existing ones.

– iii –

Contents

1 Introduction 1
1.1 Literature Review 2

1.1.1 Newton-type Methods 2
1.1.2 Spectral Gradient Methods 3
1.1.3 Conjugate Gradient Methods 4

2 Preliminaries 8
2.1 Basic Concepts and Notation 8
2.2 Rates of Convergence 9
2.3 Generalized Derivatives 10

3 Newton-type Methods 12
3.1 LP-Newton 14
3.2 Secant Modified LP-Newton 18

4 Conjugate Gradient Methods 23
4.1 The CG Method framework for constrained systems of equations 26
4.2 Additional Conditions and their Impact on Convergence 30
4.3 Two Conjugate Gradient Methods 34

4.3.1 A Symmetric Dai-Kou Based Method 34
4.3.2 An Efficient Three Term CG Method by Gao and He 38

5 Numerical Experiments 40
5.1 LP-Newton and SMLP-Newton 42
5.2 Performance Profiles 44
5.3 Comparison of Conjugate Gradient Methods 45

6 Conclusion 57

Bibliography 59

– iv –

1
Introduction

In this thesis, we consider numerical methods for constrained systems of equations, that is

F (x) = 0, x ∈ Ω (1.1)

for a (possibly nonlinear) function F : Rn → Rm and a set Ω ⊆ Rn. The system is con-
strained in the sense that all solutions must lie in the given set Ω, the constraint set.
Throughout this thesis, this set is assumed to be nonempty, closed and convex. Further
assumptions on the problem (1.1) will be provided as needed. The task is finding a x

satisfying (1.1). The set of all such possible solutions will be denoted by Z, that is

Z := {x ∈ Ω |F (x) = 0} .

Constrained systems of equations occur in many applications, e.g., economic equilib-
rium problems [22], chemical equilibrium systems [54] and the power flow equations [82].
Constraints are often important where solutions might otherwise attain non-sensible values,
e.g., negative concentration in chemistry problems or negative mass in physical problems.
They can also be used to encode a-priori knowledge of our solutions in the problem. Con-
strained systems of equations can also be used to solve `1-norm regularized optimization
problems in compressed sensing [26].

The systems that arise in these application are also often monotone, allowing the use
of specialized solvers for these type of problems. Generally, different classes of methods are
suited for different assumptions on F and Ω and make different trade-offs. When we impose
stronger assumptions on F , then we clearly have more properties that we can exploit to
create more powerful solvers. The benefits we get are usually improved speed or less memory
consumption. On the downside, such specialisations limit the class of problems to which
these methods are applicable.

An assumption on F of particular interest in this thesis is the error bound condition

dist[x,Z] ≤ `‖F (x)‖, ∀x ∈ Bδ(x
∗) (1.2)

for a x∗ ∈ Z and `, δ > 0, where dist[x,Z] denotes the distance between x and the set Z.
It is a main tool in achieving a convergence rate in all methods discussed in this thesis.
For instance in Section 3.1, it serves as a generalization of regularity assumptions such

– 1 –

1 Introduction

as the invertibility of F ′(x∗). In particular, (1.2) allows non-isolated solutions, while the
invertibility of F ′(x∗) does not (see Theorem 3.3 and the example thereafter). Also note
that (1.2) is also sensible in cases of n 6= m, as opposed to the invertibility of F ′(x∗).

1.1 Literature Review

Many numerical methods have been proposed for solving (1.1). We structure the review of
the relevant literature according to the different types of methods that are contained in this
thesis, starting with Newton-type methods, continuing with Spectral Gradient methods,
and finishing with Conjugate Gradient methods. While we do not further analyse Spectral
Gradient methods in this thesis, they are included in our numerical experiments because
they are related to both Newton-type methods and Conjugate Gradient methods.

1.1.1 Newton-type Methods

Newton’s method [32, 37, 56, 58] is one of the most well-known methods for solving (1.1)
in the unconstrained case Ω = Rn. Its iterates {xk} are defined through the solution of a
linear system of equations

F ′(xk)(xk+1 − xk) = −F (xk). (1.3)

It has a fast convergence rate and can also be used for optimization problems by setting F =

∇f for the objective function f : Rn → R. It has also been generalized in many ways, two
of which are particularly relevant for this thesis. First, Semismooth Newton methods [38,
65, 73] use a generalized derivate instead of F ′ in (1.3) if F is not differentiable at xk.
Second, it is not necessary to solve (1.3) or its semismooth analogue exactly. Instead, for
practical computations, it often suffices to compute an approximate solution. This approach
is called inexact (semismooth) Newton method, see e.g., [19, 32] and [37, Chapter 6] for the
differentiable case, as well as [25] and [73, Section 3.2.4] for the semismooth case. Usually,
the approximation quality required for (1.3) needs to satisfy

‖F (xk) + F ′(xk)(xk+1 − xk)‖ ≤ ηk‖F (xk)‖ (1.4)

for a so-called forcing sequence {ηk} ⊆ [0, 1).
These Newton-type methods have influenced the development of the LP-Newton method

by Facchinei et al. [24], which is one of the main subjects of this thesis (see Section 3.1). The
LP-Newton method is a novel approach that replaces the linear system of equations (1.3) by
a Linear Program, which is designed in such a way that its solutions xk+1 satisfy xk+1 ∈ Ω,
thereby ensuring feasibility for all iterates. This Linear Program also contains a condition
related to (1.4) and involves the linearization of F around the current iterate xk. For this
purpose, however, it does not assume that F ′(xk) exists, but rather allows the usage of
a generalized derivative; this is analogue to how semismooth Newton methods generalize
Newton’s method. This approach allows possibly nonsmooth F , while maintaining the
quadratic convergence of the (semismooth) Newton Method. Furthermore, it also allows
non-isolated solutions by employing the error bound condition.

– 2 –

1 Introduction

As the LP-Newton method only converges locally, Fischer et al. [28] created a variant of
LP-Newton that converges globally. They achieve this by adding a backtracking line search
after each Linear Program. This line search involves a custom measure of the directional
descent for ‖F (·)‖. While the algorithm converges globally, it still preserves the local
quadratic convergence of LP-Newton.

A different globalization strategy has been employed by Becher et al. [7] who use a
trust-region strategy to solve (1.1) for a piecewise smooth F and a polyhedral set Ω. They
establish a Q-order of convergence (see Section 2.2 for the definition of Q-order) under
Hölder metric subregularity of F and Hölder continuity of the derivative of the selection
mapping.

Another important class of methods to tackle (1.1) in the unconstrained case are Quasi-
Newton methods [20, 50]. In these methods, the derivative in (1.3) is replaced by an
approximation Bk. This is advantageous in situations where the derivative is expensive
to compute or unavailable. Usually, they are updated in each step iteratively. Often, it is
possible to directly update B−1

k itself, which greatly simplifies the calculation of the solution
of (1.3), as it is not required to solve linear systems. Classic examples for this include the
famous BFGS Method [56, Section 6.1] for optimization problems, and Broyden’s Method [9]
for systems of equations. With Quasi-Newton methods, it is possible to achieve superlinear
convergence [11]. While the previously stated Quasi-Newton methods are designed for the
unrestricted case Ω = Rn, mathematicians have also proposed variants that work in the
restricted case to extend the aforementioned benefits to these problems. One approach by
Marini et al. [49] uses the approximate norm descent condition [44]

‖F (xk+1)‖ ≤ (1 + ηk)‖F (xk)‖

for a non-negative summable sequence of real numbers {ηk}, allowing {‖F (xk)‖} to not
be monotonically decreasing. They employ a line-search strategy that in each step either
enforces sufficient decrease of ‖F (·)‖ or approximate norm decrease. The condition x ∈ Ω

is enforced by a projection onto Ω. The method can be used with various Quasi-Newton
approximations of F ′, e.g., the Broyden-Schubert update [10, 68], the Bogle-Perkins Up-
date [8], and the Inverse Column Update [51]. They also provide an upper bound on the
number of needed iterations.

The LP-Newton method has also been extended by Martínez and Fernández [52] to
employ Quasi-Newton approximations of the derivative to remove the need to calculate
derivatives in each step while achieving linear convergence. The authors have later improved
the method to obtain superlinear convergence [53]. To prove convergence, the authors
make an assumption on the Quasi-Newton approximations that they themselves however
acknowledge may not hold. We will discuss this assumption in Section 5.1.

1.1.2 Spectral Gradient Methods

Spectral Gradient algorithms can be seen as a variant of Quasi-Newton methods, where
the Jacobian (or the Hessian in the optimization case) is approximated via Bk = λ−1

k I,
where I is the identity matrix. Thus, the search directions dk can be cheaply calculated
by dk = −λkF (xk) (or dk = −λk∇f(xk)) and the next iterate is then given by xk+1 =

– 3 –

1 Introduction

xk + αkdk with a suitable αk. As dk is chosen as a multiple of the negative gradient in
the optimization case, it can also be seen as a variant of the Gradient Descent method (see
e.g., [12]) introduced by Cauchy [13]. The parameter λ−1

k contains spectral information
about the Jacobian or Hessian, hence the name Spectral Gradient methods.

The concept of Spectral Gradient algorithms has first been introduced by Barzilai and
Borwein [6], who chose the parameter λk such that Bk approximates the secant equation

Bk(xk − xk−1) = ∇f(xk)−∇f(xk−1)

as closely as possible. They applied the algorithm to quadratic optimization problems.
Inspired by this, La Cruz and Raydan [43] introduced the SANE method to solve nonlinear
unconstrained systems of equations. This method however includes calculations of the
Jacobian. To alleviate this problem, La Cruz et al. [41] proposed a variant of SANE called
DF-SANE, which is indeed derivative-free. They further employ a non-monotone line search
strategy based on the approximate norm descent condition by Li and Fukushima [44].

Building upon these two methods, La Cruz [40] later introduced the PSANE method,
which extends SANE and DF-SANE to the constrained problem (1.1). They enforce the
constraint x ∈ Ω by employing a projection onto Ω in a systematic way.

We are also aware of a modification of PSANE by Morini et al. [55] called PAND. They
employ a line search strategy similar to the previously discussed Quasi-Newton method
by Marini et al. [49]. This relation is not a coincidence, as Morini and Porcelli are authors
of both papers.

1.1.3 Conjugate Gradient Methods

Another class of methods for the solution of (1.1) are the Conjugate Gradient (CG) methods.
The original algorithm has been introduced by Hestenes and Stiefel [36] to find solutions of
strictly convex quadratic optimization problems, i.e., problems of the form

min
x∈Rn

x>Ax− b>x (1.5)

with a symmetric positive definite matrix A ∈ Rn×n and a vector b ∈ Rn. Solving (1.5)
is equivalent to solving Ax = b. Two important properties of this algorithm are that it
terminates in a finite number of steps and that all operations in each step are linear time
except the evaluation of x 7→ Ax (for further details, see Chapter 4). The search directions
are of the form

dk =

{
−∇fk if k = 0

−∇fk + βkdk−1 if k > 0

with ∇fk := ∇f(xk). Going forward, we will also use the common abbreviations yk :=

∇fk+1 −∇fk and sk := xk+1 − xk. The CG parameter βk is chosen such that d>i Adj = 0

for i 6= j, which means that different directions are orthogonal to each other wrt. the scalar
product induced by A. The iterates are then updated by xk+1 = xk +αkdk with a positive
scalar αk which is usually determined through a line search.

The CG method has first been extended by Fletcher and Reeves [30] to general convex
optimization problems

min
x∈Rn

f(x) (1.6)

– 4 –

1 Introduction

with the goal to keep the original CG method’s cheap iterations in terms of speed and
memory. Others have followed, which led to an emergence of various CG methods employing
different CG coefficients. A collection of classical choices can be found in Table 1.1, where
βHS
k+1 also denotes the coefficient of the original CG method. All of these coefficients coincide

Coefficient Source

βHS
k+1 =

∇f>
k+1yk

y>k dk
Hestenes and Stiefel [36]

βFR
k+1 =

∇f>
k+1∇fk+1

∇f>
k ∇fk

Fletcher and Reeves [30]

βPRP
k+1 =

∇f>
k+1yk

∇f>
k ∇fk

Polak and Ribière [61]
and Polyak [62]

βCD
k+1 =

∇f>
k+1∇fk+1

−∇f>
k dk

Fletcher [29]
(Conjugate Descent)

βLS
k+1 =

∇f>
k+1yk

−∇f>
k+1dk

Liu and Storey [48]

βDY
k+1 =

∇f>
k+1∇fk+1

y>k dk
Dai and Yuan [18]

βDL
k+1 =

∇f>
k+1yk

yk>dk
− t
∇f>

k+1sk

yk>dk
Dai and Liao [17]

Table 1.1: Various common choices for βk. The last coefficient βDL
k+1 contains an parameter

t > 0, those optimal choice remains subject of research [3].

in the quadratic case. Hence, they are sensible generalizations. More on CG methods for
optimization problems can be found, for instance, in [4, 35, 56].

A notable property of CG methods is their connection to Quasi-Newton methods.
Perry [60] expressed the Hestenes-Stiefel search direction as a matrix-vector product dk =

−Qk∇fk. Additionally, Shanno [69] showed that resetting the Quasi-Newton approxima-
tion in the BFGS method to the identity matrix in each step yields exactly the Conjugate
Gradient method. This also led both to develop the self-scaled memoryless BFGS method,
where at each step, the Quasi-Newton approximation is reset to a scalar multiple of the
identity matrix [59, 70].

Closely related to this method is the very influential CG_DESCENT Conjugate Gra-
dient method by Hager and Zhang [34]. Its coefficient is a modification of βHS

k+1 given by

βHZ
k+1 =

∇f>
k+1

y>k dk

(
yk − 2

‖yk‖2

y>k dk
dk

)
,

which again coincides with the other coefficients in the quadratic case. The resulting search
direction leads to guaranteed descent independent of the line search. The method reaches
high performance and achieves this through a Wolfe line search [56, 80, 81] among other
things.

In the case of f being convex and continuously differentiable, solving (1.6) is equivalent
to solving ∇f(x) = 0. As such, CG methods can also be viewed as methods for solving
systems of equations. In fact, CG methods can be generalized to general systems F (x) = 0,

– 5 –

1 Introduction

as long as F is continuous and monotone (see Definition 4.1 and Lemma 4.2). In that case,
the coefficients of Table 1.1 can be repurposed by replacing ∇fk with Fk := F (xk).

An important technique that contributed to the success of CG methods for nonlinear
equations has been a projection technique developed by Solodov and Svaiter [71] which
they used to achieve global convergence for their inexact Newton method by exploiting
properties of monoton functions. Instead of using xk + αkdk as the next iterate directly,
it would first be projected onto a hyperplane separating the iterate xk from the solution
set. This method has been further improved by Wang et al. [77] who developed a method
for monoton equations based on [71]. This has then, again, be improved by Wang and
Wang [76] to achieve superlinear convergence. However, their method was not matrix free
and thus unsuitable for large scale systems.

This has then motivated the use of the hyperplane projection technique in CG methods
to solve nonlinear equations. The first implementation has been by Cheng [14] in their
method based on the βPRP

k coefficient. They managed to prove global convergence under a
Lipschitz assumption.

There has further been an approach by Li and Wang [46] to solve unconstrained non-
linear systems based on βFR

k+1 without using hyperplane projection. This method is also
applicable for non-monotone F , however it mandates that F is continuously differentiable
and that F ′(x) is symmetric for all x ∈ Rn. The Jacobian however does not need to be
calculated. Thus, the method remains efficient for large scale systems.

Finally, the idea of Cheng [14] to implement the hyperplane projection in CG methods
has then been extended to the constrained problem (1.1) by Xiao and Zhu [83]. Their
method is based on the powerful CG_DESCENT and also achieved global convergence un-
der a Lipschitz assumption. The constraint x ∈ Ω is enforced by a projection onto Ω after
the hyperplane projection. They tested their method with a signal and image reconstruc-
tion application in compressed sensing. Their method has further been improved by Liu
and Li [47]. Note that many articles demonstrate improvements on CG methods for con-
strained systems in numerical experiments only, i.e., without providing rigorous theoretical
justification of these improvements.

In 2013, Dai and Kou [16] proposed a new conjugate gradient method for minimization
problems. Their search direction is chosen as a vector on a one-dimensional manifold that
is closest to the direction of the self-scaled memoryless BFGS method by Perry [59] and
Shanno [70]. Their new CG coefficient is given by

βDK
k+1 =

∇f>
k+1yk

yk>dk
−
(
τk +

‖yk‖2

s>k yk
−

s>k yk
‖sk‖2

) ∇f>
k+1sk

yk>dk
,

with a scalar parameter τk which corresponds to the self-scaling parameter in the self-scaled
memoryless BFGS method. This new coefficient can be seen as a special case of the Dai-
Liao coefficient βDL

k+1 with t =
(
τk +

‖yk‖2

s>k yk
− s>k yk

‖sk‖2

)
. They combined their method with an

improved Wolfe line search.
The Dai-Kou approach was first applied to constrained systems of equations by Ding

et al. [21]. They used the hyperplane projection technique [71] and established linear con-
vergence for their scheme under an error bound condition. Their choice for τk is taken as
one of the effective choices in [16] and [57] or their convex combination. Numerically, their
method is very competitive.

– 6 –

1 Introduction

Recently, Waziri et al. [79] proposed a modified Dai-Kou scheme where they use a
modification of the vector yk by Li and Fukushima [45] in the formula for βDK

k+1. The
method was tested with an application in signal and image reconstruction. They have
further improved this approach in Ahmed et al. [2]. An important change is the addition
of a scalar multiple of (the modified) yk as a third term to the search direction dk+1. A
notable property of this algorithm is that the search directions are of the form dk = −QkFk

with a symmetric matrix Qk. They have proven linear convergence for their scheme and it
is performing very well numerically. We will analyse this method further in Sections 4.3.1
and 5.3.

– 7 –

2
Preliminaries

2.1 Basic Concepts and Notation

For this entire thesis, let F : Rn → Rm be the continuous function for which we want to
solve (1.1). In practice, for most methods we have the case m = n. Notable exceptions are
the methods proposed in Sections 3.1 and 3.2, i.e., the LP-Newton method and its variants.

The set Ω will always denote a closed convex subset of Rn. It encompasses our con-
straints on the solutions in (1.1). By Ω being convex, we mean that

∀x, y ∈ Ω,∀τ ∈ [0, 1] : (1− τ)x+ τy ∈ Ω

holds, that is for every two points in Ω, the line segment connecting the two lies completely
within Ω. By Z, we will denote our set of solutions for (1.1), i.e.,

Z := {z ∈ Ω |F (z) = 0} .

For this entire thesis, this set is assumed to be nonempty. As F is continuous and Ω closed,
the set Z = F−1({0}) ∩ Ω is also closed. This is an important property as we will see in
the following.

First, we will equip Rn and Rm each with a norm, that we will denote with ‖ · ‖ in both
cases. Which of these two norms is used will be clear from context. Now, let x ∈ Rn and
C be a subset of Rn. Then, the distance dist[x,C] of the point x to the set C is given by

dist[x,C] := inf
y∈C
‖x− y‖.

When the set C is closed, the infimum is attained, that is for all x ∈ Rn there exists an x̄ ∈ C

such that dist[x,C] = ‖x− x̄‖. This property is one of the reasons we need the closedness
of Z. If we consider a set that is additionally convex, e.g., Ω, then x̄ is additionally unique
when we choose ‖ · ‖ as the euclidean norm [33, Section 2.1.3]. This allows the definition
of the projection map PΩ : Rn → Ω onto Ω by defining PΩ(x) = x̄ for dist[x,Ω] = ‖x− x̄‖
with x̄ ∈ Ω.

Next, an important concept in smooth as well as nonsmooth analysis is Lipschitz con-
tinuity. The function F is called Lipschitz continuous or just Lipschitz, when there exists
an L > 0, such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

– 8 –

2 Preliminaries

While this is a global property, there is also a weaker local variant of Lipschitz continuity.
The function F is called locally Lipschitz continuous or just locally Lipschitz at a point
z ∈ Rn if there exist L > 0 and ε > 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Bε(z).

The set Bε(z) denotes the closed ε-neighborhood around z. An example of a Lipschitz con-
tinuous function is the projection map PΩ, which is Lipschitz with L = 1 [33, Section 2.1.3],
that is

‖PΩ(x)− PΩ(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn.

Finally, the last concept we introduce in this section is the operator norm [39, page 26].
It allows us to construct a norm on the matrix space Rm×n from the norms on Rn and Rm.
The operator norm of A ∈ Rm×n is defined by

‖A‖ := sup
x6=0

‖Ax‖
‖x‖

. (2.1)

An important property of this norm is that it satisfies the inequality

‖Ax‖ ≤ ‖A‖ ‖x‖

for all x ∈ Rn and A ∈ Rm×n.

2.2 Rates of Convergence

An important notion when analysing the convergence properties of an algorithm is its con-
vergence rate. Naturally, a fast convergence rate is desirable, as we then need fewer iter-
ations to reach a solution. There are various classifications of different convergence rates.
The definitions in this section follow [56, 58].

Let {xk} ⊆ Rn be a sequence that converges to some x∗ ∈ Rn. Also, let ‖xk − x∗‖ 6= 0

for sufficiently large k. The sequence {xk} is said to converge Q-linearly, when

r := lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

< 1.

This means that the distance to the solution decreases by at least the constant factor
r ∈ (0, 1). A faster convergence rate occurs when the limit r is zero,

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

In that case, we say that the sequence converges Q-superlinearly.
A more rapid convergence rate occurs when there exists a p > 1, such that

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

<∞.

– 9 –

2 Preliminaries

The number p is called the Q-convergence order of {xk}. A higher convergence order is
better, as a convergence order of p implies a convergence order of q for all q ∈ (1, p). In the
special case of p = 2, we also call the convergence rate Q-quadratic.

There is also a notion weaker than the “Q-” family of convergence rates, that is the
“R-” family of convergence rates. The sequence {xk} is said to converge R-linearly, if there
exists a sequence {εk} of non-negative real numbers that converge Q-linearly to zero, such
that for all k

‖xk − x∗‖ ≤ εk.

Q-linear convergence rates are stronger that R-linear rates in the sense that they mandate
sufficient decrease of the distance to x∗ for all k large enough, while an R-linear convergence
rate allows occasional deviation, as long as the distance admits sufficient decrease overall.
We could also define “R-” versions of the other convergence rates, however we only encounter
R-linear rates in this thesis.

Usually, we will drop the “Q-” prefix for improved readability and only include it for
contrast with “R-” convergence rates.

2.3 Generalized Derivatives

In this thesis, we are particularly interested in those cases where F fails to be “smooth
enough” or to be differentiable. For those cases it is often desirable to have weaker alterna-
tive notions of a derivative. In this thesis, we will mention the following.

Definition 2.1. (cf. [38, Sect. 1.3]) For F : Rn → Rm locally Lipschitz, the B-subdifferential
(Bouligand-subdifferential) at a point x ∈ Rn is defined as

∂BF (x) :=

{
lim
k→∞

F ′(xk) | lim
k→∞

xk = x, {xk} ⊆ DF

}
,

where DF ⊆ Rn is the set of points where F is differentiable. Then, Clarke’s generalized
Jacobian [15, Definition 2.6.1] at z is defined as

∂F (x) := conv ∂BF (x).

Note that Rademacher’s Theorem states that when F is locally Lipschitz, it is differen-
tiable almost everywhere (see [66, Theorem 9.60]). That is, Rn \DF has Lebesgue-measure
zero, and thus for all x ∈ Rn a sequence {xk} ⊆ DF exists such that

lim
k→∞

xk = x.

Definition 2.2. The function F is called directionally differentiable at x ∈ Rn if

lim
t→0+

F (x+ th)− F (x)

t
=: F ′(x;h)

exists for all h ∈ Rn.

– 10 –

2 Preliminaries

Definition 2.3. F : Rn → Rm is called semismooth [65] at x if it is locally Lipschitz in x

and
lim

V ∈∂F (x+th′)
h′→h,t→0+

V h′ (2.2)

exists for all h ∈ Rn. F is called strongly semismooth [64, Definition 2.3] at x if additionally

V h− F ′(x;h) = O(‖h‖2) (2.3)

holds for all V ∈ ∂F (x+ h) and h→ 0.

Note that the directional derivative F ′(x;h) exists in (2.3) when F is semismooth at x

and coincides with (2.2), see [65, Proposition 2.1].

– 11 –

3
Newton-type Methods

Newton’s Method is one of the most classic methods for solving

F (z) = 0

and is well known for its fast convergence rate. In each step, we acquire the step by solving
a linear system of equations involving the derivative of F .

To specify Newton’s method, let F : Rn → Rn be differentiable and z0 ∈ Rn. The
sequence of iterates {zk} is recursively defined by

F ′(zk)pk = −F (zk),

zk+1 := zk + pk.
(3.1)

Note that in this chapter, we denote the iterates by {zk} instead of {xk} to remain consistent
with the notation used in the original papers of the methods discussed in the upcoming
sections.

Newton’s method is also often stated and used as a method for minimization problems

min
x∈Rn

f(x)

with f : Rn → R by setting F = ∇f . This makes the version for systems of equations the
more general option as not every function occurs as the gradient of another.

The following is a well known convergence result for Newton’s method.

Theorem 3.1. Let F be differentiable and let the Jacobian F ′ be locally Lipschitz continuous
in a neighborhood of a solution z∗ at which F ′(z∗) is invertible. Then, there exists an r > 0

such that for all z0 ∈ Br(z
∗), the sequence {zk} given by (3.1) converges to z∗. The

convergence rate is quadratic and additionally {F (zk)} also converges quadratically towards
zero.

For a proof, see for example [33, Satz 5.26]. The fast quadratic convergence rate is
the reason behind the popularity of Newton’s Method. However, this benefit comes with
substantial downsides which are prohibitive for many applications. For one, the convergence
result makes strong smoothness assumptions on F , and F ′(z∗) may not even be invertible.
In general, the solution z∗ need not be isolated, which is always the case when F ′(z∗) is

– 12 –

3 Newton-type Methods

invertible, see Theorem 3.3. The other hurdle is the high computational complexity. In
every step we need to solve a linear system. In fact, calculating the derivative may already
be too expensive or even infeasible as the Jacobian may not fit into memory for large n.
This makes Newton’s method ill-suited for large scale systems. Finally, Newton’s method
only works for unconstrained systems, that is, we cannot guarantee that the iterates remain
within the set Ω.

Thus, the challenge is improving Newton’s method by extending it to more general
classes of functions, lowering the computational complexity in each iteration and all this
while maintaining a fast convergence rate. These goals are conflicting, since roughly speak-
ing, when we go to more general functions, there are less properties we can exploit.

One big branch of Newton methods that address the complexity of the iterations are
Quasi-Newton methods. Instead of using the Jacobian, they use some approximation that
can be cheaply calculated or easily inverted. Often, the solution of the linear system can
be calculated matrix-free.

To address the smoothness assumptions on F , there a various ways to define a gener-
alized derivative, see Section 2.3. With this, we can define a Newton iteration by

V pk = −F (zk), V ∈ ∂F (zk).

Indeed, when all the matrices V ∈ ∂F (z∗) are invertible at a solution z∗ ∈ Z and z0 is close
enough to z∗, then we get superlinear convergence if F is semismooth, and even quadratic
convergence if F is strongly semismooth [65, Theorem 3.2].

One particular discovery to generalize the regularity assumption at the solution is that
the convergence speed rather depends on the error bound condition instead of the regularity.
Definition 3.2. A function F : Rn → Rm provides a local error bound around z∗ ∈ Z, if
there exist `, δ > 0, such that

dist[s, Z] ≤ `‖F (s)‖
for all s ∈ Bδ(z

∗).
Whenever F ′(z∗) is invertible, not only is z∗ an isolated solution, F also provides a

local error bound around z∗.
Theorem 3.3. (cf. [74, Lemma 10.4]) Let F : Rn → Rn be continuously differentiable
around a solution z∗ ∈ Z. When F ′(z∗) is non-singular, we have

a) z∗ is an isolated solution and
b) F provides a local error bound around z∗.

Proof. By assumption, there exists an ε0 > 0 such that F ′ is continuous on Bε0(z
∗). As

F ′(z∗) is invertible, we can define ` := 2‖F ′(z∗)−1‖. By the definition of differentiability,
there exists an ε1 ∈ (0, ε0), such that

‖F (z)− F (z∗)− F ′(z∗)(z − z∗)‖ ≤ `−1‖z − z∗‖

holds for all z ∈ Bε1(z
∗). This implies

‖z − z∗‖ = 2‖F ′(z∗)−1F ′(z∗)(z − z∗)‖ − ‖z − z∗‖
≤ `‖F ′(z∗)(z − z∗)‖ − `‖F (z)− F (z∗)− F ′(z∗)(z − z∗)‖
≤ `‖F (z)− F (z∗)‖
= `‖F (z)‖

(3.2)

– 13 –

3 Newton-type Methods

for all z ∈ Bε1(z
∗). Now, by (3.2), F (z) = 0 implies z = z∗ for all z ∈ Bε1 . Thus, z∗ is the

only solution in Bε1(z
∗) and we have shown a). Additionally, when we set ε := ε1/2, we get

that dist[z, Z] = ‖z − z∗‖, which implies b) by (3.2), finalizing the proof.

There are F that provide a local error bound around non-isolated solutions, e.g.,
F : R2 → R, F (z) = z1 at all z∗ ∈ Z. Section 3.1 discusses the error bound condition
and its influence on the discussed method in that section.

3.1 LP-Newton

The LP-Newton method introduced in [24] encompasses the notions of generalized deriva-
tives and the error bound condition while still maintaining quadratic convergence. The
cost for achieving this greater generality is that we need to solve a Linear Program as a
subproblem instead of a linear system in each iteration. However, we also get the benefit
that the method works on constrained systems (1.1) and it is one of the few which allow
m 6= n. Coming form an iterate s ∈ Rn, the next iterate is generated as a solution to the
following subproblem

min
γ,z

γ s.t. z ∈ Ω,

‖F (s) +G(s)(z − s)‖ ≤ γ‖F (s)‖2,
‖z − s‖ ≤ γ‖F (s)‖,
γ ≥ 0.

(3.3)

Here, the mapping G : Rn → Rm×n is the replacement for the Jacobian. LP-Newton
does not mandate which derivative to use, as long as its assumptions are satisfied. When
‖ · ‖ is the infinity norm and Ω is polyhedral, this is a Linear Program. For instance, if
Ω = {z ∈ Rn |Az ≤ b} with a matrix A ∈ Rr×n and b ∈ Rr, then (3.3) becomes

min
γ,z

γ s.t. Az ≤ b,

G(s)z ≤ γ‖F (s)‖2 · 1− F (s) +G(s)s,

−G(s)z ≤ γ‖F (s)‖2 · 1 + F (s)−G(s)s,

z ≤ γ‖F (s)‖ · 1 + s,

−z ≤ γ‖F (s)‖ · 1− s,

γ ≥ 0,

with 1 := (1, . . . , 1)> ∈ Rn. That is indeed a Linear Program.
From this, we get the following algorithm.

Algorithm 3.1 LP-Newton
1: Choose z0 ∈ Ω and a mapping G : Rn → Rm×n, k ← 0.
2: If zk ∈ Z then stop.
3: Compute a solution (γk+1, zk+1) of (3.3) with s := zk.
4: k ← k + 1, go to Step 2

This algorithm is well-defined by the following proposition.

– 14 –

3 Newton-type Methods

Proposition 3.4. (see [24, Proposition 1]) For any s ∈ Rn,

a) problem (3.3) has a solution and
b) the optimal value of (3.3) is zero if and only if s ∈ Z

Next, we will look at the assumptions that guarantee the convergence properties of
Algorithm 3.1. For this, we fix a solution z∗ ∈ Z and a radius δ > 0. All assumptions shall
hold on the ball Bδ(z

∗).
The first assumption is a Lipschitz-like assumption which is strictly weaker than local

Lipschitz-continuity at z∗.

Assumption 1. There exists L > 0 such that

‖F (s)‖ ≤ L dist[s, Z]

for all s ∈ Bδ(z
∗) ∩ Ω.

The second assumption is a generalization of the aforementioned error bound condition.
Here, we deviate from the original paper, as we introduce an additional parameter σ to
emphasize the impact on the convergence behavior. This generalization of the error bound
condition goes as follows

Assumption 2. There exists ` > 0 and σ > 0 such that

dist[s, Z] ≤ `‖F (s)‖σ

for all s ∈ Bδ(z
∗) ∩ Ω.

Here, σ = 1 yields the default error bound condition, while σ > 1 is more demanding
and σ < 1 is less demanding than the error bound condition. As we will see, this assumption
is the primary factor in the convergence rate of Algorithm 3.1, and the degree to which the
error bound condition holds directly influences it. In fact, the convergence rate of {zk} will
be linear in σ and we will also achieve convergence in cases where σ < 1.

The next two assumptions are what restricts our choices for the mapping G.

Assumption 3. There exists Γ ≥ 1 such that

γ(s) ≤ Γ

for all s ∈ Bδ(z
∗) ∩ Ω.

Assumption 4. There exists α̂ > 0 such that

w ∈ L (s, α) :=
{
w ∈ Ω | ‖w − s‖ ≤ α, ‖F (s) +G(s)(w − s)‖ ≤ α2

}
implies

‖F (w)‖ ≤ α̂α2

for all s ∈ (Bδ(z
∗) ∩ Ω) \ Z and all α ∈ [0, δ].

This assumption specifies how well F (s) + G(s)(· − s) needs to approximate F ′. To
give an example of when Assumptions 3 and 4 hold, consider the following theorem.

– 15 –

3 Newton-type Methods

Theorem 3.5. (cf. [24, Corollary 2]) Let F be locally Lipschitz continuous and assume
there exists a κ > 0 such that

sup {‖F (s) + V (z∗ − s)‖ : V ∈ ∂F (s)} ≤ κ‖z∗ − s‖2 (3.4)

for all s ∈ Bδ(z
∗) ∩ Ω. When all the matrices in ∂BF (z∗) have rank equal to n and G is

chosen such that G(s) ∈ ∂BF (s) for all s ∈ Bδ(z
∗)∩Ω, then Assumptions 3 and 4 hold for

δ sufficiently small.

The condition (3.4) also occurs in the LP-Newton paper [24] as Condition 2. This
condition holds whenever F is strongly semismooth at the solution z∗ [27, Lemma 17].
Thus, F being locally Lipschitz, strongly semismooth at z∗ and V having rank n for all
V ∈ ∂BF (z∗), is sufficient for Assumptions 1, 3 and 4 when choosing G(s) ∈ ∂BF (s). For
further discussion on the assumptions, we refer to [24]

Now, we will look at the convergence result and the needed lemmas. We will only
provide proofs when they deviate from the original paper due to our modification of As-
sumption 2. Even with these modification, the proofs are however very similar.

Lemma 3.6. (see [24, Lemma 1]) Let Assumption 3 be satisfied and define the set F (s, Γ)

by

F (s, Γ) :=
{
z ∈ Ω | ‖z − s‖ ≤ Γ‖F (s)‖, ‖F (s) +G(s)(z − s)‖ ≤ Γ‖F (s)‖2

}
.

Then, for any s ∈ Bδ(z
∗) ∩ Ω, the set F (s, Γ) is nonempty. If, in addition, Assumption 1

is satisfied, then

‖F (s) +G(s)(z − s)‖ ≤ LΓ 2 dist[s, Z]2 and ‖z − s‖ ≤ LΓ dist[s, Z]

hold for all z ∈ F (s, Γ).

Lemma 3.7. (cf. [24, Lemma 2]) Let Assumptions 1–4 be satisfied and let σ > 1
2 . Then,

there are ε > 0 and C > 0 such that, for any s ∈ Bε(z
∗) ∩ Ω,

dist[z, Z] ≤ C dist[s, Z]2σ ≤ 1

2
dist[s, Z]

holds for all z ∈ F (s, Γ).

Proof. Let us choose C := α̂σ`Γ 2σL2σ and any ε according to

0 < ε ≤ min
{
δ

2
,
δ

2
Γ−1L−1, (2C)−1/(2σ−1)

}
. (3.5)

Therefore
‖z∗ − z‖ ≤ ‖z∗ − s‖+ ‖z − s‖ ≤ δ

2
+

δ

2
= δ,

which implies z ∈ Bδ(z
∗) ∩ Ω. Since z ∈ F (s, Γ) and Γ ≥ 1 yield

‖F (s) +G(s)(z − s)‖ ≤ Γ‖F (s)‖2 ≤ Γ 2‖F (s)‖2 and ‖z − s‖ ≤ Γ‖F (s)‖,

– 16 –

3 Newton-type Methods

we have z ∈ L (s, α), with α := Γ‖F (s)‖. Moreover,

α = Γ‖F (s)‖ ≤ ΓL dist[s, Z] ≤ ΓLε ≤ δ

2

follows by Assumption 1 and (3.5). Thus, Assumption 4 implies

‖F (z)‖ ≤ α̂α2 = α̂Γ 2‖F (s)‖2.

Using this, Assumptions 1 and 2, and (3.5), we obtain

dist[z, Z] ≤ `‖F (z)‖σ ≤ α̂σ`Γ 2σ‖F (s)‖2σ

≤ C dist[s, Z]2σ ≤ Cε2σ−1 dist[s, Z] ≤ 1

2
dist[s, Z]

and the assertion follows.

Now, we state the actual convergence result. We modified the theorem to more general
sequences {zk} to shorten the proof to the parts that change due to our modification of
Assumption 2.

Theorem 3.8. (cf. [24, Theorem 1]) Let Assumptions 1–4 be satisfied and let {zk} be any
sequence such that

zk ∈ Bε(z
∗) (3.6)

with ε according to (3.5) and
zk+1 ∈ F (zk, Γ) (3.7)

hold for all k ∈ N0. Then, {zk} converges to some ẑ ∈ Z with convergence order 2σ.

Proof. Because of (3.6) and (3.7), Lemma 3.7 provides

dist[zk+1, Z] ≤ C dist[zk, Z]2σ ≤ 1

2
dist[zk, Z] (3.8)

for all k ∈ N0. This yields
lim
k→∞

dist[zk, Z] = 0. (3.9)

Due to (3.7), we can apply Lemma 3.6, and then (3.8) to obtain for all j, k ∈ N0 with k > j

that

‖zk − zj‖ ≤
k−1∑
i=j

‖zi+1 − zi‖ ≤ ΓL dist[zj , Z]

k−1∑
i=j

(
1

2

)i−j

≤ 2ΓL dist[zj , Z]. (3.10)

Because the right hand term tends to zero by (3.9), {zk} is a Cauchy sequence and thus
converges to some ẑ ∈ Rn. By closedness of Z, and (3.9), we additionally have ẑ ∈ Z.
Finally, we can use (3.10) and (3.8) to get

‖zk+j − zk+1‖ ≤ 2ΓL dist[zk+1, Z] ≤ 2CΓL dist[zk, Z]2σ ≤ 2CΓL‖ẑ − zk‖2σ,

where j →∞ leads to

‖ẑ − zk+1‖ ≤ 2CΓL dist[zk, Z]2σ ≤ 2CΓL‖ẑ − zk‖2σ, (3.11)

proving the desired convergence order of 2σ.

– 17 –

3 Newton-type Methods

And indeed, any sequence generated by Algorithm 3.1 with z0 close enough to z∗

satisfies the assumptions (3.6) and (3.7), see [24, Proof of Theorem 1]. Our modification of
Assumption 2 does not interfere with the proof in any way. From this, it is also apparent
that the algorithm does not depend on an exact solution of subproblem (3.3). A close enough
approximation in each step suffices to achieve the desired convergence order, simplifying the
implementation.

Finally, we will briefly discuss the convergence order of the residuals to point out the
changes that arise from our modification. In the default case σ = 1, both the iterates and
residuals converge quadratically, i.e., the convergence orders are identical. However, in the
general case we obtain with Assumptions 1 and 2 and (3.11) that

‖F (zk+1)‖ ≤ L dist[zk+1, Z] ≤ L‖zk+1 − ẑ‖

≤ 2CΓL2 dist[zk, Z]2σ ≤ 2CΓL2`2σ‖F (zk)‖2σ2

,

showing that {F (zk)} converges to zero with convergence order 2σ2 instead of 2σ. Thus,
they coincide only for σ = 1. For σ > 1, the residuals converge faster towards zero than
the iterates, while for σ < 1 they converge slower.

3.2 Secant Modified LP-Newton

While LP-Newton greatly relaxes the assumptions on the function F , it does not lower
the computational complexity but rather increases it. One method which tries to address
this problem is the Secant Modified LP-Newton (SMLP-Newton) [53]. It is an extension
of the authors’ previous work [52] which extends the LP-Newton method by incorporating
Quasi-Newton approximations of the Jacobian. However, in [52] they only achieved linear
convergence. For SMLP-Newton, they improved this result to superlinear convergence.

In each step of LP-Newton, we employ a Quasi-Newton approximation Mk instead of
G(zk) and we also replace one of the residuals ‖F (zk)‖ in (3.3) by a sequence {ηk}. With
that, the new subproblem is given by

min
γ,z

γ s.t. z ∈ Ω,

‖F (zk) +Mk(z − zk)‖ ≤ ηkγ,

‖z − zk‖ ≤ γ.

(3.12)

Here, in both inequalities, the authors omitted a ‖F (zk)‖ term as it can be absorbed
into γ. Note that ‖z− zk‖ ≤ γ automatically guarantees γ ≥ 0. The matrix Mk is updated
in each step to the closest matrix that satisfies the secant equation

Mk+1(z
k+1 − zk) = F (zk+1)− F (zk),

which is a very common tool in Quasi-Newton methods, see e.g., [20, 56]. The motivation
behind this equation is that the true derivative provides the approximation

F ′(zk)(zk+1 − zk) ≈ F (zk+1)− F (zk)

– 18 –

3 Newton-type Methods

by Taylor’s Theorem. We also assert Mk+1 ∈ X for a fixed closed and convex set X ⊆ Rm×n.
Hence, Mk+1 is the solution to the problem

min
N
‖N −Mk‖2? s.t. N(zk+1 − zk) = F (zk+1)− F (zk),

N ∈ X ,
(3.13)

where ‖ · ‖? is some norm on Rm×n induced by an inner product. Similarly, B?
δ (M)

will denote the δ-neighborhood of M wrt. ‖ · ‖. The set X can be chosen to include a-
priori knowledge on the Jacobians that can occur for a given problem. If for example all
the derivatives are known to be symmetric, X can be chosen as the set of all symmetric
matrices. It is also important to note that (3.13) may not have a solution for poor choices
of X . Thus, X has to be chosen with some care. Two important choices for which the
existence of a solution is ensured are X = Rm×n and the space of the symmetric matrices.
When ‖ · ‖? is the Frobienius Norm, Mk+1 is then given by the Broyden Update in the first
case (see [20, Lemma 8.1.1]), and as the Powell-symmetric-Bryoden update in the second
case (see [32, Satz 11.3]).

Finally, ηk is updated according to

ηk+1 = min
{
η0, κmax

{
‖F (zk)‖σ, ‖F (zk+1)‖σ

}}
, (3.14)

with η0 > 0 and a fixed parameter 0 < σ ≤ 1. In the original Quasi-Newton modification of
LP-Newton in [52], the authors used a constant parameter instead of updating ηk in each
iteration. In the proof that F (zk) → 0, it is also shown that ηk → 0. This is responsible
for the superlinear convergence of SMLP-Newton, whereas a constant η only yields linear
convergence in [52]

Algorithm 3.2 Secant Modified LP-Newton (SMLP)
1: Choose z0 ∈ Ω, η0 ∈ R>0, M0 ∈ Rm×n and set k ← 0.
2: If zk ∈ Z then stop.
3: Compute a solution (γk+1, zk+1) of (3.12).
4: Compute Mk+1 according to (3.13) and ηk+1 according to (3.14).
5: Set k ← k + 1, go to Step 2

For the assumptions of SMLP, fix a radius ε0 > 0. The smoothness assumptions
for SMLP are stronger than those for LP-Newton. Specifically, we need again that F is
differentiable and that both F and F ′ are Lipschitz in a fixed solution z∗ ∈ Z.

Assumption 1. There exist L0, L1 > 0 such that

‖F (z)− F (w)‖ ≤ L0‖z − w‖ and ‖F ′(z)− F ′(w)‖ ≤ L1‖z − w‖

for all z, w ∈ B2ε0(z
∗).

Here, ‖ · ‖ on Rm×n is the operator norm (see (2.1)). Concerning regularity, we can
again work with the error bound condition.

– 19 –

3 Newton-type Methods

Assumption 2. There exists ` > 0 such that

dist[s, Z] ≤ `‖F (s)‖

for all s ∈ Bε0(z
∗) ∩ Ω.

The last assumption requires that the Quasi-Newton approximations Mk are close
enough to the real derivatives of F along the iterates. However, authors acknowledge that
it may not hold in practice. We will discuss this further in the numerics chapter.

Assumption 3. There exists c > 0 such that

‖Nk+1 −Mk+1‖ ≤ c‖zk+1 − zk‖σ

for all k ∈ N0, where Nk+1 is the average Jacobian of F between zk and zk+1 defined by

Nk+1 =

∫ 1

0
F ′(zk + t(zk+1 − zk)) dt.

Now, we will state the following lemma which is necessary in proving superlinear con-
vergence of SMLP-Newton. We include it here, as we will also need it to prove a slightly
stronger result afterwards.

Lemma 3.9. Let Assumptions 1–3 be satisfied and {zk}, {Mk} and {ηk} be generated by
Algorithm 3.2 with κ ≥ (c+ L1)/`

σ. Then, there exist r, ε, δ > 0 such that if

η0 <
1

6`
, z0 ∈ Br(z

∗) ∩ Ω and M0 ∈ B?
δ/2(F

′(z∗)) ∩ X ,

then for all k ∈ N0,

(i) ‖zk − z∗‖ ≤ ε,
(ii) ‖Mk − F ′(z∗)‖? ≤ δ,

(iii) ‖F (zk) +Mk(z
k+1 − zk)‖ ≤ ηk dist[zk, Z],

(iv) ‖zk+1 − zk‖ ≤ dist[zk, Z],
(v) dist[zk+1, Z] ≤ 1

2 dist[zk, Z].

The proof can be again be found in the original paper [53, Lemma 4.1], as well as
the actual proof for the superlinear convergence of {F (zk)} and {zk} (Theorem 4.1 and
Corollary 4.1). Important to note is that the assumptions of Lemma 3.9 are exactly the
assumptions needed for these theorems.

Now, we will prove an additional result that substantiates the superlinear convergence
proven in [53]. We will however assume that the superlinear convergence of {F (zk)} and
{zk} is already given by the mentioned theorems, that is {F (zk)} converges superlinearly
to zero and {zk} converges superlinearly to some solution ẑ.

Theorem 3.10. Under the assumptions of Lemma 3.9, there exist C0 > 0 and C1 > 0 such
that

‖F (zk+1)‖ ≤ C0‖F (zk−1)‖σ‖F (zk)‖ and ‖zk+1 − ẑ‖ ≤ C1‖zk−1 − ẑ‖σ‖zk − ẑ‖

for large enough k.

– 20 –

3 Newton-type Methods

Proof. First, we want to get an upper bound for the difference ‖Mk+1−Mk‖ of our Quasi-
Newton approximations in terms of the residuals. We start off by

‖Nk+1 −Nk‖ ≤
∫ 1

0

∥∥∥F ′
(
zk + t(zk+1 − zk)

)
− F ′

(
zk−1 + t(zk − zk−1)

)∥∥∥ dt

≤
∫ 1

0
L1

∥∥∥zk − zk−1 + t(zk+1 − zk − zk + zk−1)
∥∥∥ dt

≤ L1‖zk − zk+1‖+ L1

2

(
‖zk+1 − zk‖+ ‖zk − zk−1‖

)
≤ 3L1

2
dist[zk, Z] +

L1

2
‖zk − zk−1‖

≤ 3L1

4
dist[zk−1, Z] +

L1

2
dist[zk−1, Z]

=
5L1

4
dist[zk−1, Z],

where we used Assumption 1, Lemma 3.9 (iv) and the fact that dist[zk, Z] < 1 for sufficiently
large k. With that and Assumptions 2 and 3, we get

‖Mk+1 −Mk‖ ≤ ‖Mk+1 −Nk+1‖+ ‖Nk+1 −Nk‖+ ‖Nk −Mk‖

≤ c‖zk+1 − zk‖σ +
5L1

4
dist[zk−1, Z] + c‖zk − zk−1‖σ

≤ c dist[zk, Z]σ +
5L1

4
dist[zk−1, Z]σ + c dist[zk−1, Z]σ

≤ 6c+ 5L1

4
dist[zk−1, Z]σ

≤ C‖F (zk−1)‖σ

with C = ` (6c+ 5L1) /4. Finally, since ‖F (zk)‖ converges linearly, it holds that ‖F (zk+1)‖ <
‖F (zk)‖ for sufficiently large k. Therefore, ηk = κ‖F (zk−1)‖σ for sufficiently large k and
we have

‖F (zk+1)‖ = ‖F (zk) +Mk+1(z
k+1 − zk)‖

≤ (ηk + ‖Mk+1 −Mk‖) dist[zk, Z]

≤ (κ‖F (zk−1)‖σ + C‖F (zk−1)‖σ) dist[zk, Z]

≤ (κ+ C)`‖F (zk−1)‖σ‖F (zk)‖.

proving the first inequality with C0 = (κ+ C0)`. For the second inequality, first note that
by Lemma 3.9 (iv) and (v)

‖zk+j − zk‖ ≤
k+j−1∑
i=k

‖zi+1 − zi‖

≤
k+j−1∑
i=k

dist[zi, Z]

≤
k+j−1∑
i=k

1

2i−k
dist[zk, Z]

≤ 2 dist[zk, Z]

– 21 –

3 Newton-type Methods

holds, where j →∞ yields
‖zk − ẑ‖ ≤ 2 dist[zk, Z].

The original authors also used these inequalities to prove the convergence of {zk}. Finally,
with this, Assumptions 1 and 2 and the already proven inequality, we get

‖zk+1 − ẑ‖ ≤ 2 dist[zk+1, Z]

≤ 2`‖F (zk+1)‖
≤ 2`C0‖F (zk−1)‖σ‖F (zk)‖
≤ 2L2

0`C0‖zk−1 − ẑ‖σ‖zk − ẑ‖,

also proving the second inequality with C1 = 2L2
0`C0.

Note that Theorem 3.10 is stronger than the superlinear convergence of {F (zk)} and
of {zk}. We see that the next iteration is not just bounded by the current iteration, but we
also observe an additional “echoing” of the previous iteration with power σ. In addition,
we can derive a convergence order of 1+ σ over two steps by ‖F (zk)‖ ≤ ‖F (zk−1)‖, that is

lim sup
k→∞

‖F (zk+2)‖
‖F (zk)‖p

<∞ (3.15)

for p = 1 + σ. If we also had that the residuals ‖F (zk−1)‖ were in some way bounded by
the next iteration ‖F (zk)‖, limiting how much we can improve in each step, we even would
get an actual convergence order of 1 + σ. The same results of course hold also true for the
iterates {zk}, as

‖zk+2 − ẑ‖
‖zk − ẑ‖p

≤ C1
‖zk − ẑ‖σ‖zk+1 − ẑ‖
‖zk − ẑ‖1+σ

≤ C2
1‖zk−1 − ẑ‖σ −→ 0

for p = 1 + σ and large enough k.

– 22 –

4
Conjugate Gradient Methods

The traditional Conjugate Gradient (CG) Method was originally studied as a method to
find solutions to the linear equation Ax = b, where A is symmetric and positive definite. In
particular, the method finds the solution to the strictly convex optimization problem

min
x

1

2
x>Ax− b>x, (4.1)

which coincides with the solution of Ax = b by the optimality condition. A naïve way to
solve this problem could be gradient descent, where we use the negative gradient as a search
direction, as it is guaranteed to be the direction of steepest descent. While this converges,
it does so slowly. The trick behind the Conjugate Gradient Method is that we choose the
search directions dk to be conjugate to each other wrt. A, that is d>i Adj = 0 for i 6= j. The
iterates xk are then given as usual by xk+1 = xk + αkdk). If we additionally choose the
step length αk such that it minimizes f(xk + αkdk), then the iterates yield the expanding
subspace minimization property, that is xk minimizes f on

x0 + span(d0, . . . , dk−1),

see [56, Theorem 5.2.]. Since the dk are linearly independent, the algorithm thus terminates
in at most n steps. Fortunately, there is a simple way to ensure all the search directions are
conjugate by modifying the gradient descent direction by a multiple of the previous search
direction, i.e.,

dk = −∇fk + βkdk−1

with a scalar βk ∈ R and ∇fk := ∇f(xk). By ensuring dk−1 and dk to be conjugate and by
applying d>k−1A, we deduce

βk =
∇f>

k Adk−1

d>k−1Adk−1
.

In fact, with this choice of βk and d0 chosen as the exact gradient descent direction (and
only then), the dk are automatically conjugate [56, Theorem 5.3.]. Additionally, αk from
above is explicitly given by

αk =
∇f>

k dk

d>k Adk
.

– 23 –

4 Conjugate Gradient Methods

The gradient ∇f(xk) can also be iteratively calculated via

∇fk+1 = ∇fk + αkAdk.

Thus in each step, the only possibly expensive operation is the calculation of Adk. All
other computations are performed in linear-time and independently of A. This means the
efficiency of the algorithm entirely depends on the efficiency of the evaluation of x 7→ Ax,
which depending on A could be implemented potentially matrix-free. This is particularly the
case when A is sparse. This makes the CG method very efficient speed- and memory-wise.

As the speed and efficiency of the CG method are very desirable properties, mathemati-
cians have generalized it to more general functions, the first being Fletcher and Reeves [30].
Trying to generalize the CG parameter leads to various possible choices, as we have already
described in Section 1.1. For the convenience of the reader, we again include an overview
here in Table 4.1. All of these choices coincide in the quadratic case.

Coefficient Source

βHS
k+1 =

∇f>
k+1yk

y>k dk
Hestenes and Stiefel [36]

βFR
k+1 =

∇f>
k+1∇fk+1

∇f>
k ∇fk

Fletcher and Reeves [30]

βPRP
k+1 =

∇f>
k+1yk

∇f>
k ∇fk

Polak and Ribière [61]
and Polyak [62]

βCD
k+1 =

∇f>
k+1∇fk+1

−∇f>
k dk

Fletcher [29]
(Conjugate Descent)

βLS
k+1 =

∇f>
k+1yk

−∇f>
k+1dk

Liu and Storey [48]

βDY
k+1 =

∇f>
k+1∇fk+1

y>k dk
Dai and Yuan [18]

βDL
k+1 =

∇f>
k+1yk

yk>dk
− t
∇f>

k+1sk

yk>dk
Dai and Liao [17]

βHZ
k+1 =

∇f>
k+1

y>k dk

(
yk − 2

y>k yk
y>k dk

dk

)
Hager and Zhang [34]

Table 4.1: Various common choices for βk with the common abbreviations yk := ∇fk+1−
∇fk and sk := xk+1 − xk. The second-to-last coefficient βDL

k+1 contains a parameter t > 0,
whose optimal choice remains a subject of research [3].

The necessary assumptions for these CG methods are that f must be convex and
continuously differentiable. In that case, x∗ being a minimizer of f is equivalent to∇f(x∗) =
0. That is, similarly to Newton’s method, we can also view the CG method as a method
to solve that equation and try to generalize it to continuous functions F that are not the
gradient of another function. As f must be convex, we first need to find a property of ∇f
that encompasses convexity, that we can then generalize to F .

Definition 4.1. (cf. [32, Definition 3.6]) A function F : Rn → Rn is called monotonically
increasing if

∀x, y ∈ Rn : 〈F (x)− F (y), x− y〉 ≥ 0.

– 24 –

4 Conjugate Gradient Methods

Indeed, this is the property we need.

Lemma 4.2. (cf. [32, Satz 3.7]) Let S ⊆ Rn be convex and f : S → R be continuously
differentiable. Then

f is convex ⇐⇒ ∇f is monotonically increasing.

Proof. For the sufficient condition, let f be convex and x, y ∈ S. Then

〈∇f(x), y − x〉 = lim
h→0+

f(x+ h(y − x))− f(x)

h

≤ lim
h→0+

hf(y)− hf(x)

h

= f(y)− f(x).

Similarly, we get
〈∇f(y), x− y〉 ≤ f(x)− f(y).

Adding these two inequalities and rearranging the result leads to

〈∇f(y)−∇f(x), y − x〉 ≥ 0.

For the necessary condition, let x, y ∈ S, x 6= y and c = (1 − τ)x + τy with τ ∈ (0, 1).
Then, by the mean value theorem, there are ξ ∈ S between x and c, and η ∈ S between c

and y, such that

f(c)− f(x) = 〈∇f(ξ), c− x〉 and f(y)− f(c) = 〈∇f(η), y − c〉, (4.2)

Since ξ and η are on the line segment between x and y with η closer to y, there is an s > 0

such that η − ξ = s(y − x). Now, we use the monotonicity of ∇f to get

0 ≤ 〈∇f(η)−∇f(ξ), η − ξ〉 = s〈∇f(η)−∇f(ξ), y − x〉.

From this, we conclude 0 ≤ 〈∇f(η)−∇f(ξ), y − x〉. With (4.2) and c− x = τ(y − x) and
y − c = (1− τ)(y − x), we finally get

0 ≤ 〈∇f(η)−∇f(ξ), y − x〉

=
1

1− τ
(f(y)− f(c))− 1

τ
(f(c)− f(x)),

where multiplying τ(1− τ) and then adding f(c) yields

f((1− τ)x+ τy) ≤ (1− τ)f(x) + τf(y)

and thus the convexity of f .

Notice that when F is monotonically decreasing, that is 〈F (x)−F (y), x−y〉 ≤ 0, we can
just use −F instead. Thus in practice, it does not matter whether or not F is monotonically
increasing or decreasing and we will call F just monotone when it is actually monotonically
increasing.

– 25 –

4 Conjugate Gradient Methods

The general framework for CG methods on systems of equations is as follows. Let
F : Rn → Rn be continuous and monotone and let Ω ⊆ Rn be convex. Assume that the
solution set Z is nonempty. In most cases, the search direction will be of the form

dk =

{
−F (xk) if k = 0

−F (xk) + βkdk−1 if k > 0

with a scalar βk ∈ R.
CG methods differ in their particular choice of βk, their line-search strategy or possibly

additional auxiliary steps. There are also other possible modification of dk+1, like replacing
−F (xk) with a scalar multiple. Other variants that add a third term that is also easily
calculated also exist. For the purpose of this thesis, these three-term methods will also be
regarded as CG methods.

4.1 The CG Method framework for constrained systems of
equations

For the rest of this chapter, F : Rn → Rn will be a continuous monotone function. Also note
that here, n equals m. Under these assumptions, the set Z is convex [58, Theorem 5.4.7].
Additionally, ‖ · ‖ will always denote the euclidean norm. Most recent CG methods for
constrained systems of equations are of the following structure. For a sequence of iterates
{xk}, we use the abbreviation Fk := F (xk). The general framework that most modern CG
methods for constrained systems of equations abide by, is the following.

Algorithm 4.1 CG Method framework for constrained systems of equations
1: Choose x0 ∈ Rn, ξ > 0, ρ ∈ (0, 1) d0 ← −F (x0), k ← 0.
2: If ‖F (xk)‖ ≤ ε then stop.
3: Let zk = xk + αkdk with αk = ξρm where m is the smallest m ∈ N0 such that the line

search condition is fulfilled
4: If zk ∈ Ω and ‖F (zk)‖ ≤ ε, then xk+1 := zk and stop. Else, determine

xk+1 = PΩ[xk − γµkF (zk)],

where 0 < γ < 2 and

µk =
F (zk)

>(xk − zk)

‖F (zk)‖2

5: Calculate dk+1

6: k ← k + 1, go to Step 2

Since we cannot explicitly calculate a suitable αk, we need a backtracking line search
strategy to to find such. The two most common line search conditions that CG methods
choose from are

−F (xk + αkdk)
>dk ≥ καk‖dk‖2, (L1)

−F (xk + αkdk)
>dk ≥ καk‖F (xk + αkdk)‖‖dk‖2. (L2)

– 26 –

4 Conjugate Gradient Methods

These will be the only line search conditions considered in this thesis.
Note that Algorithm 4.1 does not impose any particular form of dk. The only condition

that dk must satisfy is the decrease condition

F>
k dk < 0. (4.3)

This condition guarantees, that the backtracking line search will eventually terminate. To
prove this, assume that no value of αk satisfies the backtracking line search condition. This
implies that

−F (xk + ξρmdk)
>dk < κξρm‖dk‖2

for all m ∈ N0 in the case of line search condition (L1), and

−F (xk + ξρmdk)
>dk < κξρm‖F (xk + ξρmdk)‖‖dk‖2

for all m ∈ N0 in the case of line search condition (L2). In both of these cases, sending
m→∞ yields

−F>
k dk ≤ 0

by the continuity of F . This is a contradiction to (4.3). Thus, the descent condition
guarantees that eventually, either of the two chosen line search condition holds.

The most eminent difference to the original non-linear CG method by Fletcher and
Reeves is however that we do not choose zk := xk + αkdk as the next iterate. Instead, in
Step 4, we employ a hyperplane projection technique Solodov and Svaiter introduced for
their inexact Newton method to achieve global convergence [71]. They noticed that zk and
any solution x∗ ∈ Z are separated by the hyperplane

H = {x ∈ Rn | 〈F (zk), x− zk〉 = 0} ,

as
〈F (zk), x

∗ − zk〉 = −〈F (x∗)− F (zk), x
∗ − zk〉 ≤ 0 (4.4)

by the monotonicity of F and

〈F (zk), xk − zk〉 = −αk〈F (zk), dk〉 > 0 (4.5)

by any of the two line search conditions. Often, CG methods do not employ the extra
parameter γ, that is the case γ = 1 where xk is projected directly onto H. The only
methods which allow a varying γ we are aware of are [2, 31], which happen to be the two
methods we analyse in one of the following sections. We will see, why we need 0 < γ < 2

in Lemma 4.4. After the projection to the hyperplane, we project onto Ω to enforce the
constraint x ∈ Ω. In particular, (4.4) also implies

〈F (zk), xk − zk〉 = 〈F (zk), xk − x∗〉+ 〈F (zk), x
∗ − zk〉 ≤ 〈F (zk), xk − x∗〉. (4.6)

This leads us to the following lemma.

Lemma 4.3. (see [77, Lemma 2.2]) Let {xk} and {zk} be generated by Algorithm 4.1 and
x∗ ∈ Z. Then, −F (zk) is descent direction of ‖x− x∗‖2 at xk.

– 27 –

4 Conjugate Gradient Methods

Proof. Let h(x) = ‖x− x∗‖2. Then, by (4.6) and (4.5),

〈−F (zk),∇h(xk)〉 = −2〈F (zk), xk − x∗〉 ≤ −2〈F (zk), xk − zk〉 < 0

holds and thus −F (zk) is a descent direction for ‖x− x∗‖2.

This result guarantees that projecting xk along F (zk) brings the iterate indeed closer to
the solution set Z (or at least, not further away). Furthermore, we can actually guarantee
that ‖xk−x∗‖ is monotonically decreasing and thus convergent. The following theorem for
the case γ = 1 can be found in [77, Lemma 2.3]. The variant with a varying γ, we have
adapted from [31, Lemma 3.2].

Lemma 4.4. Let {xk} and {zk} be generated by Algorithm 4.1 and let x∗ ∈ Z. Then

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − γ(2− γ)
〈F (zk), xk − zk〉2

‖F (zk)‖2

≤ ‖xk − x∗‖2.

In particular, {xk} is then bounded, as ‖xk − x∗‖ ≤ ‖x0 − x∗‖ for all k, and {‖xk − x∗‖}
is convergent.

Proof. By using the fact that projections are Lipschitz continuous with Lipschitz-constant
L = 1, then (4.6), and finally 0 < γ < 2, we get

‖xk+1 − x∗‖2 = ‖PΩ[xk − γµkF (zk)]− PΩ[x
∗]‖2

≤ ‖xk − γµkF (zk)− x∗‖2

= ‖xk − x∗‖2 − 2γµk〈F (zk), xk − x∗〉+ γ2µ2
k‖F (zk)‖2

≤ ‖xk − x∗‖2 − 2γµk〈F (zk), xk − zk〉+ γ2µ2
k‖F (zk)‖2

= ‖xk − x∗‖2 − γ(2− γ)
〈F (zk), xk − zk〉2

‖F (zk)‖2

≤ ‖xk − x∗‖2,

which is the desired inequality. Furthermore, {xk} is bounded and the sequence {‖xk−x∗‖}
is convergent, as it is monotone and bounded.

Thus, using xk − γµkF (zk) (or the projection thereof) as the next iterate xk+1 brings
it indeed closer to the solution set Z for any γ ∈ (0, 2). The next lemma shows how the
iterates {zk} behave relative to {xk}. It is also the first result where we need to involve the
line search conditions directly. For both line search conditions considered in this thesis, we
thus need separate proofs. Our proof for line search (L1) follows [2, Lemma 2.6], although
we eliminate the need of F being Lipschitz to get that {Fk} and {F (zk)} are bounded. For
line search (L2), we adapted part of the proof of [31, Lemma 3.2].

Lemma 4.5. Let {xk} and {zk} be generated by Algorithm 4.1. Then, we have

lim
k→∞

‖xk − zk‖ = 0,

which is equivalent to
lim
k→∞

αk‖dk‖ = 0.

– 28 –

4 Conjugate Gradient Methods

Proof. Let x∗ ∈ Z. We will start with the proof for line search (L1). First, note that {Fk}
is bounded due to the fact that F is continuous and that {xk} is bounded. That is, there
exists a C > 0, such that

‖Fk‖ ≤ C

for all k. On the one hand, we now get

〈F (zk), xk − zk〉 = −αk〈F (zk), dk〉 ≥ κα2
k‖dk‖2 = κ‖xk − zk‖2.

On the other hand, by the monotonicity of F and Cauchy-Schwarz, we obtain

〈F (zk), xk − zk〉 ≤ 〈F (xk), xk − zk〉 ≤ ‖F (xk)‖‖xk − zk‖.

Together, these yield
κ‖xk − zk‖2 ≤ ‖F (xk)‖‖xk − zk‖,

which, by the boundedness of {Fk}, implies that

‖xk − zk‖ ≤
C

κ
.

With this and the boundedness of {xk}, we get that {zk} is also bounded due to

‖zk − x∗‖ ≤ ‖zk − xk‖+ ‖xk − x∗‖

≤ C

κ
+ ‖x0 − x∗‖.

Thus, {F (zk)} is also bounded by the continuity of F , i.e., there exists a D > 0, auch that

‖F (zk)‖ ≤ D

for all k. The line search condition (L1) and Lemma 4.4 finally yield

κ2α4
k‖dk‖4 ≤ α2

k〈F (zk), dk〉2

= 〈F (zk), zk − xk〉2

≤ ‖F (zk)‖2

γ(2− γ)
(‖xk − x∗‖2 − ‖xk+1 − x∗‖2)

≤ D2

γ(2− γ)
(‖xk − x∗‖2 − ‖xk+1 − x∗‖2),

where the right hand side tends to zero, as {‖xk − x∗‖} is convergent by Lemma 4.4. This
implies the assertion.

For line search (L2), the proof is slightly simpler. By Lemma 4.4 and (L2), we obtain
the inequality

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − γ(2− γ)
〈F (zk), xk − zk〉2

‖F (zk)‖2

≤ ‖xk − x∗‖2 − γ(2− γ)κ2α4
k‖dk‖4

= ‖xk − x∗‖2 − γ(2− γ)κ2‖xk − zk‖4,

– 29 –

4 Conjugate Gradient Methods

and thus
γ(2− γ)κ2‖xk − zk‖4 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2.

Again, the right hand side converges to zero, yielding the assertion

lim
k→∞

‖xk − zk‖ = 0.

Finally, before we go to the next section, we want to briefly mention, that we have
observed that some authors only show that

lim inf
k→∞

‖F (xk)‖ = 0.

This however is enough for the convergence of {xk} to a solution.

Lemma 4.6. Let {xk} be generated by Algorithm 4.1 such that

lim inf
k→∞

‖F (xk)‖ = 0.

Then, {xk} converges to a solution x̄ ∈ Z and

lim
k→∞

F (xk) = 0.

Proof. Let {‖F (xkl
)‖} be the subsequence converging towards 0. Then, {xkl

} contains an
accumulation point x̄ by Bolzano-Weierstrass, as {xk} is bounded by Lemma 4.4. By the
continuity of F , this then implies that x̄ ∈ Z. Using Lemma 4.4 again however, {‖xk−x∗‖}
converges towards its infimum. As the subsequence {‖xkl

− x∗‖} already converges to zero,
we also have that {‖xk−x∗‖} converges to zero. Thus, {xk} converges towards the solution
x̄. The last assertion follows from the continuity of F .

4.2 Additional Conditions and their Impact on Convergence

While the last section shows various nice properties of Conjugate Gradient methods using
the general framework given in Algorithm 4.1, these do not suffice to guarantee actual
convergence of the algorithm to a solution. It is difficult to provide general convergence
results for all CG methods. Thus, search directions dk have to be carefully crafted to ensure
convergence. There is however one condition that is very helpful and commonly used, that
is the sufficient descent condition. It often plays a crucial role in proving convergence.

The search directions {dk} are said to satisfy the sufficient descent condition, if there
exists a c > 0, such that

F>
k dk ≤ −c‖Fk‖2 (4.7)

for all k. Using Cauchy-Schwarz, we also obtain

c‖Fk‖2 ≤ −F>
k dk ≤ ‖Fk‖‖dk‖,

and thus
c‖Fk‖ ≤ ‖dk‖. (4.8)

– 30 –

4 Conjugate Gradient Methods

Clearly, this condition is stronger than the regular descent condition (4.3). Authors try
to construct search directions, that satisfy this property. Another very common additional
assumption on F is the Lipschitz continuity, that is, there exists an L > 0, such that

‖F (x)− F (y)‖ ≤ L‖x− y‖ (4.9)

for all x, y ∈ Rn.
An example for an application of the sufficient descent condition is the following theo-

rem. Note that this is again dependent on the line search condition.

Theorem 4.7. (cf. [2, Lemma 2.5], [31, Lemma 3.3]) Let {xk} and {αk} be generated by
Algorithm 4.1. Given that the sufficient descent condition (4.7) holds and that F is Lipschitz
continuous, we have the inequality

αk ≥ min
{
ξ,

cρ‖Fk‖2

(L+Mκ)‖dk‖2

}
,

with a constant M > 0.

Proof. For αk = ξ, the assertion is clear. Otherwise, we have αk < ξ. First, we argue that
{F (xk + ρ−1αkdk)} is bounded. For this, consider the inequality

‖xk + ρ−1αkdk − x∗‖ ≤ ‖xk − x∗‖+ ρ−1αk‖dk‖ = ‖xk − x∗‖+ ρ−1‖xk − zk‖.

As the right hand side converges, the sequence {xk + ρ−1αkdk} is bounded. Thus, by the
continuity of F , the sequence {F (xk + ρ−1αkdk)} is bounded.

Since αk < ξ, we know that ρ−1αk does not fulfill the line search condition, i.e.,

−F (xk + ρ−1αkdk)
>dk < κρ−1αk‖dk‖2

for line search (L1) and

−F (xk + ρ−1αkdk)
>dk < κρ−1αk‖F (xk + ρ−1αkdk)‖‖dk‖2

for line search (L2). Hence, we have that

−F (xk + ρ−1αkdk)
>dk < κρ−1αkM‖dk‖2, (4.10)

where we set M = 1 for line search (L1) and M as the upper bound of {‖F (xk+ρ−1αkdk)‖}
for line search (L2). The sufficient descent condition (4.7), (4.10) and the Lipschitz conti-
nuity of F now finally yield

c‖F (xk)‖2 ≤ −F (xk)
>dk

= (F (xk + ρ−1αkdk)
>dk − F (xk)

>dk)− F (xk + ρ−1αkdk)
>dk

< ‖F (xk + ρ−1αkdk)− F (xk)‖‖dk‖ −Mκρ−1αk‖dk‖2

≤ (L+Mκ)ρ−1αk‖dk‖2.

This implies the assertion.

– 31 –

4 Conjugate Gradient Methods

While this theorem on its own is still not enough to prove convergence, having a lower
bound on αk is often a helpful property. For example, it immediately provides convergence,
as soon as the search directions dk are bounded.

Theorem 4.8. Let {xk} be generated by Algorithm 4.1, dk satisfy the sufficient descent
condition (4.7) and F be Lipschitz. If the search direction are bounded, then {xk} converges
to a solution.

Proof. By Lemma 4.6, it suffices to show that lim infk→∞ ‖F (xk)‖ = 0. Assume that this
assertion is false, which implies the existence of an ε > 0 such that

‖F (xk)‖ ≥ ε ∀k ∈ N0.

Through (4.8), we thus get
‖dk‖ ≥ cε ∀k ∈ N0,

and therefore
lim
k→∞

αk = 0

by Lemma 4.5. However, as ‖F (xk)‖ is now bounded from below by ε and ‖dk‖ bounded
form above, the αk are bounded away from zero by Theorem 4.7. This poses a contradiction
and thus completes the proof.

Another additional property we have encountered, e.g., in [2] discussed in the next
section, is the converse of (4.8). That is, there exists a ϑ > such that

‖dk‖ ≤ ϑ‖Fk‖ (4.11)

for all k. As {Fk} is bounded, it is clear that this property immediately implies convergence
of {xk} to a solution by Theorem 4.8. Additionally, it implies by Theorem 4.7 that αk is
bounded away from zero by a constant. This is very useful, as it guarantees the termination
of the line search after a fixed amount of steps.

In the case that convergence of {xk} to a solution x̄ is already known, (4.11) also allows
us to prove linear convergence in the case that F is Lipschitz and satisfies the error bound
condition

dist[x,Z] ≤ `‖F (x)‖ (4.12)

around a neighborhood of the solution x̄ with an ` > 0. For this proof, we however need the
line search strategy (L1). The proof is taken from [2, Theorem 2.10] but slightly adapted
to work with arbitrary values of ξ and κ. We also spell out some arguments.

Theorem 4.9. Let {xk} be generated by Algorithm 4.1 using the line search (L1). Assume
that {xk} converges to a solution x̄ and that (4.7), (4.9), (4.11) and (4.12) hold. Then
{dist[xk, Z]} converges Q-linear to zero and {xk} converges R-linear to x̄.

– 32 –

4 Conjugate Gradient Methods

Proof. For k ∈ N0, let x̄k ∈ Z such that dist[xk, Z] = ‖xk−x̄k‖. Now, with (4.9) and (4.11),
we get

‖F (zk)‖ = ‖F (zk)− F (x̄k)‖
≤ L‖zk − x̄k‖
≤ L(‖zk − xk‖+ ‖xk − x̄k‖)
= L(αk‖dk‖+ ‖xk − x̄k‖)
≤ L(ξ‖dk‖+ ‖xk − x̄k‖)
≤ L(ξϑ‖F (xk)− F (x̄k)‖+ ‖xk − x̄k‖)
≤ L(Lξϑ+ 1)‖xk − x̄k‖
≤ L(Lξϑ+ 1) dist[xk, Z].

(4.13)

Let k be sufficiently large, such that the iterates xk lie within the neighborhood of x̄ where
the error bound condition (4.12) holds. If we apply Lemma 4.4, (L1), (4.7), (4.12) and then
finally (4.13) we get

dist[xk+1, Z]2 = ‖xk+1 − x̄k‖2

≤ ‖xk − x̄k‖2 − γ(2− γ)
〈F (zk), xk − zk〉2

‖F (zk)‖2

≤ ‖xk − x̄k‖2 − γ(2− γ)
κ2α4

k‖dk‖4

‖F (zk)‖2

≤ ‖xk − x̄k‖2 − γ(2− γ)
κ2α4

kc
4‖Fk‖4

‖F (zk)‖2

≤ ‖xk − x̄k‖2 − γ(2− γ)
κ2α4

kc
4`−4 dist[xk, Z]4

L2(Lξϑ+ 1)2 dist[xk, Z]2

=

(
1− γ(2− γ)

κ2α4
kc

4`−4

L2(Lξϑ+ 1)2

)
dist[xk, Z]2.

Without loss of generality, we can increase L and ` such that

L > κξ2c2 and ` > 1 (4.14)

hold. With that, we have γ(2−γ) ∈ (0, 1), κ2α4
kc

4/L ∈ (0, 1), `−4 ∈ (0, 1) and (Lξϑ+1)2 >

1. Additionally, by Theorem 4.7, we have that αk is bounded from below, i.e., αk ≥ α > 0.
Thus, it holds that

dist[xk+1, Z]2 ≤
(
1− γ(2− γ)

κ2α4c4`−4

L2(Lξϑ+ 1)2

)
dist[xk, Z]2,

where
1− γ(2− γ)

κ2α4c4`−4

L2(Lξϑ+ 1)2
∈ (0, 1).

Thus, we have proven the Q-linear convergence of {dist[xk, Z]} and we further know that
{xk} converges R-linearly to x̄.

– 33 –

4 Conjugate Gradient Methods

4.3 Two Conjugate Gradient Methods

In this section, we will look at two recent conjugate gradient algorithm, the NDK method
by Ahmed et al. [2] and the algorithm by Gao and He [31]. We were interested in these two
methods, as their authors claim linear convergence under an error bound condition, that
we already discussed in Chapter 3.

We also take a look at NDK in particular, as they employ a technique inspired by
Perry [60] to find an optimal choice of a variable parameter in their search direction. As we
will see in section 5.3, this method perform very well.

Also note that both of these methods are actually three-term methods, that is they
include a third vector term in their search direction.

4.3.1 A Symmetric Dai-Kou Based Method

The NDK method introduced by Ahmed et al. [2] is a method based on the Conjugate
Gradient method by Dai and Kou [16]. As already stated in the introduction, this method
was used to solve minimization problems and used a CG parameter of the form

βDK
k+1 =

∇f>
k+1yk

yk>dk
−
(
τk +

‖yk‖2

s>k yk
−

s>k yk
‖sk‖2

) ∇f>
k+1sk

yk>dk
,

with a scalar parameter τk and the common abbreviations yk := ∇fk+1 − ∇fk and sk :=

xk+1 − xk. They have previously also proposed a Dai-Kou scheme in [79] that they now
improve upon. Their new CG parameter is the Dai-Kou parameter

βNDK
k =

F>
k+1ȳk

d>k ȳk
−
(
τk +

‖ȳk‖2

s̄>k ȳk
−

s̄>k ȳk
‖s̄k‖2

)
F>
k+1s̄k

d>k ȳk

with a modified ȳk. The vectors ȳk and s̄k are given by

ȳk := yk + %ks̄k +G‖Fk‖rs̄k, yk := F (zk)− F (xk), s̄k := zk − xk,

with
%k := max

{
−

s̄>k ȳk
‖s̄k‖2

, 0

}
.

Their search direction is then defined by

dk+1 = −Fk+1 + βNDK
k dk +

F>
k+1s̄k

s̄>k ȳk
ȳk,

where they also added a third third, making this a three-term method. As a line search
strategy, they use (L1) from Algorithm 4.1

To find the optimal τk, the authors use an approach inspired by Perry [60] that is some-
times used by the authors of CG methods to motivate a choice of some variable parameter.
They use the fact that dk+1 may be written as

dk+1 = −Qk+1Fk+1,

– 34 –

4 Conjugate Gradient Methods

with a matrix Qk+1 ∈ Rn×n. This poses similarities to Quasi-Newton methods as the
matrix Qk+1 can be seen as an approximation of the inverse Jacobian. For other methods
that employ this technique, see e.g., [21, 67, 78, 79].

In this case, the matrix Qk+1 is given by

Qk+1 = I −
s̄kȳ

>
k

s̄>k ȳk
−

ȳks̄
>
k

s̄>k ȳk
+ τk

s̄ks̄
>
k

s̄>k ȳk
+
‖ȳk‖2s̄ks̄>k
(s̄>k ȳk)

2
−

s̄ks̄
>
k

‖s̄k‖2
,

using the fact that s̄k = αkdk. A special thing to note about the matrix for this particular
method is that it is symmetric. For other methods, this is usually not the case and those
authors then define

Q̃k+1 :=
Qk+1 +Q>

k+1

2

to obtain a symmetric matrix. For this method however, this is not necessary. The matrix
is furthermore a rank-two update of the identity matrix, namely

Qk+1 = I + u1u
>
2 + u3u

>
4 ,

with
u1 = −ȳk, u2 =

s̄k

s̄>k ȳk
, u3 = −

s̄k

(s̄>k ȳk)
2

and
u4 =

(s̄>k ȳk‖s̄k‖2ȳk − τks̄
>
k ȳk‖s̄k‖2s̄k − ‖s̄k‖2‖ȳk‖2s̄k + (s̄>k ȳk)

2s̄k)
>

‖s̄k‖2
.

After this follows an analysis of the eigenvalues and arguments for a suitable parameter.
The common approach to find the eigenvalues goes as follows.

There exists a set of orthonormal vectors ζ1k , . . . , ζ
n−2
k such that

〈s̄k, ζik〉 = 〈ȳk, ζik〉 = 0.

Therefore
Qk+1ζ

i
k = ζik,

and Qk+1 has the eigenvalue 1 with multiplicity at least n − 2. Let η+k and η−k be the
remaining eigenvalues with η−k ≤ η+k . Since the trace is the sum of the eigenvalues, we get

n− 2 + η−k + η+k = tr(Qk+1) = n− 2 + τk
‖s̄k‖2

s̄>k ȳk
+
‖ȳk‖2‖s̄k‖2

(s̄>k ȳk)
2
− 1,

which yields

η+k + η−k = τk
‖s̄k‖2

s̄>k ȳk
+
‖ȳk‖2‖s̄k‖2

(s̄>k ȳk)
2
− 1. (4.15)

In order to be able to solve for η+k and η−k , we are going to use the determinant of Qk+1

to obtain a second equation. To calculate the determinant, we use the following lemma.

Lemma 4.10. (cf. [72, eq. 1.2.70]) For u1, u2, u3, u4 ∈ Rn, it holds that

det(I + u1u
>
2 + u3u

>
4) = (1 + u>1 u2)(1 + u>3 u4)− (u>1 u4)(u

>
2 u3).

– 35 –

4 Conjugate Gradient Methods

Proof. Using Sylvester’s determinant theorem [63, eq. (B.1.15)]

det(In +AB) = det(Im +BA)

for all A>, B ∈ Rm×n, we get

det(I + u1u
>
2 + u3u

>
4) = det

(
In +

(
u1 u3

)(u>2
u>4

))
= det

(
I2 +

(
u>2
u>4

)(
u1 u3

))
= det

(
I2 +

(
u>1 u2 u>2 u3
u>1 u4 u>3 u4

))
= (1 + u>1 u2)(1 + u>3 u4)− (u>1 u4)(u

>
2 u3).

Note that we constructed a different proof for this lemma, as the original proof of [72]
makes invertibility assumptions. This proof is thus more general.

Using this lemma with

u>1 u2 = −1, u>1 u4 = τk(s̄
>
k ȳk)

2 −
(s̄>k ȳk)

3

‖s̄k‖2
, u>2 u3 = −

‖s̄k‖2

(s̄>k ȳk)
3
,

we then obtain
det(Qk+1) = τk

‖s̄k‖2

s̄>k ȳk
− 1,

and as the determinant is also the product of the eigenvalues, we thus have

η+k η
−
k = τk

‖s̄k‖2

s̄>k ȳk
− 1. (4.16)

To guarantee that dk+1 does indeed satisfy the descent condition (4.3), Qk+1 must be
positive definite, so we require

η+k , η
−
k > 0,

which is equivalent to

τk >
s̄>k ȳk
‖s̄k‖2

. (4.17)

By setting
η±k =

1

2
(η̄ ± χ),

we directly get from (4.15) that

η̄ = τk
‖s̄k‖2

s̄>k ȳk
+
‖ȳk‖2‖s̄k‖2

(s̄>k ȳk)
2
− 1.

Then, inserting into (4.16) yields

1

4
(η̄2 − χ2) = τk

‖s̄k‖2

s̄>k ȳk
− 1 = η̄ − ‖ȳk‖

2‖s̄k‖2

(s̄>k ȳk)
2

,

– 36 –

4 Conjugate Gradient Methods

from which we can conclude

χ2 = η̄2 − 4η̄ + 4
‖ȳk‖2‖s̄k‖2

(s̄>k ȳk)
2

= (η̄ − 2)2 + 4
‖ȳk‖2‖s̄k‖2

(s̄>k ȳk)
2
− 4

=

(
τk
‖s̄k‖2

s̄>k ȳk
+
‖ȳk‖2‖s̄k‖2

(s̄>k ȳk)
2
− 3

)2

+ 4
‖ȳk‖2‖s̄k‖2

(s̄>k ȳk)
2
− 4.

Now that we have closed formulas for η±k , we need to find a suitable τk. First, we set

τk >
‖ȳk‖2

s̄>k ȳk
, (4.18)

as (4.17) is then automatically satisfied by Cauchy-Schwarz, as well as

χ2 ≥ (η̄ − 2)2.

Through this, we get the upper bound

η−k =
1

2
(η̄ − χ) ≤ 1

2
(η̄ − |η̄ − 2|) ≤ 1.

Likewise, it is also easy to see that η̄ > 1 and therefore

η+k = η̄ − η−k > 2 ≥ 1.

Together, we have that
0 < η−k ≤ 1 < η+k ,

and therefore these two eigenvalues are the smallest and largest eigenvalues respectively.
Additionally, Qk+1 is positive definite, allowing us to show the descent condition

d>k+1Fk+1 = −F>
k+1Qk+1Fk+1 ≤ −η−k ‖Fk+1‖2 < 0. (4.19)

Finally, as we still have much freedom on the choice of τk, we have the opportunity to
tune it to improve numerical stability and therefore performance. Thus, we examine the
condition number of Qk+1 given as the quotient of the largest and smallest eigenvalue

cond(Qk+1) =
η+k
η−k

.

Hence, we choose τk to minimize the condition number and thus achieve high numerical
stability. As the quotient becomes smaller when the difference χ between η+k and η−k becomes
smaller, we thus minimize χ. It is easy to see that this is the case when η̄ = 2. Solving for
τk yields

τ∗k = arg min(χ) =
3s̄>k ȳk
‖s̄k‖2

− ‖ȳk‖
2

s̄>k ȳk
.

– 37 –

4 Conjugate Gradient Methods

As we also still need to ensure (4.18) holds, the authors suggested these two possible
values for τk

τ1k = max
{
τ∗k , q1

‖ȳk‖2

s̄>k ȳk

}
,

and
τ2k = max

{
τ∗k , q2 +

‖ȳk‖2

s̄>k ȳk

}
,

with q1 > 1, q2 > 0. These are the two possible choices of parameters used in the author’s
method.

Note that the authors at some point, without further explanation, replace the k-
dependent eigenvalue η−k by a constant η > 0 [2, page 11, last line]. This is important,
as they use boundedness away from zero in their convergence proof [2, eq. (2.44)]. This
might not be the case for {η−k }. We do not understand how one would prove the existence
of one such bound, and thus we believe

η−k ≥ η, ∀k ∈ N0

for some η > 0 should be appear as an assumption in [2, Theorem 2.7]. As we see in
our numerical analysis that the theoretical results resulting from this assumption hold, we
conclude that this assumption is sensible.

From this assumption and (4.19), we can conclude that the sufficient descent condi-
tion (4.7) holds for c = η, i.e.,

F>
k dk ≤ −η‖Fk‖2 (4.20)

for all k. With this and a Lipschitz assumption, the authors manage to prove (4.11), that
is, there exists a ϑ > 0, such that

‖dk‖ ≤ ϑ‖Fk‖.

Thus we know from Section 4.2, that {xk} converges indeed to a solution.
With this, the author further prove the Q-linear convergence of {dist[xk, z]} to zero

and R-linear convergence of {xk} to x̄. Have have included this proof in Theorem 4.9.

4.3.2 An Efficient Three Term CG Method by Gao and He

In this section, we briefly discuss the three-term CG algorithm by Gao and He [31]. As we
have already provided most of the theorems in previous sections, we only need to include
the parts specific to this algorithm. The search direction of this algorithm is given by

dk = −Fk + βkdk−1 + θkFk−1,

where
βk = −

F>
k Fk−1

F>
k−1dk−1

, θk =
F>
k dk−1

F>
k−1dk−1

.

This search direction is inspired by Zhang et al. [84], who used the search direction

dk = −Fk +
F>
k yk−1

d>k−1yk−1
dk−1 −

F>
k dk−1

d>k−1yk−1
yk−1,

– 38 –

4 Conjugate Gradient Methods

with yk−1 := Fk−Fk−1. The new method is interesting in that its parameters only consist of
a single fraction with each containing two inner products, making calculation of the search
direction slightly more efficient than other methods. As a line search strategy, this method
uses (L2).

With the definition of the search direction, we can directly calculate

F>
k dk = −‖Fk‖2,

which is the sufficient descent condition (4.7) with equality instead of an inequality for
c = 1. This condition also yields

‖Fk‖ ≤ ‖dk‖.

After providing this inequality, the authors present a calculation resulting in the in-
equality

‖dk‖ ≤ 3‖Fk‖. (4.21)

As we know from Section 4.2, this directly implies the convergence of the iterates to a
solution. However, even after thorough review of the calculation, we do not see why the
inequality (4.21) holds. The authors only use (4.21) to argue that the search directions
dk are bounded, which implies convergence by Theorem 4.8 when F is Lipschitz. As we
however also failed to prove the boundedness of dk without use of (4.21), we propose to
make it an assumption that dk is bounded. As we see convergence of the algorithm in the
numerics, we belief this is a sensible assumption.

An additional concern we have is with [31, Theorem 4.1]. In addition to the Lipschitz
assumption, they assume that the error bound condition

dist[x,Z] ≤ `‖F (x)‖

holds for an ` > 1 around a neighborhood of the solution x̄. The theorem then states that
{dist[xk, Z]} converges Q-linearly, while {xk} converges R-linearly. They first show the
inequality

dist[xk+1, Z]2 ≤ (1− γ(2− γ)s`−2α2
k) dist[xk, Z]2 (4.22)

with
s =

〈F (zk), xk − zk〉2

‖F (zk)‖2‖xk − zk‖2
. (4.23)

After this, they argue that the factor (1− γ(2− γ)s`−2α2
k) lies within (0, 1) and conclude

linear convergence. However, they do not provide an argument as to why this factor does
not approach one, which would mean that {dist[xk, Z]} is, in fact, not linearly convergent.
While αk is bounded by Theorem 4.7 if we assume (4.21), we do not see how one can rule
out that s in (4.23) approaches zero. If that were the case, the factor in (4.22) would
approach one, disproving linear convergence. After multiple attempts, we did not succeed
in finding an alternative proof. Thus, we belief that additional assumptions or changes to
the algorithm would be necessary to prove this theorem.

– 39 –

5
Numerical Experiments

All tests were implemented in Python using the NumPy library and performed on an
Intel™ i5–1240P with 16 GB of RAM. The Linear Programs were solved using the CVXPY
library with their SciPy backend. The code is available at [75].

In all of the tests, we consider systems of equations with the same number of equations
as variables, that is F : Rn → Rm with n = m. The set of monotone problems on which we
test are the following.

Problem 1. (obtained from [21])
Fi(x) = 2c(xi − 1) + 4(t− 0.25)xi, i = 1, 2, . . . n,
where t =

∑n
i=1 x

2
i , c = 10−5, Ω = Rn

+.

Problem 2. (obtained from [31])
F1(x) = x1 − exp(cos x1+x2

2),
Fi(x) = xi − exp(cos xi−1+xi+xi+1

i), i = 2, 3, . . . , n− 1

Fn(x) = xn − exp(cos xn−1+xn

n),
where Ω = Rn

+.

Problem 3. (obtained from [42])
Fi(x) = log(xi + 1)− xi

n , i = 1, 2, . . . n,
where Ω = Rn

+.

Problem 4. (obtained from [79])
Fi(x) = 2xi − sin |xi|, i = 1, 2, . . . , n,
where Ω = Rn

+.

Problem 5. (obtained from [83])
Fi(x) = exp(xi)− 1, i = 1, 2, . . . , n,
where Ω = Rn

+.

Problem 6. (obtained from [83])
Fi(x) = xi − sin |xi − 1|, i = 1, 2, . . . , n,

where Ω =

{
x ∈ Rn

∣∣∣∣∣
n∑

i=1

xi ≤ n, x ≥ 0

}
.

– 40 –

5 Numerical Experiments

Note that e.g., Problem 3 is not actually monotonically increasing on its entire domain,
but only when

∑n
i=1 xi ≤ n. As n is large enough in our tests however, this will not affect

us.
Additionally, we also include the following non-monotone problems for tests of LP-

Newton and SMLP-Newton.

Problem 7. (obtained from [53])

F (x) =
(
x22, x2(1 + x21)

)>
,

where n = 2 and Ω = R× R+.

Problem 8. (obtained from [53])
F (x) =

(
− x1 − x2 + 1 + x3, −x21 − x22 + 1 + x4,

−9x21 − x22 + 9 + x5, −x21 + x2 + x6, −x22 + x1 + x7

)>
,

where n = 7 and Ω = [−50, 50]2 × R5
+.

Problem 9. (obtained from [24])

F (x) =


x1x2 − x3

x21 + x2 − 1− x4
min(x1, x3)
min(x2, x4)

,

where n = 4 and Ω = R4
+.

Problem 10. (obtained from [24])

F (x) =



x4 + x5 − x6 − x9
x4 + x2 + x3 − x7 − x9

x2 + x3 − x9
x1 + x2 − x8
x1 + x10
−x1 + x11
1− x2 + x12
−x5 + x13

−x1 − x2 − x3 + x14
min(x5, x10)
min(x6, x11)
min(x7, x12)
min(x8, x13)
min(x9, x14)



,

where n = 14 and Ω = R4 × R10
+ .

Problem 11. (obtained from [53])

Fi(x) = xi −
2

n

 n∑
j=1

xj

− 1 + (xi + 1)2, i = 1, . . . , n,

where Ω = [−10, 10]n.

The first four of these problems do not allow a varying n, which will however not have a
negative impact on our benchmarks. Also note that Facchinei et al. [24] originally obtained
Problems 9 and 10 as KKT systems of complementary problems.

– 41 –

5 Numerical Experiments

LP-Newton SMLP-Newton
Problem Iters Time ‖F (x∗)‖ Iters Time ‖F (x∗)‖
Problem 1 12 0.085 3.76× 10−12 16 0.120 6.38× 10−12

Problem 3 5 0.026 2.08× 10−11 1 0.005 0

Problem 4 58 0.331 1.17× 10−10 6 0.043 2.77× 10−12

Problem 5 7 0.038 1.55× 10−15 7 0.050 2.61× 10−11

Problem 6 6 0.033 1.11× 10−16 6 0.041 1.55× 10−11

Problem 7 6 0.028 6.66× 10−15 10 0.046 2.81× 10−11

Problem 8 14 0.075 3.47× 10−10 10 0.053 4.70× 10−11

Problem 9 7 0.033 1.33× 10−15 15 0.071 4.11× 10−11

Problem 10 9 0.047 2.22× 10−16 10 0.054 4.98× 10−11

Problem 11 7 0.054 3.13× 10−13 8 0.063 3.29× 10−14

Table 5.1: Results for the tests run of the LP-Newton and the SMLP-Newton method. The
column “Iters” refers to the number of needed iterations and “Time” refers to the elapsed
time between start and termination of the algorithm in seconds.

5.1 LP-Newton and SMLP-Newton

In the following, we will analyse the numerical behavior of the LP-Newton method [24] and
SMLP-Newton method [53] discussed in Chapter 3. We tested the performance of both
algorithms on all the above problems except Problem 2, as the CVXPY solver gets caught
in an infinite loop, probably due to numerical problems. The goal of this section is not to
determine which of these methods performs “better”, as they are suited for different situ-
ations. LP-Newton has weaker smoothness assumptions, while SMLP-Newton eliminates
the need to calculate derivates, albeit not completely as we will see. We merely want to get
an understanding of the convergence characteristics of both algorithms.

In our test runs, we choose n = 50 for the variable-length problems. As initial values
x0 for Problems 7–10, we choose the vectors (1, 0.5)>, (1, 1, 1.5, 0, 0, 0, 0)>, (2, 1, 0, 0)> and
(1, 4,−2, 1, 3, 3, 1, 4, 1, 0, 1, 3, 1, 3)> respectively, just as in the original papers. For all other
problems, we choose the vector (1, . . . , 1)> ∈ Rn containing only ones. For SMLP-Newton,
we initialize M0 = F ′(x0) and η0 = ‖F (x0)‖

n2 , following [53]. Note that we need to calculate
a derivative here. This seems necessary for the numerical performance of SMLP-Newton.
The runs are terminated as soon as ‖F (xk)‖ < 10−10.

The results are displayed in Table 5.1. First of all, note that Problems 9 and 10 are
nonsmooth at the solution but SMLP-Newton still gives reasonable results. We also need
to point out that on Problem 4, LP-Newton performed badly, as the iterations begin to
stale. We are unsure why that is, as Problem 4 satisfies the assumptions of LP-Newton. We
suspect that this problem arises from numerical inaccuracies. Additionally, SMLP-Newton
by chance manages to reaches an exact solution in just one iteration, beating LP-Newton.
Other then that, the results look as expected. LP-Newton overall needs fewer iteration
to reach the imposed tolerance and also immediately goes well below 10−14 with the last
iteration for many problems. This is of course due to the quadratic convergence of LP-
Newton. SMLP-Newton also manages to solve the problems in a short amount of iterations
due to its superlinear convergence.

– 42 –

5 Numerical Experiments

We will now discuss these convergence rates further. For this, we exemplarily analyse
the residuals of Problem 7 via Figure 5.2. From these, we can indeed verify the quadratic

Figure 5.2: Residuals ‖F (xk)‖ of LP- and SMLP-Newton on Problem 7 (top), as well
as the quotients ‖F (xk+1)‖/‖F (xk)‖2 for LP-Newton (bottom left) and the quotients
‖F (xk+1)‖/‖F (xk)‖ for SMLP-Newton (bottom right).

convergence of LP-Newton and the superlinear convergence of SMLP-Newton. For the
former, the quotients ‖F (xk+1)‖/‖F (xk)‖2 need to remain bounded, which is indeed the
case. For the latter, the quotients ‖F (xk+1)‖/‖F (xk)‖ need to approach zero but not
necessarily monotonically. This is also the case except that quotients go slightly upward
towards the end of the iterations for Problem 7, as can be seen in Figure 5.2. This can
however be attributed to numerical inaccuracies as a reset of SMLP-Newton (and thus a
reset of Mk to the actual Jacobian) at that iterate did not yield better results. Other
problems did not show this behavior.

Finally, we want to test Assumption 3 of SMLP-Newton from Section 3.2. To reiterate,
the assumption asserts that there are constants c > 0 and 0 < σ ≤ 1 such that

‖Nk+1 −Mk+1‖ ≤ c‖xk+1 − xk‖σ, (5.1)

holds, where Nk+1 is the average Jacobian of F between xk and xk+1. The authors have
acknowledged in their paper, that this assumption does not hold. For this, we analyse the

– 43 –

5 Numerical Experiments

quotients log ‖Nk+1−Mk+1‖/ log ‖xk+1− xk‖ seen in Figure 5.3. By (5.1), these quotients

Figure 5.3: Quotients log ‖Nk+1 −Mk+1‖/ log ‖xk+1 − xk‖ of SMLP-Newton for Prob-
lem 11, together with a constant line at zero.

satisfy
log ‖Nk+1 −Mk+1‖

log ‖xk+1 − xk‖
≥ σ +

c

log ‖xk+1 − xk‖
as soon as ‖xk+1 − xk‖ < 1, as the logarithm then becomes negative. As the fraction on
the right approaches zero as ‖xk+1− xk‖ approaches zero, the quotients should approach a
constant value above σ. However, as the quotients stay below zero, it is to assume that the
assumption is violated. This experiment can also be replicated for other problems. Thus,
the assumption that the authors needed to prove superlinear convergence does in fact not
hold. As we nevertheless see superlinear convergence in the numerics, we suspect that this
is due to the initialization of M0 as the exact Jacobian F ′(x0). The matrices Mk are thus
close enough to the actual Jacobian F ′(xk) which may result in the superlinear convergence
we observe.

We believe that further research is needed to clarify under which conditions we can
guarantee the superlinear convergence of SMLP-Newton that applies to the problems tests.
This condition may impose stricter conditions on the initial choice of Mk.

5.2 Performance Profiles

In the next section we want to compare the performance of several Conjugate Gradient meth-
ods. For this purpose, we use the performance profiles introduced by Dolan and Moré [23].
They are a versatile tool in comparing the performance measurements of many solvers on a
given set of problems, as they allow visualization in only one plot. Without a good strategy
to compare the measurements, evaluating the performance of solvers in a concise way can

– 44 –

5 Numerical Experiments

be difficult. For example, one could count on how many problems one solver performed the
best. This however leaves out a lot of context. How close were the other solver compared
to the best? Did one solver beat the other solvers at one problem but then fail miserably at
others? Performance profiles alleviate these concerns by evaluating the ratio between the
measurement for one solver compared to the best measurement on each problem.

Specifically, for a given metric, let tp,s be the measurement from the solver s from the
set of solvers S on the problem p from the problem set P . The only requirements on the
metric are that its produced values are positive and that lower values are considered better.
In the case that solver s did not solve problem p, we set tp,s = ∞. Then, the performance
ratios rp,s for a problem p ∈ P and a solver s ∈ S are defined by

rp,s =
tp,s

min {tp,s | s ∈ S}
,

with the convention that rp,s = ∞ whenever tp,s = ∞, even if no solver managed to solve
problem p resulting in the quotient “∞/∞”. Note that this is slightly different to [23],
where they instead set rp,s to a high value that is above all the other rp,s. This difference
is however merely a technicality.

Now, the performance profile ρs of a solver s ∈ S is the function ρs : [1,∞) → [0, 1]

defined by
ρs(τ) =

1

np

∣∣∣{p ∈ P
∣∣ rp,s ≤ τ

}∣∣∣,
where np is the number of problems. Thus for given τ ≥ 1, the number ρs(τ) denotes the
ratio of problems for which the measurement tp,s is within factor τ of the best measurement
for this problem p. Clearly, ρs is a monotonically increasing and piecewise constant function
continuous from the right. We can also see that the number ρs(1) denotes the fraction of
problems where s performed the best. Also, the number

lim
τ→∞

ρs(τ)

denotes the fraction of problems that s managed to solve.
Thus, performance profiles capture a lot of the performance characteristics of solvers

on a given problem set and hence are a major tool in our performance analysis.

5.3 Comparison of Conjugate Gradient Methods

The Conjugate Gradient algorithms tested in this thesis are NDK1 (Ahmed et al. [2])
from Section 4.3.1, MDKM (Waziri et al. [79]), the algorithm from Gao and He [31] from
Section 4.3.2, MHZ1 (Sabi’u et al. [67]), GCD (Xiao and Zhu [83]), MFRM (Abubakar
et al. [1]) and HSG (Awwal et al. [5]). Algorithms NDK1 and MHZ1 have a “1” in their
name, as they are one of two proposed variants of their respective algorithms. We have
chosen to only include one of these variants. The variants perform similarly, although the
variants tested here performed slightly better in analysis of the original authors. Note that
HSG actually is a Spectral Gradient algorithm. We have chosen to include it here, as it
also follows the same framework as Algorithm 4.1.

– 45 –

5 Numerical Experiments

We will run all the monotone test problems for different values of n and different initial
values. The initial values are chosen at random from the uniform distribution on [0, 5]n,
except for Problem 5 where we sample from [0, 1]n. The algorithms are terminated whenever
‖Fk‖ < 10−8, ‖xk − xk−1‖ < 10−14 or when the number of iteration exceeds 1000.

In the following tables, “Start” denotes the initial value, “Iters” the number of iterations,
“Evals” the number of function evaluation and “Time” the time in seconds elapsed between
start and termination of the test run. We will exemplarily display the tables for Problems 1,
3 and 6. We primarily include the tables for Problem 1 as it posed difficulties for most
solvers.

NDK1 MDKM
n Start Iters Evals Time ‖F (x∗)‖ Iters Evals Time ‖F (x∗)‖

1000 x0 1000 3526 0.063 2.14× 10−6 1000 4206 0.070 1.06× 10−4

1000 x1 1000 3588 0.062 1.08× 10−6 1000 4214 0.065 2.35× 10−4

1000 x2 12 50 0.001 3.55× 10−9 1000 4199 0.065 4.31× 10−5

5000 x0 12 54 0.002 9.17× 10−10 1000 4224 0.118 1.85× 10−5

5000 x1 12 54 0.002 9.17× 10−10 1000 4243 0.119 8.99× 10−5

5000 x2 12 54 0.002 9.17× 10−10 1000 4241 0.119 1.41× 10−4

10000 x0 11 51 0.003 4.02× 10−9 1000 4227 0.185 3.08× 10−5

10000 x1 11 51 0.002 4.02× 10−9 1000 4231 0.210 1.95× 10−5

10000 x2 11 51 0.002 4.02× 10−9 1000 4244 0.207 6.34× 10−5

50000 x0 10 51 0.029 5.15× 10−10 1000 4257 2.382 7.65× 10−6

50000 x1 10 51 0.033 5.15× 10−10 1000 4279 2.827 1.27× 10−5

50000 x2 10 51 0.033 5.15× 10−10 1000 4329 2.778 5.88× 10−6

100000 x0 10 52 0.077 1.01× 10−9 1000 4294 6.756 8.04× 10−6

100000 x1 10 52 0.076 1.01× 10−9 1000 4299 6.866 7.05× 10−6

100000 x2 10 52 0.076 1.01× 10−9 1000 4286 6.801 6.64× 10−6

Gao-He GCD
n Start Iters Evals Time ‖F (x∗)‖ Iters Evals Time ‖F (x∗)‖

1000 x0 1000 2544 0.041 1.84× 10−5 1000 5127 0.070 1.66× 10−5

1000 x1 1000 2535 0.041 2.90× 10−5 1000 5125 0.067 1.62× 10−5

1000 x2 1000 2547 0.041 1.98× 10−5 1000 5104 0.068 1.47× 10−5

5000 x0 1000 2542 0.076 1.31× 10−5 1000 5160 0.126 7.83× 10−6

5000 x1 1000 2539 0.075 1.43× 10−5 1000 5160 0.130 8.45× 10−6

5000 x2 1000 2543 0.075 3.61× 10−5 1000 5168 0.125 8.14× 10−6

10000 x0 1000 2527 0.118 1.92× 10−5 1000 5199 0.201 4.23× 10−6

10000 x1 1000 2544 0.122 8.02× 10−6 1000 5161 0.225 3.98× 10−6

10000 x2 1000 2529 0.132 8.91× 10−6 1000 5151 0.219 4.01× 10−6

50000 x0 1000 2547 1.213 2.83× 10−6 1000 5292 2.370 3.52× 10−7

50000 x1 1000 2551 1.520 2.04× 10−6 1000 5308 3.049 3.55× 10−7

50000 x2 1000 2543 1.455 2.35× 10−6 1000 5277 2.951 3.62× 10−7

100000 x0 1000 2570 3.735 1.22× 10−6 1000 5305 7.220 6.11× 10−8

100000 x1 1000 2574 4.128 4.59× 10−7 1000 5366 7.393 6.11× 10−8

100000 x2 1000 2580 3.834 7.77× 10−7 1000 5303 7.225 6.30× 10−8

Table 5.4: Results for Problem 1 for solvers NDK1, MDKM, Gao-He and GCD.

– 46 –

5 Numerical Experiments

MHZ1 MFRM
n Start Iters Evals Time ‖F (x∗)‖ Iters Evals Time ‖F (x∗)‖

1000 x0 1000 3156 0.056 4.96× 10−5 1000 8125 0.106 2.65× 10−5

1000 x1 1000 3145 0.054 1.95× 10−5 1000 8095 0.103 4.21× 10−4

1000 x2 1000 3157 0.055 4.34× 10−5 1000 8116 0.105 3.98× 10−4

5000 x0 1000 3148 0.106 7.06× 10−6 1000 8135 0.188 1.72× 10−5

5000 x1 1000 3165 0.098 4.08× 10−5 1000 8177 0.187 2.02× 10−4

5000 x2 1000 3153 0.101 3.51× 10−5 1000 8110 0.186 3.52× 10−4

10000 x0 1000 3156 0.155 1.73× 10−5 1000 8136 0.291 1.30× 10−4

10000 x1 1000 3164 0.180 2.01× 10−5 1000 8171 0.342 2.37× 10−4

10000 x2 1000 3413 0.183 1.38× 10−5 1000 8172 0.334 1.11× 10−4

50000 x0 1000 3144 1.883 1.16× 10−5 1000 8160 2.684 1.27× 10−4

50000 x1 1000 3146 2.345 1.18× 10−5 1000 8162 3.578 2.31× 10−4

50000 x2 1000 3151 2.430 1.35× 10−5 84 791 0.327 2.08× 10−8

100000 x0 1000 3196 6.144 9.05× 10−6 1000 8238 7.564 1.81× 10−4

100000 x1 1000 3196 6.525 8.71× 10−6 1000 8228 7.702 1.57× 10−4

100000 x2 1000 3196 6.065 8.70× 10−6 1000 8233 7.656 1.64× 10−4

HSG
n Start Iters Evals Time ‖F (x∗)‖

1000 x0 1000 44956 0.447 1.60× 10−5

1000 x1 1000 43479 0.425 4.41× 10−5

1000 x2 1000 43432 0.427 4.46× 10−5

5000 x0 1000 42047 0.765 2.10× 10−5

5000 x1 1000 41304 0.749 2.53× 10−5

5000 x2 1000 42369 0.769 2.34× 10−5

10000 x0 1000 40875 1.149 1.40× 10−5

10000 x1 1000 41632 1.194 1.41× 10−5

10000 x2 1000 41293 1.173 1.51× 10−5

50000 x0 1000 39552 11.386 1.77× 10−6

50000 x1 1000 39675 14.226 1.66× 10−6

50000 x2 1000 45500 15.958 3.18× 10−7

100000 x0 1000 38490 28.677 4.15× 10−7

100000 x1 1000 38504 28.958 3.92× 10−7

100000 x2 1000 38178 29.427 3.96× 10−7

Table 5.5: Results for Problem 1 for solvers MHZ1, MFRM and HSG.

– 47 –

5 Numerical Experiments

NDK1 MDKM
n Start Iters Evals Time ‖F (x∗)‖ Iters Evals Time ‖F (x∗)‖

1000 x0 9 27 0.001 1.93× 10−9 12 25 0.001 2.14× 10−9

1000 x1 9 27 0.001 1.76× 10−9 12 25 0.001 1.98× 10−9

1000 x2 9 27 0.001 2.01× 10−9 12 25 0.001 2.25× 10−9

5000 x0 9 27 0.001 1.69× 10−9 12 25 0.001 1.98× 10−9

5000 x1 9 27 0.001 1.68× 10−9 12 25 0.001 1.96× 10−9

5000 x2 9 27 0.001 1.61× 10−9 12 25 0.001 1.87× 10−9

10000 x0 9 27 0.002 1.65× 10−9 12 25 0.002 1.95× 10−9

10000 x1 9 27 0.002 1.58× 10−9 12 25 0.002 1.87× 10−9

10000 x2 9 27 0.002 1.64× 10−9 12 25 0.002 1.93× 10−9

50000 x0 9 27 0.036 1.60× 10−9 12 25 0.034 1.92× 10−9

50000 x1 9 27 0.036 1.59× 10−9 12 25 0.032 1.91× 10−9

50000 x2 9 27 0.036 1.63× 10−9 12 25 0.036 1.95× 10−9

100000 x0 9 27 0.076 1.59× 10−9 12 25 0.070 1.91× 10−9

100000 x1 9 27 0.079 1.62× 10−9 12 25 0.069 1.95× 10−9

100000 x2 9 27 0.077 1.62× 10−9 12 25 0.072 1.95× 10−9

Gao-He GCD
n Start Iters Evals Time ‖F (x∗)‖ Iters Evals Time ‖F (x∗)‖

1000 x0 10 21 0.000 1.08× 10−11 31 122 0.002 5.71× 10−9

1000 x1 9 19 0.000 5.91× 10−9 31 122 0.002 5.44× 10−9

1000 x2 10 21 0.000 1.33× 10−11 31 122 0.002 5.83× 10−9

5000 x0 10 21 0.001 1.79× 10−9 31 122 0.005 5.50× 10−9

5000 x1 10 21 0.001 1.69× 10−9 31 122 0.004 5.48× 10−9

5000 x2 10 21 0.001 1.44× 10−9 31 122 0.004 5.35× 10−9

10000 x0 11 23 0.002 5.37× 10−12 31 122 0.008 5.47× 10−9

10000 x1 11 23 0.002 5.14× 10−12 31 122 0.008 5.35× 10−9

10000 x2 11 23 0.002 4.46× 10−12 31 122 0.008 5.44× 10−9

50000 x0 11 23 0.031 7.94× 10−9 31 122 0.121 5.43× 10−9

50000 x1 11 23 0.032 8.75× 10−9 31 122 0.123 5.42× 10−9

50000 x2 11 23 0.030 8.29× 10−9 31 122 0.121 5.48× 10−9

100000 x0 12 25 0.059 5.94× 10−11 31 122 0.255 5.42× 10−9

100000 x1 12 25 0.054 6.87× 10−11 31 122 0.252 5.47× 10−9

100000 x2 12 25 0.050 5.40× 10−11 31 122 0.238 5.47× 10−9

Table 5.6: Results for Problem 3 for solvers NDK1, MDKM, Gao-He and GCD.

– 48 –

5 Numerical Experiments

MHZ1 MFRM
n Start Iters Evals Time ‖F (x∗)‖ Iters Evals Time ‖F (x∗)‖

1000 x0 23 69 0.001 3.96× 10−9 75 199 0.004 3.83× 10−9

1000 x1 23 69 0.001 4.75× 10−9 82 222 0.004 9.88× 10−9

1000 x2 23 69 0.001 4.92× 10−9 122 333 0.006 3.35× 10−9

5000 x0 23 69 0.003 4.02× 10−9 91 249 0.010 6.23× 10−9

5000 x1 22 66 0.003 9.56× 10−9 74 216 0.009 8.03× 10−9

5000 x2 22 66 0.003 9.36× 10−9 79 224 0.009 6.59× 10−9

10000 x0 23 69 0.005 3.76× 10−9 84 238 0.016 8.15× 10−9

10000 x1 22 66 0.005 9.33× 10−9 122 341 0.024 9.41× 10−9

10000 x2 23 69 0.005 3.89× 10−9 65 181 0.012 9.06× 10−9

50000 x0 22 66 0.069 9.95× 10−9 103 278 0.277 6.52× 10−9

50000 x1 22 66 0.071 9.96× 10−9 67 185 0.187 7.95× 10−9

50000 x2 22 66 0.068 9.98× 10−9 91 250 0.249 6.11× 10−9

100000 x0 22 66 0.157 9.95× 10−9 83 233 0.469 1.63× 10−9

100000 x1 22 66 0.166 9.98× 10−9 87 245 0.495 7.84× 10−9

100000 x2 23 69 0.150 3.73× 10−9 70 199 0.364 9.23× 10−9

HSG
n Start Iters Evals Time ‖F (x∗)‖

1000 x0 14 60 0.001 7.74× 10−9

1000 x1 17 72 0.001 2.38× 10−9

1000 x2 15 64 0.001 1.35× 10−9

5000 x0 14 60 0.003 8.11× 10−9

5000 x1 15 63 0.003 5.25× 10−9

5000 x2 17 72 0.003 2.71× 10−9

10000 x0 14 60 0.005 6.50× 10−9

10000 x1 15 64 0.005 5.97× 10−9

10000 x2 17 69 0.006 7.71× 10−9

50000 x0 15 63 0.069 4.84× 10−9

50000 x1 16 66 0.077 4.09× 10−9

50000 x2 15 63 0.070 4.08× 10−9

100000 x0 15 63 0.136 4.65× 10−9

100000 x1 15 63 0.140 3.93× 10−9

100000 x2 15 63 0.152 4.94× 10−9

Table 5.7: Results for Problem 3 for solvers MHZ1, MFRM and HSG.

– 49 –

5 Numerical Experiments

NDK1 MDKM
n Start Iters Evals Time ‖F (x∗)‖ Iters Evals Time ‖F (x∗)‖

1000 x0 11 43 0.001 6.93× 10−9 15 64 0.001 8.91× 10−9

1000 x1 11 43 0.001 7.01× 10−9 14 62 0.001 8.82× 10−9

1000 x2 11 43 0.001 7.58× 10−9 15 64 0.001 8.92× 10−9

5000 x0 11 43 0.002 7.50× 10−9 16 69 0.003 1.53× 10−9

5000 x1 11 43 0.002 7.23× 10−9 14 62 0.003 8.82× 10−9

5000 x2 11 43 0.002 7.24× 10−9 14 62 0.003 8.81× 10−9

10000 x0 11 43 0.003 7.49× 10−9 16 69 0.005 1.53× 10−9

10000 x1 11 43 0.004 7.55× 10−9 16 69 0.006 1.44× 10−9

10000 x2 11 43 0.003 7.67× 10−9 16 69 0.005 1.74× 10−9

50000 x0 11 43 0.053 7.83× 10−9 16 69 0.083 1.55× 10−9

50000 x1 11 43 0.056 7.83× 10−9 16 69 0.078 1.61× 10−9

50000 x2 11 43 0.056 7.82× 10−9 16 69 0.087 1.58× 10−9

100000 x0 11 43 0.122 7.75× 10−9 16 69 0.169 1.59× 10−9

100000 x1 11 43 0.124 7.71× 10−9 16 69 0.171 1.59× 10−9

100000 x2 11 43 0.118 7.68× 10−9 16 69 0.175 1.63× 10−9

Gao-He GCD
n Start Iters Evals Time ‖F (x∗)‖ Iters Evals Time ‖F (x∗)‖

1000 x0 21 60 0.001 5.38× 10−9 33 163 0.002 6.48× 10−9

1000 x1 20 58 0.001 6.05× 10−9 33 163 0.002 6.66× 10−9

1000 x2 21 60 0.001 4.72× 10−9 33 163 0.003 6.14× 10−9

5000 x0 20 58 0.002 5.47× 10−9 33 163 0.006 6.43× 10−9

5000 x1 20 58 0.003 5.50× 10−9 33 163 0.006 6.93× 10−9

5000 x2 20 58 0.003 6.10× 10−9 33 163 0.006 7.18× 10−9

10000 x0 20 58 0.004 5.48× 10−9 33 163 0.011 6.67× 10−9

10000 x1 20 58 0.005 6.45× 10−9 33 163 0.013 7.25× 10−9

10000 x2 20 58 0.005 5.50× 10−9 33 163 0.011 6.69× 10−9

50000 x0 19 56 0.073 6.07× 10−9 33 163 0.183 6.81× 10−9

50000 x1 19 56 0.065 6.14× 10−9 33 163 0.172 6.90× 10−9

50000 x2 19 56 0.078 5.90× 10−9 33 163 0.183 6.72× 10−9

100000 x0 19 56 0.154 6.11× 10−9 33 163 0.394 6.85× 10−9

100000 x1 19 56 0.146 5.91× 10−9 33 163 0.389 6.70× 10−9

100000 x2 19 56 0.152 5.83× 10−9 33 163 0.392 6.68× 10−9

Table 5.8: Results for Problem 6 for solvers NDK1, MDKM, Gao-He and GCD.

– 50 –

5 Numerical Experiments

MHZ1 MFRM
n Start Iters Evals Time ‖F (x∗)‖ Iters Evals Time ‖F (x∗)‖

1000 x0 20 414 0.005 1.25× 10−2 74 617 0.008 9.79× 10−9

1000 x1 34 151 0.002 9.74× 10−9 60 496 0.007 9.37× 10−9

1000 x2 27 109 0.002 4.97× 10−9 65 545 0.007 7.81× 10−9

5000 x0 29 118 0.005 9.26× 10−9 66 549 0.020 9.40× 10−9

5000 x1 37 146 0.006 9.10× 10−9 65 539 0.020 8.14× 10−9

5000 x2 29 118 0.005 6.96× 10−9 66 549 0.020 9.89× 10−9

10000 x0 39 181 0.014 9.97× 10−9 70 585 0.039 9.70× 10−9

10000 x1 36 164 0.015 8.72× 10−9 68 567 0.042 5.77× 10−9

10000 x2 30 122 0.010 4.90× 10−9 61 511 0.032 9.74× 10−9

50000 x0 35 158 0.187 6.64× 10−9 67 565 0.565 4.48× 10−9

50000 x1 38 173 0.201 8.56× 10−9 73 613 0.613 9.48× 10−9

50000 x2 41 191 0.232 7.50× 10−9 67 565 0.588 8.57× 10−9

100000 x0 37 168 0.426 7.19× 10−9 69 578 1.196 7.82× 10−9

100000 x1 29 117 0.299 4.61× 10−9 71 595 1.192 7.71× 10−9

100000 x2 32 130 0.333 8.97× 10−9 62 520 1.091 9.54× 10−9

HSG
n Start Iters Evals Time ‖F (x∗)‖

1000 x0 21 128 0.002 1.17× 10−9

1000 x1 20 140 0.002 4.23× 10−9

1000 x2 24 187 0.003 3.52× 10−11

5000 x0 16 105 0.005 6.22× 10−11

5000 x1 22 155 0.007 2.36× 10−9

5000 x2 23 196 0.009 2.58× 10−9

10000 x0 22 168 0.014 6.47× 10−12

10000 x1 28 222 0.018 2.50× 10−11

10000 x2 21 160 0.014 2.21× 10−10

50000 x0 19 142 0.180 5.56× 10−10

50000 x1 17 106 0.138 1.13× 10−10

50000 x2 22 149 0.177 3.47× 10−10

100000 x0 18 133 0.338 1.79× 10−10

100000 x1 17 109 0.261 9.29× 10−9

100000 x2 21 141 0.351 6.54× 10−10

Table 5.9: Results for Problem 6 for solvers MHZ1, MFRM and HSG.

– 51 –

5 Numerical Experiments

One thing immediately eminent from these profiles is that most solvers perform poorly
on Problem 1, while NDK1 performs very well. The only solver that manages to solve
Problem 1, except of MFRM in one case, is NDK1 and even NDK1 failed in two cases
of the smallest n. This is due to the structure of Problem 1. Let F be the function in
Problem 1 and x∗ one of its zeros (not necessarily on Ω). With t∗ :=

∑n
i=1(x

∗
i)

2, we get

0 = Fi(x
∗) = 2c(x∗i − 1) + 4(t∗ − 0.25)x∗i

= (4t∗ + 2c− 1)x∗i − 2c,
(5.2)

for all i = 1, . . . , n, which implies

x∗i =
2c

4t∗ + 2c− 1

for all i = 1, . . . , n. In particular, all the components of xi coincide, that is x∗i = x̄ for all
i = 1, . . . , n and an x̄ ∈ R. Hence, t∗ = nx̄2 and (5.2) reduces to the polynomial equation

0 = 4nx̄3 + (2c− 1)x̄− 2c.

This polynomial, and thus F , has exactly three roots. These roots can be seen in Figure 5.10
for the case n = 2. We also see that ‖F (·)‖ approaches zero around (but not exactly) zero.

Figure 5.10: Vector field of the function F from Problem 1 for n = 2 together with the
contours of ‖F (·)‖. The three points along the diagonal are the zeros of F .

Additionally, there is a ring around zero where ‖F (·)‖ becomes very small and it also
contains the other two zeros. This ring approaches the central root as n → ∞. When an

– 52 –

5 Numerical Experiments

iterate approaches this ring it can get caught in it and not manage to move across the ring
to the other zero or it might not notice that more descent is possible there. Only NDK1
manages to consistently avoid the ring for sufficiently large n.

The numbers from the tables also yield the following performance profiles. Whenever a
solver terminated without reaching the desired accuracy of ‖F (xk)‖, the run is considered a
failure and the respective value in the performance profiles is set to infinity. This results in
the inability for all solvers to reach the value 1 in the profiles, as the profiles asymptotically
approach the success rate over all tests.

Figure 5.11: Performance profile for the number of iterations.

– 53 –

5 Numerical Experiments

Figure 5.12: Performance profile for the number of function evaluations.

Figure 5.13: Performance profile for the elapsed time.

– 54 –

5 Numerical Experiments

As we can see, NDK1 significantly outperforms its competitors in all metrics. These
results are even more pronounced than in [2]. It always provided the smallest number of
iteration and is in other metrics only sometimes beaten by their predecessor MDKM and
Gao-He. Also notable is that Gao-He performed very well on some problems but then
plateaus, indicating that it may be less consistent compared to the other methods. This
plateau however is way shorter in the profile for the elapsed time, which may arguably be the
more important metric. Also, unexpectedly, MFRM performed much worse compared to the
other methods. We expected MFRM to perform at least competitively, as the benchmarks
in [1] suggest. These were however only performed with initial values been various multiples
of (1, . . . , 1)>. Thus, their tests might not have had as broad of a coverage as ours.

We have also analysed the convergence behavior of the residuals in NDK1, MDKM, Gao-
He and HSG. For this analysis, we chose n = 50 000 and as initial value the first of the three
samples that we used in the prior tests. We choose the lower tolerance ‖F (xk)‖ < 10−10

to see more of the convergence behavior. The results for Problems 3 and 6 can be found
in Figure 5.14. In these plots, we again see that NDK1 is clearly the best performing
algorithm among those tested. MDKM and Gao-He perform similarly and HSG takes the
longest to reach low residuals. In these plots, all methods seem to converge linearly, as the

Figure 5.14: Convergence behavior of the NDK1, MDKM, Gao-He and HSG solver for
Problem 3 (top) and Problem 6 (bottom). The plots show the residuals ‖F (xk)‖ (left and
middle), as well as the quotients ‖F (xk+1)‖/‖F (xk)‖ (right).

– 55 –

5 Numerical Experiments

quotients all approach values well below one. We also want to highlight how well NDK1
performs generally over all tests. Overall, the residuals ‖F (xk)‖ in NDM1 converge with
a very low iteration count to tolerances well below 10−16 in a linear fashion. Very often,
the exponent of the residuals decrease in each step. Thus, it especially is very suited for
large scale monotone systems. We are interested in further research whether or not there
are schemes other than Dai-Kou schemes that can accomplish these results and what these
schemes will have in common.

– 56 –

6
Conclusion

In this thesis, we have numerically and theoretically analysed several methods of the
LP-Newton and the Conjugate Gradient type to solve constrained systems of equations.
Newton’s method, while being very powerful through its fast quadratic convergence rate,
requires strong smoothness and regularity assumptions on the function F . In particu-
lar, Newton’s method does not allow for non-isolated solutions. We have seen that the
LP-Newton method successfully addresses these problems and is applicable to constrained
systems of equations while still maintaining the convergence rate of Newton’s method. The
regularity assumptions, in particular, are replaced by the so-called error bound condition
that allows for non-isolated solutions. To analyse the impact of the error bound condi-
tion on the convergence rate of LP-Newton, we employed a modification that allows for
a strengthening and a weakening of this condition. We have shown that LP-Newton still
converges under the modified error bound condition and that the modification has a direct
impact on the order of convergence.

However, the LP-Newton method is still computationally expensive, as we have to
solve a Linear Program at each step of the iteration. Thereby, it is even more expensive
than Newton’s method in which we need to solve linear systems. Additionally, LP-Newton
still requires the calculation of (generalized) Jacobians. To address the last concern, the
SMLP-Newton algorithm employs a Quasi-Newton approximation of the Jacobian. For
their algorithm, the authors have shown superlinear convergence which we improved to a
two-step convergence order. However, to prove superlinear convergence, the authors needed
an assumption that is usually violated, as we confirmed numerically. However, we still
observed superlinear convergence in the numerics. To find a more realistic assumption that
allows to show superlinear convergence of SMLP-Newton, further research is needed.

Conjugate Gradient methods pose another potent class of methods that is also applica-
ble to nonsmooth systems with non-isolated solutions. As they do not use any derivatives
and are completely matrix-free, they are suitable to solve large-scale systems. However, they
require that the system of equations is monotone. We analysed various Conjugate Gradient
algorithms numerically and two of them theoretically. During our analysis, we addressed
weaknesses we have discovered in the theory of both methods, including the NDK method,
which was clearly the best performing algorithm in our numerical analysis. We observed
that the NDK method performed significantly better than other recent algorithms; it out-

– 57 –

6 Conclusion

performed the other methods on almost all problems. Additionally, the authors have shown
linear convergence under the error bound condition, which is clearly visible in the numerics.
Over all of our numerical analysis, the two algorithms that performed best are both of the
Dai-Kou class. Thus, the question arises whether there are algorithms for other classes of
CG methods that provide similar strong results. This allows for further research.

– 58 –

Bibliography

[1] Abubakar, A. B., Kumam, P., Mohammad, H., Awwal, A. M., and Sitthithakerngkiet,
K. A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear
Equations with Some Applications. In: Mathematics 7(8):745, 2019. doi: 10.3390/
math7080745.

[2] Ahmed, K., Waziri, M. Y., Halilu, A. S., and Murtala, S. On two symmetric Dai-Kou
type schemes for constrained monotone equations with image recovery application.
In: EURO Journal on Computational Optimization 11:100057, 2023. doi: 10.1016/j.
ejco.2023.100057.

[3] Andrei, N. Open Problems in Nonlinear Conjugate Gradient Algorithms for Uncon-
strained Optimization. In: Bulletin of the Malaysian Mathematical Sciences Society.
Second Series 34(2):319–330, 2011.

[4] Andrei, N. et al. Nonlinear conjugate gradient methods for unconstrained optimization.
Springer, 2020. doi: 10.1007/978-3-030-42950-8.

[5] Awwal, A. M., Kumam, P., Abubakar, A. B., Wakili, A., and Pakkaranang, N. A New
Hybrid Spectral Gradient Projection Method for Monotone System Equations with
Convex Constraints. In: Thai Journal of Mathematics 125:147, 2018. issn: 1686-0209.

[6] Barzilai, J. and Borwein, J. M. Two-Point Step Size Gradient Methods. In: IMA
journal of numerical analysis 8(1):141–148, 1988. doi: 10.1093/imanum/8.1.141.

[7] Becher, L., Fernández, D., and Ramos, A. A trust-region LP-Newton method for con-
strained nonsmooth equations under Hölder metric subregularity. In: Computational
Optimization and Applications:1–33, 2023. doi: 10.1007/s10589-023-00498-9.

[8] Bogle, I. D. L. and Perkins, J. D. A New Sparsity Preserving Quasi-Newton Update for
Solving Nonlinear Equations. In: SIAM journal on scientific and statistical computing
11(4):621–630, 1990. doi: 10.1137/0911036.

[9] Broyden, C. G. A class of methods for solving nonlinear simultaneous equations. In:
Mathematics of computation 19(92):577–593, 1965. doi: 10.1090/s0025-5718-1965-
0198670-6.

[10] Broyden, C. G. The convergence of an algorithm for solving sparse nonlinear systems.
In: Mathematics of Computation 25(114):285–294, 1971. doi: 10.1090/s0025-5718-
1971-0297122-5.

[11] Broyden, C. G., Dennis Jr, J. E., and Moré, J. J. On the Local and Superlinear
Convergence of Quasi-Newton Methods. In: IMA Journal of Applied Mathematics
12(3):223–245, 1973. doi: 10.1093/imamat/12.3.223.

[12] Bubeck, S. Theory of Convex Optimization for Machine Learning. In: ArXiv
abs/1405.4980, 2014.

[13] Cauchy, A. Méthode générale pour la résolution des systemes d’équations simultanées.
In: Comp. Rend. Sci. Paris 25(1847):536–538, 1847.

– 59 –

https://doi.org/10.3390/math7080745
https://doi.org/10.3390/math7080745
https://doi.org/10.1016/j.ejco.2023.100057
https://doi.org/10.1016/j.ejco.2023.100057
https://doi.org/10.1007/978-3-030-42950-8
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1007/s10589-023-00498-9
https://doi.org/10.1137/0911036
https://doi.org/10.1090/s0025-5718-1965-0198670-6
https://doi.org/10.1090/s0025-5718-1965-0198670-6
https://doi.org/10.1090/s0025-5718-1971-0297122-5
https://doi.org/10.1090/s0025-5718-1971-0297122-5
https://doi.org/10.1093/imamat/12.3.223

Bibliography

[14] Cheng, W. A PRP type method for systems of monotone equations. In: Mathematical
and Computer Modelling 50(1-2):15–20, 2009. doi: 10.1016/j.mcm.2009.04.007.

[15] Clarke, F. H. Optimization and Nonsmooth Analysis. SIAM, 1990. isbn:
9781611971309. doi: 10.1137/1.9781611971309.

[16] Dai, Y.-H. and Kou, C.-X. A Nonlinear Conjugate Gradient Algorithm with an Opti-
mal Property and an Improved Wolfe Line Search. In: SIAM Journal on Optimization
23(1):296–320, 2013. doi: 10.1137/100813026.

[17] Dai, Y.-H. and Liao, L.-Z. New conjugacy conditions and related nonlinear conjugate
gradient methods. In: Applied Mathematics and optimization 43:87–101, 2001. doi:
10.1007/s002450010019.

[18] Dai, Y.-H. and Yuan, Y. A Nonlinear Conjugate Gradient Method with a Strong
Global Convergence Property. In: SIAM Journal on Optimization 10(1):177–182, 1999.
doi: 10.1137/s1052623497318992.

[19] Dembo, R. S., Eisenstat, S. C., and Steihaug, T. Inexact Newton Methods. In: SIAM
Journal on Numerical analysis 19(2):400–408, 1982. doi: 10.1137/0719025.

[20] Dennis Jr, J. E. and Schnabel, R. B. Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. SIAM, 1996. doi: 10.1137/1.9781611971200.

[21] Ding, Y., Xiao, Y., and Li, J. A class of conjugate gradient methods for convex
constrained monotone equations. In: Optimization 66(12):2309–2328, 2017. doi: 10.
1080/02331934.2017.1372438.

[22] Dirkse, S. P. and Ferris, M. C. MCPLIB: A collection of nonlinear mixed comple-
mentarity problems. In: Optimization methods and software 5(4):319–345, 1995. doi:
10.1080/10556789508805619.

[23] Dolan, E. D. and Moré, J. J. Benchmarking Optimization Software with Perfor-
mance Profiles. In: Mathematical Programming 91:201–213, 2002. doi: 10 . 1007 /
s101070100263.

[24] Facchinei, F., Fischer, A., and Herrich, M. An LP-Newton method: nonsmooth equa-
tions, KKT systems, and nonisolated solutions. In: Mathematical Programming 146:1–
36, 2014. doi: 10.1007/s10107-013-0676-6.

[25] Facchinei, F. and Kanzow, C. A nonsmooth inexact Newton method for the solution
of large-scale nonlinear complementarity problems. In: Mathematical Programming
76(3):493–512, 1997. doi: 10.1007/bf02614395.

[26] Figueiredo, M. A., Nowak, R. D., and Wright, S. J. Gradient Projection for Sparse
Reconstruction: Application to Compressed Sensing and Other Inverse Problems. In:
IEEE Journal of selected topics in signal processing 1(4):586–597, 2007. doi: 10.1109/
JSTSP.2007.910281.

[27] Fischer, A. Solution of monotone complementarity problems with locally Lips-
chitzian functions. In: Mathematical Programming 76:513–532, 1997. doi: 10.1007/
BF02614396.

[28] Fischer, A., Herrich, M., Izmailov, A. F., and Solodov, M. V. A Globally Convergent
LP-Newton Method. In: SIAM Journal on Optimization 26(4):2012–2033, 2016. doi:
10.1137/15M105241X.

[29] Fletcher, R. Practical methods of optimization. John Wiley & Sons, 2000. doi: 10.
1002/9781118723203.

– 60 –

https://doi.org/10.1016/j.mcm.2009.04.007
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1137/100813026
https://doi.org/10.1007/s002450010019
https://doi.org/10.1137/s1052623497318992
https://doi.org/10.1137/0719025
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1080/02331934.2017.1372438
https://doi.org/10.1080/02331934.2017.1372438
https://doi.org/10.1080/10556789508805619
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s10107-013-0676-6
https://doi.org/10.1007/bf02614395
https://doi.org/10.1109/JSTSP.2007.910281
https://doi.org/10.1109/JSTSP.2007.910281
https://doi.org/10.1007/BF02614396
https://doi.org/10.1007/BF02614396
https://doi.org/10.1137/15M105241X
https://doi.org/10.1002/9781118723203
https://doi.org/10.1002/9781118723203

Bibliography

[30] Fletcher, R. and Reeves, C. M. Function minimization by conjugate gradients. In:
The computer journal 7(2):149–154, 1964. doi: 10.1093/comjnl/7.2.149.

[31] Gao, P. and He, C. An efficient three-term conjugate gradient method for nonlinear
monotone equations with convex constraints. In: Calcolo 55:1–17, 2018. doi: 10.1007/
s10092-018-0291-2.

[32] Geiger, C. and Kanzow, C. Numerische Verfahren zur Lösung unrestringierter Op-
timierungsaufgaben. Springer, 1999. isbn: 9783642585821. doi: 10.1007/978-3-642-
58582-1.

[33] Geiger, C. and Kanzow, C. Theorie und Numerik restringierter Optimierungsauf-
gaben. Springer, 2002. isbn: 9783642560040. doi: 10.1007/978-3-642-56004-0.

[34] Hager, W. W. and Zhang, H. A New Conjugate Gradient Method with Guaranteed
Descent and an Efficient Line Search. In: SIAM Journal on optimization 16(1):170–
192, 2005. doi: 10.1137/030601880.

[35] Hager, W. W. and Zhang, H. A survey of nonlinear conjugate gradient methods. In:
Pacific journal of Optimization 2(1):35–58, 2006.

[36] Hestenes, M. R. and Stiefel, E. Methods of conjugate gradients for solving linear
systems. In: Journal of Research of the National Bureau of Standards 49(6):409, 1952.
doi: 10.6028/jres.049.044.

[37] Kelley, C. T. Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.
doi: 10.1137/1.9781611970944.

[38] Klatte, D. and Kummer, B. Nonsmooth Equations in Optimization: Regularity, Calcu-
lus, Methods and Applications. Vol. 60. Nonconvex Optimization and Its Applications.
Springer, 2005. doi: 10.1007/b130810.

[39] Königsberger, K. Analysis 2. Springer, 2000. doi: 10.1007/978-3-662-05702-5.
[40] La Cruz, W. A projected derivative-free algorithm for nonlinear equations with convex

constraints. In: Optimization Methods and Software 29(1):24–41, 2014. doi: 10.1080/
10556788.2012.721129.

[41] La Cruz, W., Martínez, J., and Raydan, M. Spectral residual method without gradient
information for solving large-scale nonlinear systems of equations. In: Mathematics of
computation 75(255):1429–1448, 2006. doi: 10.1090/S0025-5718-06-01840-0.

[42] La Cruz, W., Martínez, J. M., and Raydan, M. Spectral residual method without gra-
dient information for solving large-scale nonlinear systems: Theory and experiments.
Technical Report RT-04-08. Dpto. de Computacion, UCV, 2004.

[43] La Cruz, W. and Raydan, M. Nonmonotone Spectral Methods for Large-Scale Non-
linear Systems. In: Optimization Methods and software 18(5):583–599, 2003. doi:
10.1080/10556780310001610493.

[44] Li, D.-H. and Fukushima, M. A derivative-free line search and global convergence of
Broyden-like method for nonlinear equations. In: Optimization methods and software
13(3):181–201, 2000. doi: 10.1080/10556780008805782.

[45] Li, D.-H. and Fukushima, M. A modified BFGS method and its global convergence
in nonconvex minimization. In: Journal of Computational and Applied Mathematics
129(1-2):15–35, 2001. doi: 10.1016/s0377-0427(00)00540-9.

[46] Li, D.-H. and Wang, X.-L. A modified Fletcher-Reeves-type derivative-free method
for symmetric nonlinear equations. In: Numer. Algebra Control Optim 1(1):71–82,
2011. doi: 10.3934/NACO.2011.1.71.

– 61 –

https://doi.org/10.1093/comjnl/7.2.149
https://doi.org/10.1007/s10092-018-0291-2
https://doi.org/10.1007/s10092-018-0291-2
https://doi.org/10.1007/978-3-642-58582-1
https://doi.org/10.1007/978-3-642-58582-1
https://doi.org/10.1007/978-3-642-56004-0
https://doi.org/10.1137/030601880
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1137/1.9781611970944
https://doi.org/10.1007/b130810
https://doi.org/10.1007/978-3-662-05702-5
https://doi.org/10.1080/10556788.2012.721129
https://doi.org/10.1080/10556788.2012.721129
https://doi.org/10.1090/S0025-5718-06-01840-0
https://doi.org/10.1080/10556780310001610493
https://doi.org/10.1080/10556780008805782
https://doi.org/10.1016/s0377-0427(00)00540-9
https://doi.org/10.3934/NACO.2011.1.71

Bibliography

[47] Liu, J.-K. and Li, S.-J. A projection method for convex constrained monotone non-
linear equations with applications. In: Computers & Mathematics with Applications
70(10):2442–2453, 2015. doi: 10.1016/j.camwa.2015.09.014.

[48] Liu, Y and Storey, C Efficient generalized conjugate gradient algorithms, part 1:
theory. In: Journal of optimization theory and applications 69:129–137, 1991. doi:
10.1007/bf00940464.

[49] Marini, L., Morini, B., and Porcelli, M. Quasi-Newton methods for constrained non-
linear systems: complexity analysis and applications. In: Computational Optimization
and Applications 71:147–170, 2018.

[50] Martınez, J. M. Practical quasi-Newton methods for solving nonlinear systems. In:
Journal of computational and Applied Mathematics 124(1-2):97–121, 2000. doi: 10.
1016/s0377-0427(00)00434-9.

[51] Martinez, J. M. and Zambaldi, M. C. An inverse column-updating method for solving
large–scale nonlinear systems of equations. In: Dynamical Systems 1(2):129–140, 1992.
doi: 10.1080/10556789208805512.

[52] Martínez, M. d. l. Á. and Fernández, D. A quasi-Newton modified LP-Newton
method. In: Optimization Methods and Software 34(3):634–649, 2019. doi: 10.1080/
10556788.2017.1384955.

[53] Martínez, M. d. l. Á. and Fernández, D. On the Local and Superlinear Convergence of
a Secant Modified Linear-Programming-Newton Method. In: Journal of Optimization
Theory and Applications 180:993–1010, 2019. doi: 10.1007/s10957-018-1407-1.

[54] Meintjes, K. and Morgan, A. P. A methodology for solving chemical equilibrium
systems. In: Applied Mathematics and Computation 22(4):333–361, 1987. doi: 10.
1016/0096-3003(87)90076-2.

[55] Morini, B., Porcelli, M., and Toint, P. L. Approximate norm descent methods for
constrained nonlinear systems. In: Mathematics of Computation 87(311):1327–1351,
2018. doi: 10.1090/mcom/3251.

[56] Nocedal, J. and Wright, S. J. Numerical Optimization. Springer, 2006.
[57] Oren, S. S. and Spedicato, E. Optimal conditioning of self-scaling variable metric algo-

rithms. In: Mathematical programming 10(1):70–90, 1976. doi: 10.1007/bf01580654.
[58] Ortega, J. M. and Rheinboldt, W. C. Iterative solution of nonlinear equations in

several variables. SIAM, 2000. doi: 10.1137/1.9780898719468.
[59] Perry, A. A Class of Conjugate Gradient Algorithms with a Two-Step Variable Metric

Memory. Discussion Paper 269. Evanston, IL, 1977. url: http://hdl.handle.net/
10419/220629.

[60] Perry, A. A Modified Conjugate Gradient Algorithm. In: Operations Research
26(6):1073–1078, 1978. doi: 10.1287/opre.26.6.1073.

[61] Polak, E. and Ribière, G. Note sur la convergence de méthodes de directions con-
juguées. In: Revue française d’informatique et de recherche opérationnelle. Série rouge
3(16):35–43, 1969. doi: 10.1051/m2an/196903r100351.

[62] Polyak, B. T. The conjugate gradient method in extremal problems. In: USSR Com-
putational Mathematics and Mathematical Physics 9(4):94–112, 1969. doi: 10.1016/
0041-5553(69)90035-4.

[63] Pozrikidis, C. An introduction to Grids, Graphs, and Networks. Oxford University
Press, USA, 2014. isbn: 9780199996728.

– 62 –

https://doi.org/10.1016/j.camwa.2015.09.014
https://doi.org/10.1007/bf00940464
https://doi.org/10.1016/s0377-0427(00)00434-9
https://doi.org/10.1016/s0377-0427(00)00434-9
https://doi.org/10.1080/10556789208805512
https://doi.org/10.1080/10556788.2017.1384955
https://doi.org/10.1080/10556788.2017.1384955
https://doi.org/10.1007/s10957-018-1407-1
https://doi.org/10.1016/0096-3003(87)90076-2
https://doi.org/10.1016/0096-3003(87)90076-2
https://doi.org/10.1090/mcom/3251
https://doi.org/10.1007/bf01580654
https://doi.org/10.1137/1.9780898719468
http://hdl.handle.net/10419/220629
http://hdl.handle.net/10419/220629
https://doi.org/10.1287/opre.26.6.1073
https://doi.org/10.1051/m2an/196903r100351
https://doi.org/10.1016/0041-5553(69)90035-4
https://doi.org/10.1016/0041-5553(69)90035-4

Bibliography

[64] Qi, L. and Jiang, H. Semismooth Karush-Kuhn-Tucker Equations and Convergence
Analysis of Newton and Quasi-Newton Methods for Solving these Equations. In: Math-
ematics of Operations Research 22(2):301–325, 1997. doi: 10.1287/moor.22.2.301.

[65] Qi, L. and Sun, J. A nonsmooth version of Newton’s method. In: Mathematical
Programming 58(1–3):353–367, 1993. doi: 10.1007/bf01581275.

[66] Rockafellar, R. T. and Wets, R. J.-B. Variational Analysis. Vol. 317. Springer, 1998.
doi: 10.1007/978-3-642-02431-3.

[67] Sabi’u, J., Shah, A., and Waziri, M. Y. A modified Hager-Zhang conjugate gradi-
ent method with optimal choices for solving monotone nonlinear equations. In: In-
ternational Journal of Computer Mathematics 99(2):332–354, 2022. doi: 10.1080/
00207160.2021.1910814.

[68] Schubert, L. K. Modification of a quasi-Newton method for nonlinear equations
with a sparse Jacobian. In: Mathematics of Computation 24(109):27–30, 1970. doi:
10.1090/s0025-5718-1970-0258276-9.

[69] Shanno, D. F. Conjugate Gradient Methods with Inexact Searches. In: Mathematics
of Operations Research 3(3):244–256, 1978. doi: 10.1287/moor.3.3.244.

[70] Shanno, D. F. On the Convergence of a New Conjugate Gradient Algorithm. In:
SIAM Journal on Numerical Analysis 15(6):1247–1257, 1978. doi: 10.1137/0715085.

[71] Solodov, M. V. and Svaiter, B. F. A globally convergent inexact Newton method
for systems of monotone equations. In: Reformulation: Nonsmooth, piecewise smooth,
semismooth and smoothing methods:355–369, 1999. doi: 10.1007/978-1-4757-6388-
1_18.

[72] Sun, W. and Yuan, Y.-X. Optimization Theory and Methods: Nonlinear Programming.
Vol. 1. Springer Science & Business Media, 2006. doi: 10.1007/b106451.

[73] Ulbrich, M. Semismooth Newton methods for variational inequalities and con-
strained optimization problems in function spaces. SIAM, 2011. doi: 10 . 1137/1 .
9781611970692.

[74] Ulbrich, M. and Ulbrich, S. Nichtlineare Optimierung. Birkhäuser Basel, 2012. doi:
10.1007/978-3-0346-0654-7.

[75] Voigts, J. url: https://github.com/johannesvoigtsuzl/constrained-systems.
[76] Wang, C. and Wang, Y. A superlinearly convergent projection method for constrained

systems of nonlinear equations. In: Journal of Global Optimization 44:283–296, 2009.
doi: 10.1007/s10898-008-9324-8.

[77] Wang, C., Wang, Y., and Xu, C. A projection method for a system of nonlinear
monotone equations with convex constraints. In: Mathematical Methods of Operations
Research 66:33–46, 2007. doi: 10.1007/s00186-006-0140-y.

[78] Waziri, M. Y. and Ahmed, K. Two descent Dai-Yuan conjugate gradient methods for
systems of monotone nonlinear equations. In: Journal of Scientific Computing 90:1–
53, 2022. doi: 10.1007/s10915-021-01713-7.

[79] Waziri, M. Y., Ahmed, K., and Halilu, A. S. A modified Dai–Kou-type method with
applications to signal reconstruction and blurred image restoration. In: Computational
and Applied Mathematics 41(6):232, 2022. doi: 10.1007/s40314-022-01917-z.

[80] Wolfe, P. Convergence conditions for ascent methods. In: SIAM review 11(2):226–
235, 1969. doi: 10.1137/1011036.

– 63 –

https://doi.org/10.1287/moor.22.2.301
https://doi.org/10.1007/bf01581275
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1080/00207160.2021.1910814
https://doi.org/10.1080/00207160.2021.1910814
https://doi.org/10.1090/s0025-5718-1970-0258276-9
https://doi.org/10.1287/moor.3.3.244
https://doi.org/10.1137/0715085
https://doi.org/10.1007/978-1-4757-6388-1_18
https://doi.org/10.1007/978-1-4757-6388-1_18
https://doi.org/10.1007/b106451
https://doi.org/10.1137/1.9781611970692
https://doi.org/10.1137/1.9781611970692
https://doi.org/10.1007/978-3-0346-0654-7
https://github.com/johannesvoigtsuzl/constrained-systems
https://doi.org/10.1007/s10898-008-9324-8
https://doi.org/10.1007/s00186-006-0140-y
https://doi.org/10.1007/s10915-021-01713-7
https://doi.org/10.1007/s40314-022-01917-z
https://doi.org/10.1137/1011036

Bibliography

[81] Wolfe, P. Convergence conditions for ascent methods. II: Some corrections. In: SIAM
review 13(2):185–188, 1971. doi: 10.1137/1013035.

[82] Wood, A. J., Wollenberg, B. F., and Sheblé, G. B. Power Generation, Operation, and
Control. John Wiley & Sons, 1996. doi: 10.1016/0140-6701(96)88715-7.

[83] Xiao, Y. and Zhu, H. A conjugate gradient method to solve convex constrained mono-
tone equations with applications in compressive sensing. In: Journal of Mathematical
Analysis and Applications 405(1):310–319, 2013. doi: 10.1016/j.jmaa.2013.04.017.

[84] Zhang, L., Zhou, W., and Li, D. Some descent three-term conjugate gradient methods
and their global convergence. In: Optimisation Methods and Software 22(4):697–711,
2007. doi: 10.1080/10556780701223293.

– 64 –

https://doi.org/10.1137/1013035
https://doi.org/10.1016/0140-6701(96)88715-7
https://doi.org/10.1016/j.jmaa.2013.04.017
https://doi.org/10.1080/10556780701223293

	1 Introduction
	1.1 Literature Review
	1.1.1 Newton-type Methods
	1.1.2 Spectral Gradient Methods
	1.1.3 Conjugate Gradient Methods

	2 Preliminaries
	2.1 Basic Concepts and Notation
	2.2 Rates of Convergence
	2.3 Generalized Derivatives

	3 Newton-type Methods
	3.1 LP-Newton
	3.2 Secant Modified LP-Newton

	4 Conjugate Gradient Methods
	4.1 The CG Method framework for constrained systems of equations
	4.2 Additional Conditions and their Impact on Convergence
	4.3 Two Conjugate Gradient Methods
	4.3.1 A Symmetric Dai-Kou Based Method
	4.3.2 An Efficient Three Term CG Method by gaohe

	5 Numerical Experiments
	5.1 LP-Newton and SMLP-Newton
	5.2 Performance Profiles
	5.3 Comparison of Conjugate Gradient Methods

	6 Conclusion
	Bibliography

