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Zusammenfassung

In den letzten Jahren wurde der Entwicklung von Innere-Punkte-Verfahren
für hochdimensionale konvexe Optimierungsprobleme viel Beachtung geschenkt.
Innere-Punkte-Verfahren sind dafür bekannt, in Kombination mit dem Newton-
verfahren exzellent zu funktionieren, aber durch dessen Voraussetzung, linea-
re Gleichungssysteme mit Hessematrizen zu lösen, ist ihre Verwendung häu-
fig nicht sinnvoll oder sogar unmöglich. Quasi-Newton-Verfahren stellen hier-
zu eine geeignete Alternative dar, indem sie Ableitungen zweiter Ordnung aus-
schließlich anhand bereits berechneter Gradienteninformationen approximieren.
Allerdings sind sie dafür bekannt, bei schlechter Konditioniertheit langsam
zu konvergieren, wodurch ihre Verwendung in Innere-Punkte-Verfahren beson-
ders herausfordernd ist. In dieser Arbeit wird daher ein Verfahren zur Lösung
nichtlinearer ungleichungsbeschränkter Probleme diskutiert, in dem ein prima-
ler Innere-Punkte-Ansatz mit einer Tikhonov-Regularisierung modifiziert und
ein strukturiertes l-BFGS-Verfahren zum Lösen der inneren Probleme verwendet
wird, das darauf abzielt, die Approximation an die Hessematrix zu verbessern.
Es wird bewiesen, dass das Verfahren mit einer in den äußeren Iterierten linea-
ren Konvergenzrate gegen die Minimum-Norm-Lösung konvergiert, und dass die
Anzahl der l-BFGS-Iterationen, die zum Erreichen einer gegebenen Genauigkeit
in der Zielfunktion benötigt werden, polynomiell in dieser Genauigkeit ist. Ab-
schließend werden numerische Ergebnisse präsentiert, die auf die Eignung des
Verfahrens für hochdimensionale nichtlineare konvexe Probleme hindeuten.

Abstract

In recent years, the development of interior-point methods for large-scale convex
optimisation problems has received much attention. Interior-point methods are
well-known to perform excellent when combined with Newton’s method, but the
latter’s requirement of solving linear systems of equations involving Hessian ma-
trices often make their use unviable or even impossible. Quasi-Newton methods
present a convenient alternative, as they approximate second-order derivatives
using only previously computed gradient information. However, they are known
to converge slowly under ill-conditionedness, which makes their use particularly
challenging in interior-point methods. In this thesis, a method for solving non-
linear inequality-constrained problems is therefore discussed in which a primal
interior-point approach is modified with a Tikhonov regularisation, and in which
a structured l-BFGS method is used to solve the inner problems, aiming at im-
proving the Hessian approximation. It is proven that the method converges to
the minimal-norm solution at a linear convergence rate in the outer iterates, and
that the number of l-BFGS iterations required to reach a given accuracy in the
objective function is polynomial in the accuracy. Finally, numerical results of the
method are presented which indicate its suitability for dealing with large-scale
nonlinear convex problems.
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List of symbols

Throughout this thesis, the following symbols are used:

Symbol Description
N Set of natural numbers excluding 0
N0 Set of natural numbers including 0
R Set of real numbers
n Number of variables
m Number of inequality constraints
f Objective function of the optimisation problem
g Inequality-constraint function of the optimisation problem
F Set of feasible points, defined in Section 2.2
F+ Set of strictly feasible points, defined in Section 2.2
S Solution set, defined in Section 2.2
µ Barrier parameter
ε Regularisation parameter
b Barrier term

ϕµ, ϕµj
Barrier function, defined in Section 2.3

fε Tikhonov-regularised function, defined in Section 3.1
fε,µ, fεj ,µj

Tikhonov-regularised barrier function, defined in Section 3.2
(P) Original optimisation problem, defined in Chapter 1

(Pµ), (Pµj
) Barrier problem, defined in Section 2.3

(Pε) Tikhonov-regularised problem, defined in Section 3.1
(Pε,µ), (Pεj ,µj

) Tikhonov-regularised barrier problem, defined in Section 3.2
x∗ Minimiser of (P)
x∗M Minimal-norm solution of (P)

x̄µ, x̄µj
Barrier minimiser, i.e. minimiser of (Pµ) / (Pµj

)

x̄ε Regularised minimiser, i.e. minimiser of (Pε)
x̄ε,µ, x̄εj ,µj

Regularised barrier minimiser, i.e. minimiser of (Pε,µ) / (Pεj ,µj
)

i If not stated otherwise, index of inequality constraint
j Outer iteration index
k Inner iteration index
xj Outer iterate

xjk, xk Inner iterate
`, `max Current / maximum memory length for l-BFGS update
Bk l-BFGS matrix
B

(0)
k Seed matrix in l-BFGS iteration
Sk Structured part of seed matrix in l-BFGS iteration
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1
Introduction

Constrained convex optimisation has been a widely-researched area for decades. It is en-
countered in numerous areas, such as “automatic control systems, estimation and signal
processing, communications and networks, electronic circuit design, data analysis and mod-
elling, statistics, and finance” [8], engineering [4, 40], and image processing [12, 14].

In this thesis, smooth inequality-constrained problems will be considered, in particular,
problems for which the objective and constraint functions are convex and twice continuously
differentiable. The goal is to minimise the objective function subject to all constraint
functions being non-negative, that is, to find a solution to

inf
x∈Rn

f(x) s.t. g(x) ≤ 0, (P)

where g(x) ≤ 0 means that gi(x) ≤ 0 for i = 1, ...,m. It is assumed that the problem (P)
has an actual minimiser.

1.1 Background and motivation

Commonly-used approaches to solve these problems are interior-point methods (IPMs). In
these, the inequality constraints are associated with a barrier function and included directly
into the objective, thus transforming the entire constrained problem into an unconstrained
one and allowing for the use of unconstrained optimisation techniques. As mentioned in [24,
page 588], “the use of a logarithmic barrier method in the context of optimization had
already been proposed in 1955 by Frisch [19] and studied extensively by Fiacco and Mc-
Cormick [16] in the context of nonlinear optimization.”

Back then referred to as sequential unconstrained minimization technique [8, page 569],
the approach lost most of its popularity during the 1970s, mainly due to the discovery of
the increasing ill-conditionedness in the underlying sub-problems and the development of
new methods [18, page 528]. It wasn’t until the groundbreaking paper from Karmarkar [28]
in 1984 that IPMs regained interest, as he proved polynomial time complexity for such an
algorithm in linear programming, in contrast to the combinatorial worst-case complexity of
simplex methods, cf. [18, page 526].

In 1994, the complexity theory of IPMs was seminally extended to nonlinear convex
optimisation problems by Nesterov and Nemirovski [35], using the convergence theory of
Newton’s method for self-concordant functions, cf. [8, page 621]. Today, these methods
are usually referred to as barrier, path-following or interior-point methods. They enjoy
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1 Introduction

great popularity in linear, quadratic, and nonlinear convex optimisation [8, 24, 37] and are
included in widely-used solvers such as MOSEK, IPOPT or CVXOPT [3, 37].

Most often, so-called infeasible primal-dual algorithms are used, as they are considered
the most efficient IPMs [24, page 588]. In these, typically one or multiple Newton steps
are applied to the perturbed KKT system of the optimisation problem (see Section 2.3),
thereby avoiding the two main drawbacks of primal IPMs: the increasing nonlinearity and
the increasingly ill-conditioned Hessian of the barrier function [24, 37]. This proved very
efficient especially because of the properties of Newton’s method related to self-concordant
functions. For many IPMs, polynomial time complexity results were proven [8, 24, 35, 43].

However, these methods generally involve the solution of large linear systems of equa-
tions which might become prohibitively expensive for large-scale problems [14, page 956].
Furthermore, Newton’s method requires the knowledge and computation of second deriva-
tives of the objective and all constraint functions which in practice may be unavailable or
unsuitably expensive to compute for nonlinear problems [4, 40].

Therefore, in recent years, much attention has been focused on the development of
IPMs for large-scale nonlinear optimisation without the need of Hessian matrices [2, 4,
40]. A convenient and efficient alternative to Newton’s method is available in the form of
Quasi-Newton methods which internally build and maintain approximations to the Hessian
using only previously-computed gradient information [40]. In recent years, a number of
Quasi-Newton based primal-dual IPMs was developed [4, 5, 6, 25, 26, 40].

But even though all these methods do not require Hessian matrices, they still involve
the solution of large linear systems of equations, limiting their suitability especially when a
large number of nonlinear inequality-constraints is present [6].

An alternative which does not require the solution of linear systems is given when a
Quasi-Newton method is applied directly to the primal barrier function. However, this is
accompanied by a major downfall: Already primal IPMs which employ Newton’s method
fell out of favour due to the nonlinearity of the barrier function close to the boundary [37,
page 584], as this makes the underlying quadratic approximations less accurate and the
overall method numerically less stable than primal-dual methods [4, page 201]. The use of
a Quasi-Newton method further worsens this issue, as the latter is known to struggle with
ill-conditioned problems [37, page 180], and the Hessian of the barrier function becomes
increasingly ill-conditioned in IPMs [37, 41, 49].

Therefore, a method is discussed in this thesis which eliminates the need for solving
linear systems while simultaneously reducing the impact of the increasing nonlinearity and
ill-conditionedness. The method aims especially at large-scale inequality-constrained convex
optimisation problems.

1.2 Contributions

In this thesis, an l-BFGS based primal interior-point method is proposed and analysed. It
does not rely on the solution of linear systems and reduces the memory cost compared to a
BFGS based method. To deal with the issue of increasing nonlinearity and ill-conditioning,
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1 Introduction

two modifications are made:

• On the one hand, a Tikhonov regularisation is added to the problem in order to
improve its quadratic approximability and to reduce the overall ill-conditionedness
of the barrier function. Throughout the iteration process, the weight of both regu-
larisation and barrier term is simultaneously reduced, but the barrier parameter is
forced to decrease faster than the regularisation parameter. This ensures that the
regularisation effect dominates the barrier term from which the ill-conditionedness
arises, ultimately allowing for the convergence results derived in this thesis.

• On the other hand, a structured l-BFGS method is employed in which the seed matrix
is chosen in each l-BFGS iteration in a way that captures the spectrum of the Hessian
more properly than a scaled identity matrix, thereby making the method more viable
under ill-conditionedness. The structured l-BFGS method used here was very recently
discussed and analysed in [34], with a focus on the solution of inverse problems. In
this thesis, it is adapted for the application to primal IPMs. The main concept
in this is to include the information about the current Hessian in the l-BFGS seed
matrix which is already at hand, can be used unproblematically in computations and
likely contributes most to the problem’s ill-conditioning. The more complicated and
possibly unavailable parts of the Hessian are left to be approximated by a scaled
identity in the seed matrix.

Besides improving the problem’s conditioning, it is proven in this thesis that the
Tikhonov regularisation also brings two more benefits:

• Whereas in IPMs it is typically required that the solution set of the underlying
problem is bounded, cf. [18, 46, 48], this assumption is not necessary here to prove
convergence. Losing this requirement is substantial, as there are many cases in which
boundedness is not given. This includes Linear Programs, as already the simple
example

min
x∈Rn

cTx s.t. x ≥ 0 with c = (0, 1, ..., 1)T

illustrates.
• Furthermore, due to the regularisation, the iterates ultimately converge to the

minimal-norm solution of the problem, thereby uniquely characterising the limit point
without the need for further assumptions. This stands in contrast to other IPMs
which, under appropriate assumptions, typically converge to the analytic centre of
the solution set [4, 18], as is further discussed in Section 2.4.

In this thesis, the impact of Tikhonov regularisation on interior-point methods is anal-
ysed. An algorithm which integrates this concept is proposed, and a suitable update and
stopping strategy for the method is derived. It is proven that the iterates of the method
converge to the minimal-norm solution, that the method reaches any given accuracy in
the function value after finitely many iterations, and that the number of required l-BFGS
iterations grows at most polynomially in the accuracy.

To the best of our knowledge, this is the first time in which a convergence analysis for
Tikhonov-regularised IPMs is conducted in such detail. Furthermore, there appear to be no
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1 Introduction

complexity results on purely Quasi-Newton based IPMs for nonlinear convex optimisation
in the literature, indicating that the result derived in this thesis is the first of its kind.

1.3 Main results and structure

This thesis is structured as follows. Chapter 2 covers preliminaries on convex functions
and convex optimisation problems (Sections 2.1 and 2.2) as well as an introduction to
interior-point methods (Sections 2.3 and 2.4).

In Chapter 3, the Tikhonov-regularised interior-point method is presented and anal-
ysed in detail. At first, a brief description of Tikhonov regularisation is given in Section 3.1,
followed by the introduction of the Tikhonov-regularised IPM in Section 3.2. Its general
structure is outlined in Algorithm 3.1. Furthermore, it is shown that each regularised bar-
rier problem has a unique minimiser. The next part of the chapter covers the convergence
analysis of the outer iterations: in Section 3.3 for the case that the minimiser of each sub-
problem is computed exactly, and in Section 3.4 for the practically more relevant case that
the minimisers are only approximated in each iteration.

It is proven that the iterates converge to the minimal-norm solution, and a convergence
rate in the objective is established which is linear in the regularisation parameter. Based
on that, suitable choices for the parameter update and the inner and outer stopping criteria
are discussed. The detailed structure of the overall method is presented in Algorithm 3.2.
It is proven in Theorem 3.12 that the method reaches a given accuracy after finitely many
outer iterations and that it supports an r-linear convergence rate in the objective.

The chapter concludes with a brief discussion on possible modifications to the Tikhonov-
regularised IPM in Section 3.5, including proximal-point regularisation and the integration
of linear equality constraints.

While Chapter 3 focusses on the outer structure of the method, Chapter 4 covers the
inner solver : After the concept behind l-BFGS methods is described in Section 4.1, the
structured l-BFGS method analysed in [34] is introduced in Section 4.2. Its implementa-
tion to solve the inner problems of the Tikhonov-regularised IPM is addressed in detail in
Section 4.3. The precise inner procedure is presented in Algorithm 4.2.

In the rest of Chapter 4, the convergence behaviour of the inner solver is analysed:
Based on the results from [34], it is proven in Section 4.4 that each inner loop terminates
after finitely many iterations, yielding that also the overall method terminates after finitely
many iterations. Furthermore, it is shown that each inner iteration procedure supports an
r-linear convergence rate, with the main result presented in Theorem 4.5.

In Section 4.5, the convergence of the inner iterations is quantified in the context of
the overall method, culminating in Section 4.6 where it is proven that, under certain as-
sumptions on the algorithm, the total number of l-BFGS iterations required for the entire
Tikhonov-regularised IPM grows at most polynomially in the imposed tolerance. This re-
sult is stated in Theorem 4.12.

Finally in Chapter 5, numerical results are presented: In Section 5.1, some notes on
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1 Introduction

the implementation are given. Section 5.2 covers a detailed description of the considered
test problems. In Section 5.3, the theoretical convergence results of Chapters 3 and 4 are
validated numerically based on low-dimensional problems. Lastly, results for large-scale
problems are presented and discussed in Section 5.4.

The Tikhonov-regularised IPM discussed in this thesis was implemented in Python, and
the code is available on GitHub [22].

1.4 Related work

In 2000, a primal-dual IPM for nonlinear inequality-constrained convex problems was
proposed and discussed in which the Hessian of the problem’s Lagrangian was substituted
by BFGS approximations [4]. The authors proved convergence of the method to the analytic
centre of the primal-dual optimal set when the Lagrangian is strongly convex and strict
complementarity holds. In 2003, they extended their results to an infeasible method [5] and
published a limited-memory variant [6].

The method discussed in this thesis differs from their approach as follows: In contrast
to them, a primal IPM is discussed here which does not require the solution of linear
systems of equations. Furthermore, the Tikhonov regularisation yields convergence to the
minimal-norm solution instead of the analytic centre, and the assumption of a strongly
convex Lagrangian [4, Assumption 2.1] is not necessary here. Furthermore, in [4, 5], a
BFGS method is employed as inner solver for which q-superlinear convergence is proven,
in contrast to the l-BFGS method used here which converges only q-linearly. Lastly, a
polynomial complexity result is proven for the overall algorithm here.

The software package IPOPT [47] is designed for large-scale nonlinear optimisation
based on interior-point methods. Amongst others, it supports Quasi-Newton based Hessian
approximations, although there appear to exist no complexity results for it. The application
of a Quasi-Newton based IPM can for example be found in [11].

More recently, a primal-dual IPM for convex quadratic problems which combines
Newton and Quasi-Newton steps was proposed and discussed in [25], and the polyno-
mial iteration complexity of a similar method for linear programming was proven in [26].
Again, these primal-dual approaches involve the solution of linear systems. Moreover, in
contrast to the method discussed in this thesis, they are limited to quadratic and linear
programming, respectively, and not solely based on Quasi-Newton steps. However, they
allow for the integration of linear equality constraints.

The paper [40] which was published in 2019 deals with a BFGS based primal-dual IPM
in generic Hilbert spaces. Thereby, it differs substantially from the scenario considered
in this thesis, and furthermore only covers “pointwise inequality constraints” [40]. Also in
2019, the parallelisation of Quasi-Newton based primal-dual IPMs for nonlinear optimi-
sation with a small number of general constraints was discussed in [39]. It focusses on the
parallelised implementation, block structure and numerical analysis of the method, and also
allows for non-convex problems; in contrast to the theoretical focus and results which are
given in this thesis.
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1 Introduction

Regularisation approaches in interior-point methods are not new. In 1998, convergence
for a combination of proximal and interior-point methods was proven [27], and
recent modifications of this idea can for example be found in [13], with an application to
image processing in [12]. As is discussed in Section 3.5, proximal-point regularisation has
similarities to the Tikhonov regularisation employed in this thesis, but they differ especially
in terms of the convergence analysis and do not yield convergence to the minimal-norm
solution.

The integration of Tikhonov regularisation into interior-point frameworks is especially
found in the context of linear ill-posed problems [10, 44]. This problem class, however,
is substantially different to the one considered in this thesis.

Recently, the combination of proximal and interior-point methods was further modified
with an Augmented Lagrangian approach, and different variations of this so-called
interior-point proximal method of multipliers were proposed and discussed for linear and
quadratic convex programming in [7, 41], for semi-definite programming in [42] and for
sparse approximations in [14]. In detail, a primal-dual Augmented Lagrangian IPM for
large-scale nonlinear convex problems is proposed and discussed in [31]. The integration of
an Augmented Lagrangian approach aims at solving convex optimisation problems in the
additional presence of linear equality constraints which are not covered by this thesis. All
of these methods are based on Newton steps and thereby rely on linear systems, and, in
case of nonlinear optimisation, on the knowledge of the involved Hessian matrices.

1.5 Notation

Mainly following [37], the order notations O(·) and o(·) for an asymptotic upper esti-
mate, and Ω(·) for a corresponding lower estimate are used in this thesis as follows. For
non-negative sequences (aj)j∈N and (bj)j∈N, it is

aj = O(bj) :⇔ ∃C > 0 : aj ≤ Cbj for all sufficiently large j,

aj = o(bj) :⇔ lim
j→∞

aj
bj

= 0,

aj = Ω(bj) :⇔ ∃C > 0 : aj ≥ Cbj for all sufficiently large j.

Sometimes, the order notation is also used as dependency in a continuous variable instead
of sequences. Then, it is defined analogously to the discrete case.

Again following [37], a sequence (xk)k∈N0
is said to converge q-linearly in the objective f

to the infimum f∗ if there is a constant r ∈ (0, 1) such that

f(xk+1)− f∗ ≤ r (f(xk)− f∗) for all sufficiently large k.

Furthermore, a sequence (xk)k∈N0
is said to converge r-linearly in the objective f to the

infimum f∗ if it is dominated by a q-linear sequence, i.e. if there is a non-negative se-
quence (rk)k∈N0

which converges q-linearly to zero and for which it holds

f(xk)− f∗ ≤ rk for all k.
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2
Preliminaries on convex optimisation and
interior-point methods

In this chapter, the basis for the later proposed and discussed Tikhonov-regularised interior-
point method is laid. Starting with preliminaries on convex and strongly convex functions
in Section 2.1, Section 2.2 covers the description and related definitions of the setting con-
sidered in this thesis: a general inequality-constrained convex optimisation problem. Fur-
thermore, basic results on the existence and character of solutions to this problem are stated
which are later in Chapters 3 and 4 needed for the analysis.

As the method discussed in this thesis is built on interior-point methods, their general
concept is described in Section 2.3, followed by an outline and discussion on the convergence
behaviour of those methods in Section 2.4. This is later in Chapter 3 used to analyse how
the results derived for the Tikhonov-regularised method differ from the behaviour of other
IPMs.

2.1 Convexity and strong convexity

As this thesis deals with convex optimisation, the basic definitions of convexity shall give
the starting point. These follow [20, Chapter 3].

Definition 2.1. A set X ⊆ Rn is called convex if for all x, y ∈ X, λ ∈ (0, 1) it holds

λx+ (1− λ)y ∈ X.

Thus, a set is convex if and only if it contains the line segment between any points in
it. Similarly, convexity of a function f is defined by the line segments between (x, f(x))

and (y, f(y)) of any points x and y lying above the graph of f , cf. [8].

Definition 2.2. A function f : Rn → R is called convex if for all x, y ∈ Rn, λ ∈ (0, 1) it
holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Whenever f is continuously differentiable, this convexity can be expressed in terms of
its gradient or Hessian matrix:
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2 Preliminaries on convex optimisation and interior-point methods

Lemma 2.3. [cf. 20, Satz 3.5, Satz 3.7, Satz 3.8] Let f ∈ C1(Rn,R). Then the following
statements are equivalent:

a) f is convex.
b) f(x) ≥ f(y) +∇f(y)T (x− y) ∀x, y ∈ Rn.
c) (∇f(x)−∇f(y))T (x− y) ≥ 0 ∀x, y ∈ Rn.
d) If f furthermore is twice continuously differentiable: hT

(
∇2f(x)

)
h ≥ 0 ∀x, h ∈ Rn.

Here, C1(Rn,R) denotes the space of continuously differentiable functions from Rn

to R. By statement b), any linear Taylor approximation of a convex function f lies entirely
below the function f , thus yielding the non-negative curvature described in statement d).

An important concept for Tikhonov regularisation and the Tikhonov-regularised IPM
discussed later in this thesis is the so-called strong convexity which essentially guarantees
that a function does not only have a non-negative curvature, but maintains a certain positive
curvature on its entire domain. This property is defined as follows.

Definition 2.4. A function f : Rn → R is called κ-strongly convex for κ > 0 if for
all x, y ∈ Rn, λ ∈ (0, 1) it holds

f(λx+ (1− λ)y) + κλ(1− λ) ‖x− y‖22 ≤ λf(x) + (1− λ)f(y).

A function f is called strongly convex if it is κ-strongly convex for some κ > 0.

Similarly to Lemma 2.3, the property of strong convexity can be expressed in terms of
the gradient or Hessian matrix for continuously differentiable functions:

Lemma 2.5. [cf. 20, Satz 3.5, Satz 3.7, Satz 3.8] Let f ∈ C1(Rn,R). Then the following
statements are equivalent:

a) f is κ-strongly convex for κ > 0.
b) f(x) ≥ f(y) +∇f(y)T (x− y) + κ ‖x− y‖22 ∀x, y ∈ Rn.
c) (∇f(x)−∇f(y))T (x− y) ≥ 2κ ‖x− y‖22 ∀x, y ∈ Rn.
d) If f furthermore is twice continuously differentiable:

hT
(
∇2f(x)

)
h ≥ 2κ ‖h‖22 ∀x, h ∈ Rn.

In contrast to Lemma 2.3, in statement b), the strong convexity now implies that the
function f does not only lie above any linear approximation of itself, but that it further
maintains a margin of at least the scaled squared distance from the approximation point.
Thus, intuitively speaking, strong convexity guarantees that f grows at least quadratically.
This concept and the difference between a convex and a strongly convex function are visu-
alised in Figure 2.1.

Statement c) of Lemma 2.5 corresponds to the strong monotonicity of the gradient
of f , and d) is referred to as strong positive definiteness of the Hessian of f , cf. [20,
pages 15 and 17]. The latter ensures that all of its eigenvalues are bounded away from 0;
in particular, the minimal eigenvalue is at least 2κ [8, Section 9.1.2].

An important property of strongly convex functions is that their level sets are convex
and compact.
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Figure 2.1: Visualisation of a convex and a strongly convex function. Left: The func-
tion ex is convex and all linear Taylor approximations lie below it, but their distance to ex

becomes arbitrarily small as the expansion point approaches −∞. Right: The function 2x2

is 2-strongly convex and at every point, the distance to its linear Taylor approximation,
shaded in red, is bounded below by twice the squared distance to that point.

Lemma 2.6. [cf. 20, Lemma 3.9 and page 19] Let f ∈ C1(Rn,R) be strongly convex, and
let x0 ∈ Rn. Then the level set {

x ∈ Rn | f(x) ≤ f(x0)
}

is compact—that is, closed and bounded—and convex.

From this property, it follows that strongly convex functions always have a unique
minimiser on a closed convex set:

Theorem 2.7. [cf. 21, Satz 2.13] Let f ∈ C1(Rn,R) be strongly convex, and let X 6= ∅ be
a closed convex set. Then the optimisation problem

inf
x∈X

f(x)

has a unique minimiser.

This will later be needed in the discussions on regularisation and the regularised IPM.

2.2 Nonlinear inequality-constrained convex programs

In the context of this thesis, general inequality-constrained convex optimisation problems
are considered where the objective and constraint functions are all convex and twice con-
tinuously differentiable. Therefore, let

• f ∈ C2(Rn,R) be convex, and
• g ∈ C2(Rn,Rm), where all g1, ..., gm are convex.

– 9 –



2 Preliminaries on convex optimisation and interior-point methods

Here, C2(Rn,Rm) denotes the space of twice continuously differentiable functions from Rn

to Rm.
Throughout the further discussions, the following sets related to the convex optimisation

problem (P), defined in the introduction, will be needed.

Definition 2.8. Let

• F := {x ∈ Rn | gi(x) ≤ 0, i = 1, ...,m} denote the set of feasible points,
• F+ := {x ∈ Rn | gi(x) < 0, i = 1, ...,m} denote the set of strictly feasible points,

and
• S := arg min

x∈F
f(x) denote the set of solutions

of the optimisation problem (P).

Remark 2.9. The set of feasible and strictly feasible points F and F+ as well as the solution
set S are all convex, cf. [21, Lemma 2.14, Satz 2.13] and [18, page 545]. Furthermore, F
as intersection over the closed level sets {x ∈ Rn | gi(x) ≤ 0} is closed. Thereby, also S is
closed as it consists of the intersection of F and the closed inverse image of f under the
infimum of (P).

The Lagrangian L : Rn × Rm → R of problem (P) is given by [37, page 320]

L(x, λ) := f(x) + λT g(x).

The further discussions in this thesis are mainly based on two basic assumptions: Firstly,
the so-called Slater Constraint Qualification condition [21, Definition 2.44] is required to
hold which enforces the strictly feasible set F+ to be non-empty. While this clearly does
not generally hold for any convex optimisation problem, it is essential for using feasible
interior-point methods, as the latter operate solely within F+. The second assumption
postulates the existence of a minimiser of problem (P), meaning that the infimum is actually
attained. As the optimisation aims at finding such a minimiser, this represents a reasonable
restriction in the context of this thesis.

Assumption 2.10.

a) The Slater Constraint Qualification (Slater CQ) condition holds, i.e. F+ 6= ∅. Thus,
there exists xSlat ∈ Rn with

gi(x
Slat) < 0 ∀ i = 1, ...,m.

b) The optimisation problem (P) has a global minimiser, i.e. S 6= ∅.

Remark. If the Slater condition holds, then the strictly feasible set F+ corresponds to the
interior of F , and F is precisely the closure of F+ [30, Lemma C.4.2].

Although these assumptions are the basis for most results in this thesis, at any time, it
will be clearly stated when and which parts are required for the theorem or lemma.

The Slater condition is not only a key requirement for feasible IPMs, but it is also
a constraint qualification which ensures that any minimiser of problem (P) satisfies the
first-order necessary optimality conditions.

– 10 –
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Theorem 2.11. [cf. 21, Satz 2.45] Let x∗ be a local minimiser of the convex minimisation
problem (P), and let the Slater CQ condition hold. Then there exists a multiplier λ∗ ∈ Rm

such that the following KKT conditions hold:

∇f(x∗) +
m∑
i=1

λ∗
i∇gi(x∗) = 0, (2.1)

λ∗
i gi(x

∗) = 0 for i = 1, ...,m, (2.2)
gi(x

∗) ≤ 0 for i = 1, ...,m, (2.3)
λ∗
i ≥ 0 for i = 1, ...,m. (2.4)

Any tuple (x∗, λ∗) ∈ Rn × Rm satisfying the conditions (2.1)–(2.4) is called KKT point
of (P).

An essential feature of convex optimisation is that above KKT conditions are not only
necessary, but also sufficient for a point x∗ ∈ Rn to be a minimiser of problem (P), and
furthermore, that any local minimiser is also a global minimiser.

Theorem 2.12. [cf. 21, Satz 2.46] Let (x∗, λ∗) ∈ Rn×Rm be a KKT point of (P). Then x∗

is a global minimiser of problem (P).

Consequently, every KKT point makes for a global minimiser, and any minimiser yields
a KKT point. This, however, does neither imply the existence nor the uniqueness of such a
minimiser.

In case there exists a minimiser, however, an interesting question for methods that
solve (P) is the nature of the point which is obtained with the method. As will be shown
later in Section 3.3, the Tikhonov-regularised IPM discussed in this thesis converges to the
minimiser with minimal Euclidean norm—which, in fact, is unique:

Lemma 2.13. Let S 6= ∅. Then problem (P) has a unique minimiser x∗M with minimal
Euclidean norm, i.e.

x∗M = arg min
x∗∈S

‖x∗‖2 . (2.5)

Proof. As the solution set S is convex and closed by Remark 2.9, there exists a unique
orthogonal projection of 0 onto S, see e.g. [21, Lemma 2.17]. By definition, x∗M is precisely
this projection, and the statement follows.

2.3 Interior-point methods

As the method discussed in this thesis is based on an interior-point method, an introduction
to these is given next.
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2.3.1 General concept
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− ln(−gi(x))

gi(x)

Figure 2.2: Visualisation of the
logarithmic barrier function for an
inequality constraint gi(x) ≤ 0.
The closer gi(x) is to 0, the
greater is the penalisation.

One way to tackle the general inequality-constrained
convex problem (P) is to transform it into an uncon-
strained problem by adding a term to the objective
function that intrinsically enforces the constraints. In
so-called barrier methods, a barrier term is employed
which ensures that the constraints remain fulfilled all
the time.

In this thesis, a barrier method with a logarithmic
barrier will be considered. For this, the general convex
inequality constraints g1(x), ..., gm(x) ≤ 0 are associ-
ated with the logarithmic barrier term b : F+ → R
with b(x) := −

∑m
i=1 ln(−gi(x)). Clearly, this term can

only be defined on the strictly feasible set F+ (or is
else set to infinity) since the logarithm function is only
defined for positive values.

In general, the barrier b penalises a point x, the
closer it is to some boundary gi(x) = 0, as is depicted
in Figure 2.2.

The barrier function ϕµ : F+ → R of problem (P) with barrier parameter µ > 0 is
defined as

ϕµ(x) := f(x) + µb(x)

= f(x)− µ

m∑
i=1

ln(−gi(x)).

The function ϕµ is convex for µ > 0, as f and all g1, ..., gm are convex and the func-
tion t 7→ − ln(−t) is monotonically increasing and convex on (−∞, 0) [48, Theorem 5 i)].
Now, the barrier problem

inf
x∈Rn

ϕµ(x) s.t. g(x) < 0 (Pµ)

arises as a modification to the original problem (P) whose solutions in some sense approx-
imate a solution to (P), as will be discussed later in Section 2.4. Since the logarithmic
barrier implicitly enforces the inequality constraint g(x) < 0, it may be omitted here.

2.3.2 Existence of barrier minimisers

In this context, it becomes clear why requiring both parts from Assumption 2.10 is reason-
able, namely that F+ as well as the solution set S both are non-empty. Since this means
that the domain of ϕµ is non-empty and problem (P) has a minimiser, one could expect
that also the barrier problem (Pµ) has a minimiser for any µ > 0. That this is not the case
in general, however, illustrates the following example.

Example 2.14. Let f : R→ R and g : R→ R with

f(x) :=

{
x4 for x ≥ 0

0 for x < 0
, g(x) := x− 2.
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Figure 2.3: Visualisation of the objective function f (blue) and barrier function ϕµ (red)
for the problem described in Example 2.14 with barrier parameter µ = 1. Although the
original problem (P) has a non-empty solution set S = (−∞, 0], the barrier function has
no minimiser for any µ > 0.

The function f is convex and twice continuously differentiable with

∇f(x) :=

{
4x3 for x ≥ 0

0 for x < 0
, ∇2f(x) :=

{
12x2 for x ≥ 0

0 for x < 0
,

and g as linear function is also convex and twice continuously differentiable.
As g(x) ≤ 0 means that x ≤ 2, the optimisation problem

inf
x∈R

f(x) s.t. g(x) ≤ 0

reaches its minimal value 0 at any x ≤ 0, so its solution set is S = (−∞, 0].
For any µ > 0, the corresponding barrier function is given on the strictly feasible

set F+ = (−∞, 2) by

ϕµ(x) = f(x)− µ ln(−g(x)) =

{
x4 − µ ln(2− x) for 0 ≤ x < 2

−µ ln(2− x) for x < 0
,

and it holds lim
x→−∞

ϕµ(x) = lim
x→−∞

−µ ln(2− x) = −∞.
Therefore, even though Assumption 2.10 holds, that is, the solution set of the underlying

problem (P) is non-empty and F+ 6= ∅, the barrier problem inf
x∈F+

ϕµ(x) is unbounded and

has no minimiser.
The objective and barrier function are visualised in Figure 2.3.

To overcome the issue of non-existing minimisers of the barrier problem, in theoretical
results found in the literature, it is typically assumed that the solution set S is not only
non-empty, but also bounded [18, 46, 48]. From this, it follows that also the solution set of
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problem (Pµ) is non-empty and bounded (see Theorem 2.15 a)). A common way to meet this
requirement in convex optimisation is to assume that at least one of the functions f, g1, ..., gm
is strongly convex [4]; if necessary, a fictive constraint could also be added for that purpose.
However, an advantage of the Tikhonov-regularised method proposed in this thesis is that
such a restriction is not necessary, as is later shown in Theorem 3.4.

2.3.3 Computation of barrier minimisers

To compute a minimiser of problem (Pµ), typically, the first-order optimality conditions are
used. For this, gradient and Hessian of ϕµ are given in x ∈ F+ by

∇ϕµ(x) = ∇f(x) + µ∇b(x)

= ∇f(x)− µ

m∑
i=1

1

gi(x)
∇gi(x)

and

∇2ϕµ(x) = ∇2f(x) + µ∇2b(x)

= ∇2f(x) + µ

m∑
i=1

(
1

gi(x)2
∇gi(x)∇gi(x)T −

1

gi(x)
∇2gi(x)

)
,

respectively.
The necessary optimality condition [37, Theorem 2.2] for a minimiser x̄µ of the uncon-

strained problem (Pµ) is then given by

∇ϕµ(x̄µ) = 0. (2.6)

By defining
(
λ̄µ

)
i
:= − µ

gi(x̄µ)
> 0, this corresponds to solving the system

∇f(x̄µ) +
m∑
i=1

(
λ̄µ

)
i
∇gi(x̄µ) = 0,

(
λ̄µ

)
i
= − µ

gi(x̄µ)
for i = 1, ...,m,

which, on the other hand, is equivalent to solving

∇f(x̄µ) +
m∑
i=1

(
λ̄µ

)
i
∇gi(x̄µ) = 0, (2.7)(

λ̄µ

)
i
gi(x̄µ) = −µ for i = 1, ...,m. (2.8)

The equations (2.7)–(2.8) are precisely the KKT conditions of (P) stated in Theorem 2.11,
where the complementarity conditions

(
λ̄µ

)
i
gi(x̄µ) = 0 are perturbed by −µ, and the, now

implicitly enforced, conditions (2.3) and (2.4) are omitted.
Therefore, computing a minimiser x̄µ of problem (Pµ) by solving (2.7)–(2.8) can be

interpreted as approximating a solution x∗ of the original problem (P) while relaxing the
complementarity condition [25, page 94].
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2.3.4 Generic interior-point method

A common strategy to solve problem (P) is to alternatingly approximate a solution x̄µj

to the corresponding barrier problem (Pµj
) and decrease the barrier parameter µj+1 < µj ,

starting with an initial barrier parameter µ1 > 0. Since this strategy implies starting with
a strictly feasible guess x0 ∈ F+ and approaching the solution of (P) “from the inside”,
these barrier methods are also referred to as interior-point methods [4, 8, 37].

This concept is illustrated in Figure 2.5 where the resultant barrier functions and their
minimisers are shown for a simple exemplary problem. Following [48, page 354], the basic
structure of a typical IPM is given as follows Algorithm 2.1.

Algorithm 2.1 Generic interior-point method
Given: Optimisation problem (P)
Choose: x0 ∈ F+, µ1 > 0

1: for j = 1, 2, 3, ... do
2: if xj−1 satisfies stopping criteria then let x∗ ← xj−1 and break
3: Compute xj as approximation to x̄µj

. Typically initialised with xj−1

4: Update 0 < µj+1 < µj

5: end for
Return: x∗

This general scheme raises a number of questions:

• It requires a feasible starting point x0 ∈ F+ which, depending on the nature of the
constraints, might be hard to find. To this extent, so-called Phase I methods can
be employed in which a strictly feasible point is computed, see e.g. [8, Section 11.4].
However, this topic will not be covered in this thesis.

• How should the barrier parameter µ be initialised, i.e. µ1 be chosen, and how should
it be updated during the iteration (line 4)?

• How is the approximation to x̄µj
(line 3) computed?

The computation in line 3 is usually referred to as inner step, and the method employed
for this is called inner method, inner solver or, when an iterative method is used, inner
iteration. Typical IPMs employ one or multiple Newton steps for that, often as so-called
primal-dual methods on the perturbed KKT system (2.7)–(2.8), starting at the latest outer
iterate xj−1 [8, Section 11.7].

Since this might become unsuitable for large-scale problems, however, in this thesis,
an l-BFGS method is used to solve the inner problems. This inner solver is described and
analysed in detail in Chapter 4.

2.4 Convergence of the barrier minimisers

If the barrier problems (Pµ), defined in the last section, are solved exactly in each iter-
ation (line 3 in Algorithm 2.1), then the barrier approach supports many results on the
convergence of their solutions x̄µ as well as on the so-called barrier trajectory as µ → 0.

– 15 –



2 Preliminaries on convex optimisation and interior-point methods

In this section, some basic theoretical results on that will be presented that are, with some
variations, often found in the literature.

A key requirement for typical interior-point methods is the actual existence of a min-
imiser x̄µ of each barrier problem (Pµ). As already mentioned in Section 2.3, this is typically
ensured by assuming that the solution set S of the original problem (P) is bounded [18, 46,
48]. For the Tikhonov-regularised approach later discussed in Chapter 3, this requirement
will not be necessary; but in the discussion on the convergence of general IPMs carried out
in this section, the boundedness of S must be assumed.

The following well-known theorem (see e.g. [46, 48]) shows the existence of barrier
minimisers x̄µ as well as their limit behaviour as µ→ 0, and thereby forms the theoretical
foundation for the functionality of general IPMs designed as in Algorithm 2.1.

Theorem 2.15. [cf. 48, Theorem 5] Let Assumption 2.10 hold and let S be bounded.
Let (µj)j∈N be a monotonically decreasing sequence of barrier parameters with µj → 0+.
Then it holds:

a) The set of minimisers of (Pµj
) is non-empty, convex and compact for any j ∈ N.

b) Any sequence {x̄µj
} of minimisers of (Pµj

) has at least one convergent subsequence.
c) For such a subsequence, lim

j→∞
ϕµj

(x̄µj
) = lim

j→∞
f(x̄µj

) = min
x∈F

f(x).

It should be noted that this theorem does not state that every sequence of unconstrained
minimisers necessarily converges, and in fact, this is not the case in general [48, page 365].
However, as µ → 0, the function values of f evaluated at any unconstrained minimiser x̄µ
converge to the minimal function value of problem (P).

2.4.1 Rate of convergence

In fact, this convergence in f can be characterised by a rate in O(µ), and the actual difference
is even bounded by mµ [48, page 366]. As parts of the convergence analysis in Chapter 3
are conducted similarly, a proof for the result is presented next.

To show this, a rather remarkable property of the barrier term’s gradient is needed
which will also be used for discussions later in this thesis. It ensures that, on the entire
feasible set, any directional derivative of b, that is, the inner product between ∇b(x) and
the vector pointing from x to anywhere else in the feasible set, is bounded above by the
number of constraints m.

In general, this property can be deduced from the concept of self-concordance, see
e.g. [30, Lemma 2.3.16], which are of special interest in the context of IPMs combined with
Newton’s method, but will not be further discussed in this thesis. For the logarithmic barrier
term, however, it is straightforward to prove the statement without self-concordance, as is
presented next.

Lemma 2.16. [cf. 30, Lemma 2.3.16] Let g1, ..., gm be convex functions. For the logarithmic
barrier term b(x) := −

∑m
i=1 ln(−gi(x)), it holds:

∇b(x)T (y − x) ≤ m ∀x ∈ F+ ∀ y ∈ F .
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Proof. Let x ∈ F+ and y ∈ F . The gradient of the logarithmic barrier term b in x is given
by

∇b(x) = −
m∑
i=1

1

gi(x)
∇gi(x).

For each i = 1, ...,m it holds by definition of F and the convexity of gi that

0
y∈F
≥ gi(y)

Lemma 2.3 b)
≥ gi(x) +∇gi(x)T (y − x).

Thus,
∇gi(x)T (y − x) ≤ −gi(x),

and since x ∈ F+ and thereby −gi(x) > 0 one obtains

− 1

gi(x)
∇gi(x)T (y − x) ≤ 1.

Taking the sum over i = 1, ...,m finally gives

∇b(x)T (y − x) =

(
−

m∑
i=1

1

gi(x)
∇gi(x)

)T

(y − x) ≤ m.
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− ln(−gi(x))

gi(x)

Figure 2.4: Visualisation of Lemma 2.16:
The directional derivative of the barrier term
at a strictly feasible point x towards a feasi-
ble point y is bounded by 1. Here, this cor-
responds to the product of the slope at x and
the distance y − x. When the slope is large,
then x is already close to the boundary, lim-
iting the maximally possible distance y − x.
Conversely, when the distance is large and x

thereby lies further in the interior, then the
slope of the barrier function is small.

At first glance, this property might
seem surprising, especially since b as well as
its gradient go to infinity when approaching
the boundary of a constraint. But note that
by Lemma 2.16, only the “non-normalised”
directional derivatives are bounded above.
The greater the increase in the barrier in
one direction is, the closer it must be to
a corresponding boundary in this direction.
This limits the maximal difference (y − x)

in that direction as y must still lie within
the feasible set F . Conversely, whenever a
greater distance between two points x and y

is given, then at point x, the barrier term is
either slowly or not at all increasing in the
corresponding direction y − x. This idea is
also illustrated in Figure 2.4

Utilising Lemma 2.16, the aforemen-
tioned upper bound on the deviation in the
objective function value f at a barrier min-
imiser x̄µ from its minimal value can now
be derived.
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Lemma 2.17. Let the solution set of (P) be non-empty, i.e. S 6= ∅. Let x∗ ∈ S and µ > 0.
For any minimiser x̄µ of the barrier problem (Pµ), it holds:

0 ≤ f(x̄µ)− f(x∗) ≤ mµ.

Proof. The first inequality follows directly from x∗ being a minimiser of the original prob-
lem (P) and x̄µ also being a feasible point. For the second inequality, first note that from
the optimality of x̄µ it follows that 0 = ∇ϕµ(x̄µ) (see (2.6)) and thus

∇f(x̄µ) = −µ∇b(x).

By the convexity of f and Lemma 2.16, it now holds:

f(x̄µ)− f(x∗)
Lemma 2.3 b)
≤ −∇f(x̄µ)T (x∗ − x̄µ) = µ∇b(x)T (x∗ − x̄µ)

Lemma 2.16
≤ mµ.

This result is remarkably strong, and it is well-known for interior-point methods [8, 48],
as it does not only give a bound on the deviation of f(x̄µ) from its constrained minimum,
but also restricts the worst rate at which the function values of f converge to its minimum
along the barrier minimisers to O(µ). In fact, the upper bound of Lemma 2.17 is sharp, as
the following example illustrates.

Example 2.18. Consider the linear problem

1 2 3

1

2

3

f(x)

ϕ1(x)

ϕ 1

4
(x)

x∗x̄ 1

4

x̄1

x

Figure 2.5: Illustration of
Example 2.18 for µ = 1 (or-
ange) and µ = 1

4 (purple)
with a = 1. The difference in
the objective f(x∗)− f(x̄µ) is
precisely given by µ.

inf
x∈R

f(x) s.t. x ≥ 0

with f(x) := ax for a > 0.
Clearly, its minimiser is x∗ = 0. The corresponding
barrier function

ϕµ(x) = ax− µ lnx

becomes minimal at x̄µ = µ
a . Thus,

f(x̄µ)− f(x∗) = f
(µ
a

)
− f(0) = µ,

so equality holds in the upper estimate of Lemma 2.17.
The objective and barrier function as well as the min-
imisers x∗ and x̄µ are shown in Figure 2.5 for a = 1

and µ ∈
{
1, 14
}

.

For rather “well-behaving” functions that satisfy further assumptions on the charac-
ter of the optimisation problem (P), even stronger results can be obtained: If the Linear
Independent constraint qualification [37, Definition 12.4] or the Mangasarian-Fromovitz con-
straint qualification [37, Definition 12.6] are satisfied, the Lagrangian L is strongly convex
with respect to x, and a KKT point (x∗, λ∗) is given, then x∗ is the unique minimiser of
problem (P), at least a subsequence of barrier minimisers (x̄µj

) converges to x∗, and si-
multaneously, the parameters

(
λ̄µj

)
i
:= −µj

gi(x̄µj
) converge to the Lagrange multiplier λ∗

i [18,
Theorem 3.12].
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If furthermore strict complementarity holds, that is, for every i = 1, ...,m it is ei-
ther λ∗

i > 0 or gi(x
∗) < 0, then the rate of convergence in the minimisers

∥∥x̄µj
− x∗

∥∥
2

is of
order O(µj). Moreover, then a unique, continuously differentiable function x̄(µ) of uncon-
strained minimisers of ϕµ, the so-called barrier trajectory, exists for sufficiently small µ > 0,
it converges to x∗ as µ → 0, and it approaches x∗ non-tangentially, cf. [18, Theorem 3.12,
Lemma 3.13, page 558]. On the contrary, if strict complementarity does not hold, then
the barrier trajectory might become tangential to the strongly active constraints, and a
convergence rate of

∥∥x̄µj
− x∗

∥∥
2
= O

(√
µj

)
might be obtained [18, page 561].

2.4.2 Convergence to the analytic centre

In case the above assumptions are not met and there is no unique minimiser, the question
arises whether and to which point the interior-point method ultimately converges. The
discussion in this section will therefore be ended with a result that characterises the limit
point of the barrier trajectory in case of a strongly convex Lagrangian and a strict comple-
mentarity condition.

The following theorem is a modification of [4, Theorem 5.3], and it shows that this
limit point is precisely the analytic centre of the solution set S. This is especially interest-
ing in the context of this thesis as, in contrast, the later considered Tikhonov-regularised
IPM converges to the minimiser with minimal Euclidean norm x∗M (see Section 3.3). An
illustration of these different convergence behaviours is later given in Example 3.7.

Theorem 2.19. Let Assumption 2.10 hold. Further assume that at least one of the
functions f, g1, ..., gm is strongly convex, and that for every i = 1, ...,m there is a KKT
point (x, λ) ∈ Rn × Rm of (P) such that either gi(x) < 0 or λi > 0 holds.

Then the tuple (x̄µ, λ̄µ) with x̄µ minimising (Pµ) and
(
λ̄µ

)
i
:= − µ

gi(x̄µ)
converges to the

unique analytic centre (x∗, λ∗) of the solution set S as µ→ 0+, that is, x∗ is either the only
solution of (P), or

x∗ = arg max
x∈S

gB(x)<0

∑
i∈B

ln(−gi(x)), (2.9)

where B := {i ∈ {1, ...,m} | ∃x ∈ S such that gi(x) < 0} ,

λ∗ analogously.

Proof. The proof mainly follows the idea of [4, pages 216–218].
First note that from Assumption 2.10 and the strong convexity assumption it follows

that S is bounded [4, Lemma 2.2], so Theorem 2.15 applies and all barrier minimisers x̄µ
exist. Furthermore, the assumptions imply that ϕµ is strictly convex and thereby x̄µ is
uniquely given for all µ > 0 [4, Lemma 2.4].

Now, if S contains only one element, then this element must be x∗ since x̄µ converges to
a solution of (P). Otherwise, f cannot be strongly convex, so at least one of the constraint
functions, say gi0 , is strongly convex and gi0(x̂) < 0 for some x̂ ∈ S. Thus, B 6= ∅, and
the objective of (2.9) is strongly concave and has a unique solution (for details, see [4,
Lemma 5.2]).

Next, let M denote the set of KKT points of (P), verify that

B = {i ∈ {1, ...,m} | ∃(x, λ) ∈M such that gi(x) < 0} ,
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and correspondingly define the set of indices for which a strict dual point exists as

N := {i ∈ {1, ...,m} | ∃(x, λ) ∈M such that λi > 0} .

Let (x̂, λ̂) ∈M be an arbitrary KKT point of (P). Since x̂ minimises L(·, λ̂), it follows:

f(x̄µ) + λ̂T g(x̄µ) = L(x̄µ, λ̂) ≥ L(x̂, λ̂)
(2.2)
= f(x̂).

Furthermore, the convexity of L in the variable x and the fact that∇xL(x̄µ, λ̄µ) = 0 by (2.6)
yield:

f(x̂) + λ̄T
µg(x̂) = L(x̂, λ̄µ)

Lemma 2.3 b)
≥ L(x̄µ, λ̄µ) +∇xL(x̄µ, λ̄µ)

T︸ ︷︷ ︸
=0

(x̂− x̄µ)

= f(x̄µ) + λ̄T
µg(x̄µ)︸ ︷︷ ︸
=−mµ

= f(x̄µ)−mµ.

By adding both equations, subtracting f(x̄µ)+f(x̂) on both sides, and using that λ̂i = 0

for i /∈ N and gi(x̂) = 0 for i /∈ B, one obtains

λ̂T
NgN (x̄µ) + (λ̄µ)

T
BgB(x̂) = λ̂T g(x̄µ) + λ̄T

µg(x̂) ≥ −mµ.

Using gi(x̄µ) = − µ(
λ̄µ

)
i

for i ∈ N ,
(
λ̄µ

)
i
= − µ

gi(x̄µ)
for i ∈ B and dividing by −µ yields

∑
i∈N

λ̂i(
λ̄µ

)
i

+
∑
i∈B

gi(x̂)

gi(x̄µ)
≤ m.

Now suppose that (x∗, λ∗) is a limit point of
(
(x̄µ, λ̄µ)

)
µ>0

for µ → 0+. Taking the
limit in above estimate gives ∑

i∈N

λ̂i

λ∗
i

+
∑
i∈B

gi(x̂)

gi(x∗)
≤ m,

which directly implies that gB(x∗) < 0 and λ∗
N > 0 (otherwise, above limit would go to infin-

ity). Furthermore, note that by the strict complementarity assumption, there are exactly m

terms being added on the left-hand side in above estimate. Hence, by the arithmetic-
geometric mean inequality it follows that(∏

i∈N

λ̂i

λ∗
i

)(∏
i∈B

gi(x̂)

gi(x∗)

)
≤ 1

m

(∑
i∈N

λ̂i

λ∗
i

+
∑
i∈B

gi(x̂)

gi(x∗)

)
≤ 1

and thus (∏
i∈N

λ̂i

)(∏
i∈B

gi(x̂)

)
≤

(∏
i∈N

λ∗
i

)(∏
i∈B

gi(x
∗)

)
.

By taking λ̂N = λ∗
N or gB(x̂) = gB(x

∗), one finally obtains:∏
i∈B

gi(x̂) ≤
∏
i∈B

gi(x
∗) and

∏
i∈N

λ̂i ≤
∏
i∈N

λ∗
i .

Therefore, x∗ is a solution of (2.9), and since (2.9) has a unique solution, the entire
sequence

(
x̄µ
)
µ>0

must converge to x∗. Analogously,
(
λ̄µ

)
µ>0

converges to the unique
analytic centre λ∗.
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3
A Tikhonov-regularised interior-point
method

In this chapter, the Tikhonov-regularised interior-point method is introduced and anal-
ysed in detail. While the focus lies on the outer structure of the method here, Chapter 4
afterwards covers how its inner problems are tackled.

At first, in Section 3.1, the general concept of Tikhonov regularisation is briefly de-
scribed, and properties of Tikhonov-regularised methods are presented, including espe-
cially their convergence to the minimal-norm solution. Next in Section 3.2, the actual
Tikhonov-regularised IPM is introduced, its general structure is presented in Algorithm 3.1,
and the existence of the unique minimisers of the corresponding regularised barrier prob-
lem is shown. Based on that, Section 3.3 covers the convergence analysis for these regu-
larised barrier minimisers. It is proven that they converge to the minimal-norm solution of
problem (P), and a convergence rate in the objective is established which is linear in the
regularisation parameter.

In Section 3.4, the consequences are discussed which emerge from solving the inner
problems only inexactly—a relevant aspect for using the method in practice. It is shown in
Theorem 3.9 how convergence also of those inexact solutions to the minimal-norm solution
can be ensured, followed by the derivation of a convergence rate in Theorem 3.11 which again
is linear in the regularisation parameter. Furthermore, suitable choices for the parameter
update as well as for inner and outer stopping criteria are discussed, and the detailed
structure of the proposed method is presented in Algorithm 3.2. Afterwards, it is proven in
Theorem 3.12 that the method reaches a given accuracy after finitely many outer iterations,
and that it supports an r-linear convergence rate in the objective.

The chapter concludes with a brief discussion on possible modifications to the Tikhonov-
regularised IPM in Section 3.5, including proximal-point regularisation and the integration
of linear equality constraints.

3.1 Tikhonov regularisation

In this section, an introduction to the concept of Tikhonov regularisation is given. It mainly
follows [21, Section 6.4.3], simplified for the continuously differentiable case considered in
this thesis.

Generally, to improve the conditioning and obtain strong convexity as well as a unique
minimiser, it is a common strategy to modify the optimisation problem (P), defined in the
introduction, with a Tikhonov regularisation. In this, the squared Euclidean norm of x
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is added to the objective function, scaled with a regularisation parameter ε > 0. The
Tikhonov-regularised function fε : Rn → R is thus defined by

fε(x) := f(x) +
ε

2
‖x‖22 ,

yielding the Tikhonov-regularised problem

inf
x∈Rn

fε(x) s.t. g(x) ≤ 0. (Pε)

Since f is assumed to be convex and ‖·‖22 is 1-strongly convex, the function fε is
ε
2 -strongly convex. By Theorem 2.7, any strongly convex function has exactly one minimiser
on a closed convex set; hence, for fixed ε > 0, the regularised problem (Pε) has a unique
solution which will from now on be denoted by x̄ε. By definition, x̄ε also lies in the feasible
set F as the constraints of (Pε) and (P) are the same, and analogously to Theorem 2.11,
optimality conditions for x̄ε can be established:

Theorem 3.1. Let the set of feasible points be non-empty, i.e. F 6= ∅. Then the
Tikhonov-regularised convex optimisation problem (Pε) has a unique solution x̄ε. If, in
addition, the Slater CQ condition F+ 6= ∅ holds, then there exists a multiplier λ̄ε ∈ Rm such
that the following KKT conditions hold:

∇fε(x̄ε) +
m∑
i=1

(
λ̄ε

)
i
∇gi(x̄ε) = 0, (3.1)(

λ̄ε

)
i
gi(x̄ε) = 0 for i = 1, ...,m, (3.2)
gi(x̄ε) ≤ 0 for i = 1, ...,m, (3.3)(
λ̄ε

)
i
≥ 0 for i = 1, ...,m. (3.4)

Proof. Existence and uniqueness of x̄ε follow directly from Theorem 2.7 since the set of fea-
sible points F is non-empty by assumption and closed and convex by Remark 2.9. Existence
of λ̄ε and the KKT conditions then follow from Theorem 2.11.

In Tikhonov-regularised methods, the idea is to decrease the regularisation parameter ε
step by step to 0. Then, the corresponding solutions x̄ε of the regularised problem (Pε)
remain bounded, approach the minimal function value of the unregularised problem (P)
in O(ε), and ultimately converge to its unique minimal-norm solution.

Lemma 3.2. [cf. 21, Lemma 6.46, Satz 6.48] Let the solution set of (P) be non-empty,
i.e. S 6= ∅, and let x∗M denote the minimal-norm solution. Furthermore, let ε > 0, and
let x̄ε denote the minimiser of the regularised problem (Pε). Then it holds:

a) The deviation of the objective function f at x̄ε from the solution of (P) is bounded
by

0 ≤ f(x̄ε)−min
x∈F

f(x) ≤ ε

2
‖x∗M‖

2
2 .

Thus, the minimisers x̄ε of the respective regularised problems (Pε) approach the
minimal function value of f as ε→ 0+, that is,

lim
ε→0

f(x̄ε) = min
x∈F

f(x).

The rate of this convergence lies in O(ε).
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b) All minimisers x̄ε are bounded by the minimal-norm solution of (P), i.e.

‖x̄ε‖2 ≤ ‖x
∗
M‖2 ,

and in particular, they converge to x∗M as ε→ 0+, that is,

lim
ε→0

x̄ε = x∗M .

Proof. Firstly, since S 6= ∅, Lemma 2.13 states that the minimal-norm solution x∗M exists.
Next note that the set of feasible points F is non-empty as the solution set S consists only of
feasible points, so by Theorem 3.1, also the unique minimiser x̄ε of (Pε) exists for any ε > 0.
Since both x∗ and x̄ε are feasible and solve problems (P) and (Pε), respectively, it holds:

f(x∗M ) ≤ f(x̄ε) ≤ fε(x̄ε) ≤ fε(x
∗
M ) = f(x∗M ) +

ε

2
‖x∗M‖

2
2 .

From this, the rest of statement a) follows.
A proof for part b) can for example be found in [21, Satz 6.48].

Remark. Instead of the regularisation with ‖x‖22, also the “shifted regularisation”∥∥x− x(0)
∥∥2
2

could be used for any x(0) ∈ Rn. Then, x∗M would be given as the unique
projection of x(0) onto S. This substitution is also compatible with all theoretical re-
sults presented in this chapter, with the only difference that ‖x‖2 needs to be replaced
by
∥∥x− x(0)

∥∥
2

in all occurrences except for when a difference of the kind ‖x− y‖2 is given.
An outlook on this idea is discussed in Section 3.5.

This lemma will later be used in Theorem 3.6 to show that also the Tikhonov-regularised
IPM described in the next section ultimately converges to the minimal-norm solution. A
similar result to part a) for interior-point methods was proven in Lemma 2.17 which yielded
an upper bound on the deviation in the function value by mµ. Both estimates will be
combined in Lemma 3.8 to an analogue bound for the minimisers of the Tikhonov-regularised
IPM.

3.2 The Tikhonov-regularised interior-point method

In this section, the central topic of this thesis is presented: The combination of a Tikhonov
regularisation and an interior-point approach for tackling the general
inequality-constrained convex optimisation problem (P) which was defined in the intro-
duction.

3.2.1 The regularised barrier problem

As in Chapter 2, let b : F+ → R with b(x) := −
∑m

i=1 ln(−gi(x)) denote the loga-
rithmic barrier term associated with the constraint functions g1, ..., gm. We define the
Tikhonov-regularised barrier function fε,µ : F+ → R with regularisation parameter ε > 0

and barrier parameter µ > 0 as

fε,µ(x) := fε(x) + µb(x)

= f(x) +
ε

2
‖x‖22 − µ

m∑
i=1

ln(−gi(x)). (3.5)
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Gradient and Hessian of fε,µ are given by

∇fε,µ(x) = ∇fε(x) + µ∇b(x)

= ∇f(x) + εx− µ

m∑
i=1

1

gi(x)
∇gi(x) (3.6)

and

∇2fε,µ(x) = ∇2fε(x) + µ∇2b(x)

= ∇2f(x) + εI + µ

m∑
i=1

(
1

gi(x)2
∇gi(x)∇gi(x)T −

1

gi(x)
∇2gi(x)

)
, (3.7)

respectively.
Since the functions f and b are convex, fε,µ is ε

2 -strongly convex and the corresponding
Tikhonov-regularised barrier problem

inf
x∈Rn

fε,µ(x) s.t. g(x) < 0 (Pε,µ)

has a unique global minimiser, from now on denoted by x̄ε,µ. This is proven next.

3.2.2 Existence of regularised barrier minimisers

In contrast to the solely Tikhonov-regularised case described before in Theorem 3.1, the
strong convexity and Theorem 2.7 cannot directly be used to show the existence of the
unique minimiser, as the domain F+ which underlies fε,µ is not closed in general. Instead,
the compactness of level sets of fε,µ will be needed. These follow from the well-known
property of barrier functions that their level sets are compact when their solution sets are
non-empty and bounded [48, Theorem 4].

Lemma 3.3. For any parameters ε, µ > 0 and any constant α ∈ R, the level set

{x ∈ F+ | fε,µ(x) ≤ α}

is compact, i.e. closed and bounded.

Proof. The function fε,µ corresponds to the barrier function of the Tikhonov-regularised
problem (Pε). By Theorem 3.1, the latter has a unique minimiser x̄ε, so in particular, it
has a non-empty and bounded solution set (only consisting of x̄ε). Thus, the requirements
for [48, Theorem 4] are met and thereby all level sets of fε,µ compact.

In general, this property is not too surprising, since at each boundary point x of the
strictly feasible set, it holds gi(x) = 0 for at least one i ∈ {1, ...,m}. Hence, the continuity
of all gi implies that b(xk) → ∞ and thus fε,µ(x

k) → ∞ for any sequence
(
xk
)
k∈N ⊆ F+

approaching the boundary. Therefore, the fact that fε,µ is continuous and strongly convex
on F+ yields that any level set of it must be closed.

This property can now be used to show the existence of the unique minimiser x̄ε,µ of
problem (Pε,µ).
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Theorem 3.4. Let the Slater CQ condition hold, i.e. F+ 6= ∅. Then the Tikhonov-
regularised barrier problem (Pε,µ) has a unique solution x̄ε,µ ∈ F+ and it holds

∇fε,µ(x̄ε,µ) = 0. (3.8)

Proof. By Lemma 3.3, the level set {x ∈ F+ | fε,µ(x) ≤ fε,µ(x
0)} is closed and convex for

any x0 ∈ F+, and the optimisation of (Pε,µ) can be limited to any such (non-empty) level
set. Existence and uniqueness of x̄ε,µ now follow with Theorem 2.7.

Finally, Equation (3.8) corresponds to the first-order necessary optimality condition [37,
Theorem 2.2] of problem (Pε,µ) and therefore must hold for x̄ε,µ.

Due to the convexity of fε,µ, this x̄ε,µ is also the only point x ∈ F+ for
which ∇fε,µ(x) = 0 holds [21, page 27], so a reasonable strategy for computing the min-
imiser x̄ε,µ is to find a solution to (3.8). This process will be further discussed in Chapter 4.

3.2.3 General structure of the method

In Section 2.3, it was described how, in order to find a solution to problem (P), in
interior-point methods, the barrier parameter µ is iteratively decreased, and in each it-
eration, an approximation to a barrier minimiser x̄µ is computed. This idea is now adopted
for the Tikhonov-regularised IPM of this thesis:

Starting with a strictly feasible point x0 ∈ F+ and initial regularisation and barrier
parameters ε1 > 0 and µ1 > 0, both parameters ε and µ are iteratively decreased, and
in each iteration, an approximation to the regularised barrier minimiser x̄ε,µ is computed.
These iterations will be referred to as outer iterations and denoted with iteration index j, in
contrast to the inner iterations which describe the process of approximating x̄ε,µ for fixed ε

and µ. The latter is further discussed in Chapter 4, with k used as inner iteration index.
The general structure of the Tikhonov-regularised IPM is presented in Algorithm 3.1.

A detailed description of the proposed method in which the results and discussions from
the next section are included, is given in Algorithm 3.2.

Algorithm 3.1 General scheme of the Tikhonov-regularised interior-point method
Given: Optimisation problem (P)
Choose: x0 ∈ F+, ε1, µ1 > 0

1: for j = 1, 2, 3, ... do
2: if xj−1 satisfies stopping criteria then let x∗ ← xj−1 and break
3: Compute xj as approximation to x̄εj ,µj

. Typically initialised with xj−1

4: Update 0 < εj+1 < εj ; 0 < µj+1 < µj

5: end for
Return: x∗

In the next section, the convergence of this algorithm to the minimal-norm solution x∗M
of problem (P) will be shown under the assumption that the minimiser x̄εj ,µj

is computed
exactly in each iteration. After that, Section 3.4 covers the convergence analysis for the case
where x̄εj ,µj

are only approximated by the iterates xj . Resulting from this, the question
will be addressed how to update the parameters εj and µj and what qualifies the iterates xj
to be a sufficiently accurate approximation to x̄εj ,µj

.
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3.3 Convergence of the regularised barrier minimisers

In the last section, the concept of the Tikhonov-regularised IPM was introduced, and its
general structure was described in Algorithm 3.1. It was proven that, under the Slater CQ,
each optimisation problem (Pε,µ) has a unique minimiser x̄ε,µ for any regularisation and
barrier parameter ε > 0 and µ > 0, respectively. In this section, it will be analysed how
these regularised barrier minimisers converge as both parameters approach 0. The main
results are presented in Theorem 3.6 and Lemma 3.8 and state that x̄ε,µ converges to the
minimal-norm solution x∗M of problem (P) when µ is reduced faster than ε, and that this
convergence supports a rate of O(ε) in the objective f .

To prove these results, the convergence of the regularised barrier minimisers x̄ε,µ will be
reduced to the convergence of the minimisers x̄ε of the corresponding solely
Tikhonov-regularised problem (Pε) which was described in Section 3.1. As was shown
in Theorem 3.1, the Slater CQ is sufficient for the existence of the unique minimiser x̄ε
for any regularisation parameter ε > 0, and by Lemma 3.2, x̄ε converges to x∗M in O(ε)

as ε→ 0.

3.3.1 Reduction to convergence of regularised minimisers

To obtain the convergence result of Theorem 3.6, the relation between the trajectories of
the regularised barrier minimisers x̄ε,µ and the regularised minimisers x̄ε must be analysed.
As the following lemma shows, for given parameters ε and µ, their difference is bounded
by
√

mµ
ε .

Lemma 3.5. Let ε, µ > 0, and let x̄ε, x̄ε,µ denote the minimisers of the problems (Pε)
and (Pε,µ). Then it holds:

‖x̄ε,µ − x̄ε‖22 ≤ m
µ

ε
. (3.9)

Proof. Subtracting the necessary optimality conditions (3.1) and (3.8) of the problems (Pε)
and (Pε,µ), and multiplying both sides with (x̄ε − x̄ε,µ) yields

0 = (∇fε(x̄ε)−∇fε(x̄ε,µ))T (x̄ε − x̄ε,µ)

+

m∑
i=1

(
λ̄ε

)
i
∇gi(x̄ε)T (x̄ε − x̄ε,µ)− µ∇b(x̄ε,µ)T (x̄ε − x̄ε,µ).

Due to fε being ε
2 -strongly convex, it holds by Lemma 2.5 c) that

(∇fε(x̄ε)−∇fε(x̄ε,µ))T (x̄ε − x̄ε,µ) ≥ ε ‖x̄ε − x̄ε,µ‖22 , so

ε ‖x̄ε − x̄ε,µ‖22 ≤
m∑
i=1

(
λ̄ε

)
i
∇gi(x̄ε)T (x̄ε,µ − x̄ε) + µ∇b(x̄ε,µ)T (x̄ε − x̄ε,µ).

Furthermore, since all gi are convex and therefore, by Lemma 2.3 b), it is
gi(x̄ε) +∇gi(x̄ε)T (x̄ε,µ − x̄ε) ≤ gi(x̄ε,µ), one obtains

ε ‖x̄ε − x̄ε,µ‖22 ≤
m∑
i=1

(
λ̄ε

)
i
(gi(x̄ε,µ)− gi(x̄ε)) + µ∇b(x̄ε,µ)T (x̄ε − x̄ε,µ).
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By optimality of x̄ε, it now holds for i = 1, ...,m that
(
λ̄ε

)
i
gi(x̄ε) = 0 and

(
λ̄ε

)
i
≥ 0

(see (3.2) and (3.4)), which, together with gi(x̄ε,µ) < 0, yields

ε ‖x̄ε − x̄ε,µ‖22 ≤ µ∇b(x̄ε,µ)T (x̄ε − x̄ε,µ)
Lemma 2.16
≤ mµ.

Hence, the bound (3.9) is proven.

Lemma 3.5 implies that the distance between the corresponding minimisers x̄ε and x̄ε,µ
lies in O(

√
µ
ε ), meaning that the greater the barrier parameter µ is relative to ε, the

more both points might deviate from each other. Conversely, the smaller the impact of µ,
the closer the minimisers lie together. This behaviour is also expected as the underlying
optimisation problems only differ in the additional barrier term µb(x).

3.3.2 Convergence to the minimal norm solution

Lemma 3.5 can now be utilised to analyse the convergence behaviour of the
Tikhonov-regularised IPM described in Algorithm 3.1. As was shown in Lemma 3.2 b),
the regularised minimisers x̄ε converge to the minimal-norm solution x∗M . Thus, when µ is
reduced “faster” than ε during the outer iterations, then (3.9) yields that the regularised
barrier minimisers x̄ε,µ will get closer and closer to the corresponding x̄ε and ultimately
converge to the same limit point: the minimal-norm solution x∗M .

Theorem 3.6. Let Assumption 2.10 hold, and for any ε, µ > 0, let x̄ε,µ denote the minimiser
of (Pε,µ). It holds:

a) The family of minimisers (x̄ε,µ) ε∈(0,ε1]
µ∈(0,µ1]

remains bounded for µ = O(ε) as ε → 0+,

and
b) lim

ε→0+
x̄ε,µ = x∗M for µ = o(ε) as ε→ 0+.

Proof. First recall that by Lemma 2.13 and Assumption 2.10, the minimal-norm solution x∗M
exists, and that by Lemma 3.5 it holds ‖x̄ε,µ − x̄ε‖22 ≤ mµ

ε for all ε, µ > 0. Thus:

a) Lemma 3.2 b) implies that ‖x̄ε‖2 ≤ ‖x∗M‖2, so

‖x̄ε,µ‖22 ≤ ‖x̄ε,µ − x̄ε‖22 + ‖x̄ε‖
2
2 ≤ m

µ

ε
+ ‖x∗M‖2 = O(1)

for µ = O(ε). Hence, the sequence of minimisers remains bounded.
b) If furthermore µ = o(ε), then

‖x̄ε,µ − x̄ε‖22 ≤ m
µ

ε
→ 0

as ε→ 0+, so since lim
ε→0+

x̄ε = x∗M by Lemma 3.2 b), also the minimisers x̄ε,µ converge
to x∗M .

Theorem 3.6 is a remarkably strong result: It ensures that if Assumption 2.10 holds,
then the solutions of the unconstrained Tikhonov-regularised barrier problems converge to
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a solution of (P) as long as µ = O(ε). Furthermore, this solution is characterised as the
minimal-norm solution x∗M .

This stands in contrast to typical results for IPMs as presented in Section 2.4 which
additionally require at least the boundedness of the solution set S to obtain a subsequence
that converges to a minimiser, and usually need even further assumptions on the problem
or the limit point in order to classify the solution, such as it is the case in Theorem 2.19.

But Theorem 3.6 also allows for another observation: Whereas IPMs as described in
Algorithm 2.1 typically converge to the analytic centre of the solution set S, the
Tikhonov-regularised IPM yields the minimal-norm solution when µ = o(ε), analogously
to the solely Tikhonov-regularised approach. Therefore, the regularisation enforces the op-
timisation of the solution set for a minimal Euclidean norm instead of the geometrically
weighted greatest distance to all constraints.

This difference in the trajectories and limit points of the minimisers of (Pµ), (Pε)
and (Pε,µ) is illustrated in Figure 3.2, depicting the following example:

Example 3.7. Consider the two-dimensional problem

inf
x∈R2

f(x) s.t. x2 ≥ 0,

where f : R2 → R is given by

f(x) :=

{(∥∥x− (2, 0)T
∥∥
2
− 1
)4 for

∥∥x− (2, 0)T
∥∥
2
≥ 1

0 otherwise
.

Intuitively, the function f is obtained when inserting a plateau at the interval [−1, 1] into
the one-dimensional function x41, then extending it into the second dimension by circularly
rotating it along the vertical axis, and finally shifting the result along the x1-axis to the
point (2, 0)T . Thus, f consists of a disc with radius 1, centred in (2, 0)T , from whose
boundary it increases smoothly like z4 in every direction.

It is straightforward to show that f is convex and twice continuously differentiable, and
its gradient is given by

∇f(x) :=

{
4(‖x−(2,0)T ‖

2
−1)3

‖x−(2,0)T ‖
2

(
x− (2, 0)T

)
for

∥∥x− (2, 0)T
∥∥
2
≥ 1

(0, 0)T otherwise
.

Thus, ∇f(x) = 0 ⇔
∥∥x− (2, 0)T

∥∥
2
≤ 1, so the minimisers of f disregarding the constraint

are precisely the points in the unit disc centred in (2, 0)T .
The constraint x2 ≥ 0 yields the feasible set F = {x ∈ R2 | x2 ≥ 0} and can be repre-

sented by g(x) ≤ 0 for example with the linear function g : R2 → R, g(x) := −x2. It follows
that the solutions of the optimisation problem are the points in the unit disc with x2 ≥ 0,
so the solution set is given by the half-disc S =

{
x ∈ R2

∣∣ ∥∥x− (2, 0)T
∥∥
2
≤ 1, x2 ≥ 0

}
.

The objective function f and its feasible set are plotted in Figure 3.1, along with
the minimal-norm solution x∗M = (1, 0)T and the analytic centre x∗an = (2, 1)T of the
solution set S. The latter is the point in S with the greatest distance to the constraint
boundary x2 = 0; for details, see Theorem 2.19.
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Figure 3.1: The objective function from Example 3.7 with the minimal-norm solution x∗M
and the analytic centre x∗an. The objective is drawn blue on the feasible set F (highlighted
green) and sketched transparently over the infeasible area (highlighted red). The solution
set is given by the half-disc S =

{
x ∈ R2

∣∣ ∥∥x− (2, 0)T
∥∥
2
≤ 1, x2 ≥ 0

}
. The minimal-norm

solution x∗M is the closest point in S to the origin, whereas x∗an maximises the distance to
the boundary.

By construction, the objective f is circular around (2, 0) and thus symmetrical in
every direction from there. Hence, when looking at the Tikhonov-regularised function
fε(x) = f(x) + ε

2 ‖x‖
2
2, it becomes clear that its minimiser x̄ε lies directly between the ori-

gin (0, 0) and the minimal-norm solution x∗M = (1, 0), as any deviation from that line on the
same level of f would increase the distance to the origin. For large values of ε, x̄ε lies close
to the origin, and as ε is reduced to 0, it approaches x∗M in accordance with Lemma 3.2 b).

Similarly, the barrier function ϕµ(x) = f(x) − µ ln(−g(x)) = f(x) − µ ln(x2) is min-
imised along the axis x1 = 2, since the barrier term purely strives for maximising the x2-
component. The greater the barrier parameter µ, the farther away from the centre is the
minimiser x̄µ, and when µ→ 0 like in interior-point methods, x̄µ converges to the analytic
centre x∗an.

Now, when both approaches are combined in the Tikhonov-regularised IPM, the min-
imiser x̄ε,µ of the corresponding function fε,µ(x) = f(x)+ ε

2 ‖x‖
2
2−µ ln(x2) lies somewhere

between those two scenarios, with its position depending on the value of ε and µ. When ε

and µ are simultaneously reduced as described in Algorithm 3.1, it can be observed how x̄ε,µ
approaches the solution set: When µ is reduced faster than ε, the regularisation term
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µ = O(ε1.5) µ = O(ε1.1) µ = O(ε1) µ = O(ε0.8)

Figure 3.2: Trajectories of x̄ε (blue), x̄µ (orange) and x̄ε,µ (green) for the problem of
Example 3.7 and different choices of the reduction speed of ε and µ. The feasible set
consists of the half-plane above the line x2 = 0, the infeasible area is highlighted in red,
and the solution set S is the blue-shaded half-disc. In all scenarios, x̄ε converges to the
minimal-norm solution x∗M , and x̄µ approaches the analytic centre x∗an. When µ = o(ε),
then x̄ε,µ converges to x∗M as stated in Theorem 3.6. However, when µ is reduced slower
than ε, then x̄ε,µ converges to x∗an. When both parameters are reduced at the same speed,
then x̄ε,µ approaches the boundary of S at a point between x∗an and x∗M .

becomes dominant and convergence to x∗M is obtained in accordance with Theorem 3.6.
Conversely, when ε is reduced faster than µ, then the barrier term dominates, and x̄ε,µ
approaches x∗an. When, however, both parameters are reduced at the same speed, the effect
of both terms decreases equally, and a point between x∗M and x∗an is approached.

The trajectories of the respective minimisers x̄ε, x̄µ and x̄ε,µ for all three scenarios are
shown in Figure 3.2.

3.3.3 Rate of convergence

After general convergence of the Tikhonov-regularised IPM for µ = o(ε) has been proven in
Theorem 3.6, the last part of this section is dedicated to the question how this convergence
can be quantified.

As presented in Section 2.4, interior-point methods do not only provide a convergence
in the function value of the objective f along the barrier trajectory in O(µ), but in par-
ticular, the deviation between f(x̄µ) and minx∈F f(x) is bounded by mµ for each barrier
parameter µ > 0 (see Lemma 2.17). For the solely Tikhonov-regularised problem (Pε), on
the other hand, Lemma 3.2 a) similarly bounds the deviation in the objective function value
by ε

2 ‖x
∗
M‖

2
2.

Now, it seems natural that an analogue result can also obtained for the
Tikhonov-regularised barrier problem (Pε,µ) in which both approaches are combined. And
in fact, the next lemma shows that such a bound is given by a term which almost matches
the sum of both aforementioned terms, except for a factor 2 on the norm of x∗M .

Lemma 3.8. Let Assumption 2.10 hold, and let x∗ ∈ S. For any parameters ε, µ > 0, the
minimiser x̄ε,µ of the regularised barrier problem (Pε,µ) satisfies:

0 ≤ f(x̄ε,µ)− f(x∗) ≤ mµ+ ε ‖x∗M‖
2
2 , (3.10)

which lies in O(ε) for µ = O(ε).
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Proof. The first inequality follows directly from x̄ε,µ being feasible and x∗ being a minimiser
of f on the feasible set. The second part will be proven by separating the Tikhonov regu-
larisation from the barrier approach. For this, the minimiser x̄ε of problem (Pε) is used (its
existence follows directly from F 6= ∅, see Theorem 3.1). The function value difference can
be split into

f(x̄ε,µ)− f(x∗) =
(
f(x̄ε,µ)− f(x̄ε)

)
+
(
f(x̄ε)− f(x∗)

)
.

In Lemma 3.2 a), it was derived that the second term is bounded by

f(x̄ε)− f(x∗) ≤ ε

2
‖x∗M‖

2
2 . (3.11)

For the first difference, on the other hand, the result from Lemma 2.17 cannot directly
be applied, as the function which underlies the barrier method is here given by fε and not
by f . But since x̄ε is the solution of problem (Pε), and x̄ε,µ is the solution of the to (Pε)
corresponding barrier problem (Pε,µ), Lemma 2.17 yields

fε(x̄ε,µ)− fε(x̄ε) ≤ mu. (3.12)

As an estimate on the difference in the function value f instead of fε is sought, (3.12)
can now be used by adding and subtracting the regularisation terms to the function values:

f(x̄ε,µ)− f(x̄ε) = fε(x̄ε,µ)− fε(x̄ε)−
ε

2

(
‖x̄ε,µ‖22 − ‖x̄ε‖

2
2

)
(3.12)
≤ mµ− ε

2

(
‖x̄ε,µ‖22 − ‖x̄ε‖

2
2

)
.

Dropping the non-positive summand, one finally obtains

f(x̄ε,µ)− f(x̄ε) ≤ mµ+
ε

2
‖x̄ε‖22

Lemma 3.2 b)
≤ mµ+

ε

2
‖x∗M‖

2
2 .

Together with (3.11), the upper bound of (3.10) follows.

Remark. The lemma states that, when solved exactly in every iteration, the Tikhonov-
regularised IPM converges to the minimal function value as long as both the regularisation
parameter εj and the barrier parameter µj are reduced to 0 as j →∞. When µj = O(εj), a
convergence rate of O(εj) is obtained in the objective f . The stronger restriction
of µj = o(εj) which underlies Theorem 3.6 b) is only required to obtain convergence of
the minimisers x̄εj ,µj

to the minimal-norm solution x∗M . However, this faster reduction does
not improve the convergence rate of O(εj) in Lemma 3.8.

Together, Theorem 3.6 and Lemma 3.8 build the foundation for the convergence analysis
of the Tikhonov-regularised IPM of Algorithm 3.1. However, they only apply when the
regularised barrier minimiser x̄ε,µ is computed exactly in every iteration. The next section
therefore discusses the case when the minimisers are only approximated in every iteration.

3.4 Convergence in case of inexact solutions

In the last section, it was analysed how the minimisers x̄ε,µ of the regularised barrier func-
tion fε,µ converge to the minimal-norm solution x∗M of the underlying problem (P) when
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the barrier parameter µ is reduced faster than the regularisation parameter ε. Furthermore,
it was shown that the rate of convergence in the objective function then lies in O(ε).

In practice, however, it is usually not possible or reasonable to compute the regularised
barrier minimisers x̄ε,µ exactly, especially since the result might only be used as starting
point for the next iteration. Hence, the question arises whether the Tikhonov-regularised
IPM of Algorithm 3.1 also converges if the inner problems (cf. line 3) are only solved approx-
imately, that is, that in each iteration with fixed parameters ε and µ, only an approximation
to x̄ε,µ is computed.

3.4.1 Convergence to the minimal norm solution

As is proven next in Theorem 3.9, convergence is in fact obtained as long as the accuracy
of the approximations xj to the respective x̄εj ,µj

increases sufficiently much with every
iteration. Specifically, the gradient norm of fεj ,µj

evaluated at the iterate xj is required
to decrease faster than εj , that is,

∥∥∇fεj ,µj
(xj)

∥∥
2
= o(εj). This is a useful requirement

since computing the minimiser x̄εj ,µj
is equivalent to solving the equation ∇fεj ,µj

(x) = 0

(cf. Theorem 3.4), so an inner solver would typically decrease the gradient’s norm; more on
that in Chapter 4.

The idea behind proving the convergence of the iterates xj is to reduce it to the con-
vergence of the respective exact minimisers x̄εj ,µj

. To do so, it is necessary that the iterates
converge to the respective x̄εj ,µj

as j → ∞. For this, the ε
2 -strong convexity of fε,µ comes

into play: As is shown in the proof of Theorem 3.9, it provides that the distance between xj

and x̄εj ,µj
can be limited to

∥∥xj − x̄εj ,µj

∥∥
2
≤ 1

εj

∥∥∇fεj ,µj
(xj)

∥∥
2
.

Therefore, when the gradient norm is reduced faster than εj , the right-hand side goes
to 0, so the convergence of x̄εj ,µj

to x∗M , which was proven in Theorem 3.6 for µj = o(εj),
ultimately yields that also the iterates xj converge to x∗M .

Theorem 3.9. Let Assumption 2.10 hold. Consider the Tikhonov-regularised interior-point
method of Algorithm 3.1 with parameter sequences (εj)j∈N and (µj)j∈N where εj → 0+

and µj → 0+ as j → ∞. If µj = o(εj) and the gradient norm in the iterates xj produced
by the algorithm satisfy

∥∥∇fεj ,µj
(xj)

∥∥
2
= o(εj) for j → ∞, then the iterates xj converge

to x∗M .

Proof. First observe that Assumption 2.10 ensures the existence of the minimal-norm so-
lution x∗M as well as of the regularised barrier minimisers x̄εj ,µj

for any εj , µj > 0 (see
Lemma 2.13 and Theorem 3.4).

Next, a bound on the distance between any point x ∈ F+ and x̄εj ,µj
will be derived:

Using the εj
2 -strong convexity of fεj ,µj

, the fact that ∇fεj ,µj
(x̄εj ,µj

) = 0 (due to the op-
timality of x̄εj ,µj

, see Theorem 3.4), and the Cauchy-Schwarz inequality [37, page 600], it

– 32 –



3 A Tikhonov-regularised interior-point method

follows that∥∥x− x̄εj ,µj

∥∥2
2

Lemma 2.5 c)
≤ 1

εj

(
∇fεj ,µj

(x)−∇fεj ,µj
(x̄εj ,µj

)︸ ︷︷ ︸
=0

)T
(x− x̄εj ,µj

)

≤ 1

εj

∥∥∇fεj ,µj
(x)
∥∥
2

∥∥x− x̄εj ,µj

∥∥
2
,

and thus ∥∥x− x̄εj ,µj

∥∥
2
≤ 1

εj

∥∥∇fεj ,µj
(x)
∥∥
2
. (3.13)

Hence,
∥∥xj − x̄εj ,µj

∥∥
2
≤ 1

εj

∥∥∇fεj ,µj
(xj)

∥∥
2
, so when

∥∥∇fεj ,µj
(xj)

∥∥
2
= o(εj) as j →∞, the

difference goes to 0.
Finally, with µj = o(εj), Theorem 3.6 b) provides that lim

j→∞
x̄εj ,µj

= x∗M , and the

convergence of the iterates xj to x∗M follows.

Hence, instead of solving the optimisation problem (Pεj ,µj
) exactly in every iteration,

it suffices that the iterates xj only lie within a certain neighbourhood of their respective
regularised barrier minimiser x̄εj ,µj

. This neighbourhood can be characterised by the gradi-
ent norm

∥∥∇fεj ,µj
(·)
∥∥
2

lying below a certain threshold, and this threshold must be reduced
faster than the regularisation parameter εj during the iteration. An illustration of this
concept is given in Figure 3.3.

x0

x̄ε1,µ1

x̄ε2,µ2

x̄ε3,µ3

x̄ε4,µ4

x̄ε5,µ5

{x ∈ F+ | ∇fεj ,µj (x) ≤ Cε2j}

x1

x2

x3

x4

x5

x∗
M

Figure 3.3: Illustration of the iteration progress in the Tikhonov-regularised IPM. For each
iteration j, the regularised barrier minimiser x̄εj ,µj

(blue) is depicted with its corresponding
neighbourhood (teal) at which the norm of the gradient of fεj ,µj

lies below a certain thresh-
old. This threshold is defined by Cε2j for some C > 0, hence, the size of the neighbourhood
shrinks with progressing iteration. In each step, an approximation xj to x̄εj ,µj

is computed
such that it lies in the corresponding neighbourhood, resulting in a progression as depicted
in orange. Ultimately, both x̄εj ,µj

and xj converge to the minimal-norm solution x∗M , as
stated in Theorem 3.9.

For this convergence result, it is essential that both the barrier parameter µ as well as
the allowed approximation error are ultimately dominated by the regularisation parameter ε,
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making the latter the central parameter in the method. The reason for this necessity on
the one hand lies in the goal to obtain convergence to x∗M , and on the other hand is given
by the fact that the regularisation ensures strong convexity, and that this strong convexity
is central for the neighbourhood around x̄ε,µ to suffice for the convergence. Therefore, the
regularisation parameter must not decrease too fast.

3.4.2 Rate of convergence

Theorem 3.9 guarantees general convergence of the iterates xj , but it neither gives a state-
ment on the accuracy of the iterates or the rate of the convergence, nor does it yield a
suggestion for how fast the barrier parameter and residual gradient norm should be reduced
with respect to ε, other than that it has to be faster than ε. And lastly, the question remains
how well an iterate xj approximates x∗M .

In the last sections, estimates on the convergence rate in the objective f and on the
actual deviation from the minimum were developed for the different components of the
regularised barrier method of Algorithm 3.1:

• Lemma 2.17 bounds the difference for barrier methods by f(x̄µ)− f(x∗) ≤ mµ,
• Lemma 3.2 a) yields an estimate for Tikhonov-regularised methods of

f(x̄ε)− f(x∗) ≤ ε
2 ‖x

∗
M‖

2
2, and

• in Lemma 3.8 it was proven that the regularised barrier method, when solved exactly
in every iteration, satisfies f(x̄ε,µ)− f(x∗) ≤ mµ+ ε ‖x∗M‖

2
2.

Based on that, an estimate on the deviation in the objective function for the inexactly
computed iterates xj of the regularised barrier method of Algorithm 3.1 is derived next.
The estimate then yields a convergence rate of O(εj) as well as a possible stopping criterion,
both presented in Theorem 3.11.

Since the iterates xj are approximations to x̄εj ,µj
, and their approximation accuracy in

terms of
∥∥∇fεj ,µj

(xj)
∥∥
2

can be controlled in the algorithm, the already given knowledge on
the deviation of x̄εj ,µj

is used for the estimate. This yields the following upper bound:

Lemma 3.10. Let Assumption 2.10 hold, and let x∗ ∈ S. For any ε, µ > 0 and any x ∈ F+,
it holds:

0 ≤ f(x)− f(x∗) ≤ 1

ε
‖∇f(x)‖2 ‖∇fε,µ(x)‖2 +mµ+ ε ‖x∗M‖

2
2 .

Proof. The first inequality follows directly from x being feasible and x∗ being a minimiser
of f on the feasible set. The upper bound will be proven by reducing it to the already
known result on the function value deviation in the minimiser x̄ε,µ of the corresponding
problem (Pε,µ). Its existence follows directly from F+ 6= ∅, see Theorem 3.4.

The difference can be split into

f(x)− f(x∗) =
(
f(x)− f(x̄ε,µ)

)
+
(
f(x̄ε,µ)− f(x∗)

)
.

For the second part, it was already shown in Lemma 3.8 that

f(x̄ε,µ)− f(x∗) ≤ mµ+ ε ‖x∗M‖
2
2 .
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For the first difference, on the other hand, convexity of f , the Cauchy-Schwarz inequality [37,
page 600], and the estimate (3.13) from the proof of Theorem 3.9 yield

f(x)− f(x̄ε,µ)
Lemma 2.3 b)
≤ ∇f(x)T (x− x̄ε,µ)

≤ ‖∇f(x)‖2 ‖x− x̄ε,µ‖2
(3.13)
≤ 1

ε
‖∇f(x)‖2 ‖∇fε,µ(x)‖2 .

Taking both estimates together, one finally obtains

f(x)− f(x∗) =
(
f(x)− f(x̄ε,µ)

)
+
(
f(x̄ε,µ)− f(x∗)

)
≤ 1

ε
‖∇f(x)‖2 ‖∇fε,µ(x)‖2 +mµ+ ε ‖x∗M‖

2
2 .

This estimate now allows for three things: Firstly, it can be used to prove that for
convergence of the Tikhonov-regularised IPM to the minimal function value, it suffices that
the barrier parameter µj lies in O(εj) and it holds

∥∥∇fεj ,µj
(xj)

∥∥
2
= o(εj); the stronger

assumption µj = o(εj) as in Theorem 3.9 is not required for that. Secondly, if the accuracy
of the approximations xj is increased more rapidly at a rate of

∥∥∇fεj ,µj
(xj)

∥∥
2
= O(ε2j ),

then the convergence of the method in the objective f is characterised by a rate in O(εj).
And finally, the estimate in Lemma 3.10 gives an answer to the question how well the

current iterate xj at least approximates a minimiser of the original problem (P). Except
for the typically unknown term ‖x∗M‖

2
2, the bound can easily be computed, and since the

iterates xj converge to x∗M (see Theorem 3.9), the latter may be bounded by twice the size
of xj for sufficiently large j. This yields an estimate for the accuracy of xj which makes for
a potential stopping criterion in the overall algorithm.

These results are summarised in the next theorem.

Theorem 3.11. Let Assumption 2.10 hold, and let x∗ ∈ S. Consider the Tikhonov-
regularised interior-point method of Algorithm 3.1 with parameter sequences (εj)j∈N
and (µj)j∈N where εj → 0+ and µj → 0+ as j →∞.

a) If µj = O(εj) and
∥∥∇fεj ,µj

(xj)
∥∥
2
= o(εj) for j →∞, then

lim
j→∞

f(xj) = f(x∗),

so the method converges to the optimal value of problem (P).
b) If µj = O(εj) and furthermore

∥∥∇fεj ,µj
(xj)

∥∥
2
= O(ε2j ) for j →∞, then

f(xj)− f(x∗) = O(εj),

so the rate of convergence in the objective f lies in O(εj).
c) If µj = o(εj) and

∥∥∇fεj ,µj
(xj)

∥∥
2
= o(εj) for j → ∞, then it holds for sufficiently

large j that

f(xj)− f(x∗) ≤ 1

εj

∥∥∇f(xj)∥∥
2

∥∥∇fεj ,µj
(xj)

∥∥
2
+mµj + 2εj

∥∥xj∥∥2
2
. (3.14)
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Proof.

a) First note that by Theorem 3.6 a), the assumption µj = O(εj) implies that the se-
quence

(
x̄εj ,µj

)
j∈N remains bounded. Hence, with

∥∥∇fεj ,µj
(xj)

∥∥
2
= o(εj) and (3.13),

the iterates xj also remain bounded and thus all lie in some compact set. Since f is
continuously differentiable, its gradient is bounded on any compact set [29, page 31]
and therefore, the term

∥∥∇f(xj)∥∥
2

is bounded for all j by some constant. It follows
that all summands in the upper bound of the estimate

0 ≤ f(xj)− f(x∗) ≤ 1

εj

∥∥∇f(xj)∥∥
2

∥∥∇fεj ,µj
(xj)

∥∥
2
+mµj + εj ‖x∗M‖

2
2

of Lemma 3.10 approach 0 as j →∞, so f(xj) converges to f(x∗).
b) This also proves the second statement, as the assumption

∥∥∇fεj ,µj
(xj)

∥∥
2
= O(ε2j )

now additionally yields that in above upper bound, all three summands are charac-
terised by a convergence rate of O(εj).

c) Finally, with µj = o(εj) and
∥∥∇fεj ,µj

(xj)
∥∥
2
= o(εj) for j →∞, the requirements of

Theorem 3.9 are satisfied. Thus, the iterates xj converge to x∗M , so for sufficiently
large j it holds ‖x∗M‖

2
2 ≤ 2

∥∥xj∥∥2
2
. The estimate (3.14) then follows directly from

Lemma 3.10.

Remark.

• Under the assumptions of parts a) and b), convergence is only obtained in the function
value; the iterates do not necessarily converge. The requirements for Theorem 3.9
include that µj must be reduced strictly faster than εj , so only in part c), convergence
of the iterates to x∗M is guaranteed.

• In the estimate (3.14), all terms are already known or can easily be computed in every
iteration. Therefore, it can be used as stopping criterion for Algorithm 3.1. However,
one should keep in mind that the estimate might not hold for the first (unknown
many) iterations.

3.4.3 Specification of the outer method

Based on these observations, a reasonable rule for the approximation accuracy and following
parameter update in each iteration of Algorithm 3.1 is given by

∥∥∇fεj ,µj
(xj)

∥∥
2

!
≤ Cε2j , εj+1 ← βεj , µj+1 ← βγµj (3.15)

for some update parameters β ∈ (0, 1), γ > 1 and constant C > 0.
With these choices, it holds

∥∥∇fεj ,µj
(xj)

∥∥
2
= O(ε2j ) and µj = o(εj), so all requirements

of Theorems 3.9 and 3.11 are satisfied and convergence of the iterates to x∗M as well as a
linear convergence rate in the objective is obtained for Algorithm 3.1. Furthermore, the
update choices for εj and µj imply that µj = βj(γ−1) µ0

ε0
εj < µ0

ε0
εj , so (3.14), holding for
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sufficiently large j ∈ N, is available as possible stopping criterion and takes the form

f(xj)− f(x∗) ≤ εj

(
C
∥∥∇f(xj)∥∥

2
+ 2

∥∥xj∥∥2
2

)
+mµj (3.16)

= εj

(
C
∥∥∇f(xj)∥∥

2
+ 2

∥∥xj∥∥2
2
+ βj(γ−1)m

µ0

ε0

)
< βj

(
Cε0

∥∥∇f(xj)∥∥
2
+ 2ε0

∥∥xj∥∥2
2
+mµ0

)
. (3.17)

The last inequality thereby highlights the linear convergence rate in the objective f with
respect to the outer iterations.

As conclusion to this chapter, the entire procedure of the Tikhonov-regularised IPM
with the above choices for the update and stopping criteria is presented in Algorithm 3.2.
It describes the outer structure of the method proposed in this thesis in detail.

Algorithm 3.2 Outer loop of the Tikhonov-regularised interior-point method
Given: Optimisation problem (P), tolerance τ > 0

Choose: Starting point x0 ∈ F+, initial parameters ε1, µ1 > 0, update parameters
β ∈ (0, 1), γ > 1, constant C > 0

1: for j = 1, 2, 3, ... do
2: Compute xj satisfying

∥∥∇fεj ,µj

(
xj
)∥∥

2
≤ Cε2j using the inner solver described in

Algorithm 4.2, starting at xj−1

3: if εj
(
C
∥∥∇f(xj)∥∥

2
+ 2

∥∥xj∥∥2
2

)
+mµj ≤ τ then let x∗ ← xj−1 and break

4: Update εj+1 ← βεj ; µj+1 ← βγµj

5: end for
Return: x∗

With the results derived in this section, it follows directly that the algorithm is well-
defined and terminates at an approximation to a solution of (P) after finitely many outer
iterations. Furthermore, the iterates xj converge to the minimal norm solution x∗M , and
this convergence is r-linear in the objective f with respect to the number of outer iterations
and quantified by the convergence rate β.

Theorem 3.12. Let Assumption 2.10 hold. Then the Tikhonov-regularised interior-point
method of Algorithm 3.2 is well-defined and terminates after finitely many outer iterations
with an approximation x∗ ∈ F+ to a solution of (P). If the tolerance τ is chosen sufficiently
small, then x∗ satisfies

f(x∗)−min
x∈F

f(x) ≤ τ.

Furthermore, if the algorithm is applied with τ = 0, then it either terminates after
finitely many outer iterations with the minimal-norm solution x∗ = x∗M , or the outer
iterates xj converge to x∗M with an r-linear convergence rate β ∈ (0, 1) in the objective f .

Proof. Assumption 2.10 ensures that a feasible starting point x0 ∈ F+ exists. With The-
orem 3.4, the regularised barrier minimiser x̄εj ,µj

further exists for all parameters εj , µj > 0.
Thus, for each j ∈ N, there exists also an outer iterate xj ∈ F+ which satisfies∥∥∇fεj ,µj

(
xj
)∥∥

2
≤ Cε2j . Hence, Algorithm 3.2 is well-defined.
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The required “inner approximation accuracy” (line 2) and the parameter update (line 4)
of Algorithm 3.2 satisfy

∥∥∇fεj ,µj
(xj)

∥∥
2
= O(ε2j ) and µj = o(εj). Therefore, Theorem 3.9

implies that limj→∞ xj = x∗M , so in particular, the outer iterates
(
xj
)
j∈N0

and thereby also
the gradient of f evaluated at those iterates are bounded.

With εj → 0+ and µj → 0+ as j →∞, it follows that the left-hand side in the stopping
criterion in line 3 will at some point fall below the fixed tolerance τ , so Algorithm 3.2
terminates after finitely many iterations for any τ > 0. For the resulting point x∗, (3.16)
then implies that f(xj) − minx∈F f(x) ≤ τ for sufficiently large j ∈ N. As the left-hand
side in the stopping criterion is at least mµj , this iteration number j is guaranteed to be
reached in Algorithm 3.2 when the tolerance τ is sufficiently small.

In case that τ = 0, on the other hand, the r-linear convergence rate in the objective
follows directly from (3.17) and the boundedness of xj and

∥∥∇f(xj)∥∥
2
.

Algorithm 3.2 only covers the outer iteration loop of the overall method. For the actual
computation of the corresponding outer iterates xj in line 2, a structured l-BFGS method
is employed. This inner solver will be introduced, described and analysed in detail in
Chapter 4.

3.5 Modifications

In the following, possible modifications to the Tikhonov-regularised IPM of Algorithm 3.2
are discussed, regarding different regularisation strategies and the integration of linear equal-
ity constraints.

3.5.1 Shifted regularisation

The Tikhonov regularisation ensures that the iterates produced by Algorithm 3.2 converge
to the minimal-norm solution of x∗M , meaning that the solution set S is optimised for the
minimal distance to the origin. If, on the other hand, a priori information on the problem
are given which suggest that one desires the solution to be as close as possible to some
other point x(0) ∈ Rn, or which indicate that an improved convergence behaviour could be
obtained when approaching the solution set from a direction closer to x(0) instead of the
origin, then the regularisation term can be changed as follows.

Instead of including ε
2 ‖x‖

2
2 in the function fε,µ, the “shifted regularisation”

term ε
2

∥∥x− x(0)
∥∥2
2

can be used. With this modification, the limit point x∗M is then given
as the unique projection of x(0) onto S. The modification is also compatible with all theo-
retical results presented in Chapter 3, with the only difference that, wherever the norm of a
point x ∈ Rn occurs, it needs to be replaced by

∥∥x− x(0)
∥∥
2
. This adjustment in the norm

does not apply to those norms in which a difference of the kind ‖x− y‖2 is considered, or
in which the norm of a gradient or matrix is computed.

3.5.2 Proximal-point regularisation

A more substantial modification is given by the replacement of the Tikhonov regularisa-
tion with a proximal-point regularisation. In this, the centre of the regularisation changes
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with every outer iteration j to the respective latest outer iterate xj−1, meaning that the
term εj

2 ‖x‖
2
2 is replaced in the function fεj ,µj

by the proximal term εj
2

∥∥x− xj−1
∥∥2
2
, cf. [21,

Section 6.4.2].
A proximal-point regularisation changes the behaviour of IPMs less severely than the

Tikhonov regularisation, as it does not extrinsically impose a preference towards the origin,
but rather damps the step undertaken in each outer iteration. Due to that, it is also not
compatible with most of the convergence analysis for the outer iterates which was conducted
in this section. Although the regularised barrier function fεj ,µj

remains strongly convex and
still has a unique minimiser in every iteration, the limit point of the outer iterates can neither
be classified nor can even its existence be proven in the same way as in Section 3.3.

Convergence of proximal IPMs under certain conditions was first proven in [27], includ-
ing an r-linear convergence rate in the objective. Since then, they are commonly used in
different variants and applications, see e.g. [12, 13, 41]. A possible benefit of proximal-point
methods is that they do not require the regularisation parameter εj to approach 0 in order
to converge to a minimiser of (P), but instead allow for the parameter to be kept above a
sufficiently small positive value, cf. [21, page 357]. Thus, they can maintain a certain strong
convexity throughout the entire method.

Even though the convergence results of Chapter 3 do not apply for proximal-point
methods, the latter can still be integrated in Algorithm 3.2, and as long as the solution
set S is bounded or convergence of the outer iterates guaranteed otherwise, the left-hand
side in the outer stopping criterion (line 3 of Algorithm 3.2) approaches 0 as j → ∞.
However, it can not be guaranteed that it satisfies the estimate (3.16).

3.5.3 Linear equality constraints

Often, interior-point methods not only support the solution of inequality-constrained prob-
lems, but can also deal with linear equality constraints [8, Chapter 11]. If such a convex
optimisation problem

inf
x∈Rn

f(x) s.t. Ax = b, g(x) ≤ 0 (PA,b)

is given where A ∈ Rp×n with rankA = p < n and b ∈ Rp, then the barrier approach can
be used to deal with the inequality constraints, while the equality constraints are explicitly
enforced.

For the regularised barrier problem (Pε,µ), defined in Section 3.2, this leads to the
constrained modification

inf
x∈Rn

fε,µ(x) s.t. Ax = b, g(x) < 0.

With the correspondingly modified sets F ,F+ and S, and the adapted KKT conditions
(see e.g. [8, equations (11.2) and (11.4)]), one can conduct the convergence theory for the
minimisers x̄ε,µ of the modified Tikhonov-regularised IPM similarly to Section 3.3, and
analogously obtains convergence to the minimal-norm solution.

However, in order to adopt the convergence analysis for the inexactly solved outer iter-
ates xj , the equality constraints Axj = b must be exactly satisfied in every outer iteration.
For this, the convex problem (PA,b) can be reduced to a purely inequality constraint one by
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limiting the optimisation to an affine subspace instead of operating on the entire Rn; specif-
ically, to the space {Fz + x0 | z ∈ Rn−p} where x0 ∈ Rn is a particular solution of Ax = b,
and F ∈ Rn×(n−p) is a matrix whose range is the nullspace of A, cf. [8, Section 4.2.4]. For
the thereby obtained reduced problem

inf
z∈Rn−p

f(Fz + x0) s.t. g(Fz + x0) ≤ 0,

the Tikhonov-regularised IPM discussed in this thesis can be employed equivalently to (P).
This concept was followed in [4], for example, but as stated in [8, page 143], in many cases,
it is better to retain the equality constraints than to reduce the problem in this manner.

In contrast to the reduction, typical Newton based IPMs include the equality constraints
directly into the primal or primal-dual linear system of equations [8, 24, 37]. As soon as a
full Newton step is accepted once in the process, the equality constraints are and remain
satisfied, and in practice, it is common that this is the case before the optimality criteria are
met [24, page 593]. However, this would imply to solve linear systems of equations, which
is avoided in the method discussed in this thesis.

3.5.4 Augmented Lagrangian approach

An alternative approach is the so-called method of multipliers or Augmented Lagrangian
method [37, Section 17.3]. It consists of two parts: As in penalty methods [37, Section 17.1],
the term ρj

2 ‖Ax− b‖22 is added to the objective with an increasing penalty parameter ρj > 0,
yielding that the constraint will be satisfied asymptotically. Furthermore, in every step j,
a multiplier λj ∈ Rp is computed and included in the optimisation which estimates the
Lagrange multiplier which corresponds to the equality constraints [37, Section 17.3].

In the context of this thesis, the integration of an Augmented Lagrangian approach into
the Tikhonov-regularised IPM yields the function

fεj ,ρj ,µj ;λj (x) := f(x) +
εj
2
‖x‖22 −

(
λj
)T

(Ax− b) +
ρj
2
‖Ax− b‖22 − µj

m∑
i=1

ln(−gi(x)),

where λj ∈ Rp is the current approximation to the Lagrange multiplier, and εj , ρj , µj > 0 are
the regularisation, penalty and barrier parameter, respectively. Following [37, Section 17.3],
the multiplier is updated in every outer iteration by

λj+1 := λj − ρj(Ax− b).

The penalty parameter ρj , on the other hand, is increased in every iteration, e.g. by
setting ρj+1 := 1

βγ ρj , yielding that it increases at the same speed as µj is being reduced.
To avoid further ill-conditioning, the penalty parameter is only updated when the current
residual

∥∥Axj − b
∥∥2
2

does not lie below an imposed tolerance.
When the Tikhonov regularisation is replaced by a proximal-point regularisation as

discussed above, then this combination of Augmented Lagrangian, proximal-point and
interior-point method leads to the so-called interior-point proximal method of multipliers
(IP-PMM). These methods have recently been discussed in different contexts [7, 31, 41, 42].
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4
A structured l-BFGS method for solving
the inner problems

In Chapter 3, the Tikhonov-regularised interior-point method for solving the general
inequality-constrained convex problem (P) was introduced. It was shown how, for cer-
tain choices of the parameters ε and µ, the outer iterates xj converge to the minimal-norm
solution x∗M , and that a convergence rate of O(εj) is obtained in the objective f . Necessary
for this convergence rate is that in each outer iteration j, an iterate xj is computed whose
accuracy increases at a rate of

∥∥∇fεj ,µj
(xj)

∥∥
2
= O(ε2j ).

This chapter therefore covers the second main topic of this thesis: the question how
a structured l-BFGS method can be used to solve the inner problems of the Tikhonov-
regularised IPM, and how convergence of the inner iterates can be obtained. As a starting
point, in Section 4.1, the concept behind Quasi-Newton methods is briefly described, and the
BFGS update and its limited-memory variant are introduced. Based on that, Section 4.2
covers the structured l-BFGS method analysed in [34]. In Section 4.3, it is described in
detail how this method is used as inner solver for the proposed Tikhonov-regularised IPM,
and the precise procedure is presented in Algorithm 4.2.

The rest of the chapter deals with the convergence analysis of the inner iterations: In
Section 4.4, it is proven that each inner loop terminates after finitely many iterations at a
sought point xj ∈ F+, yielding that also the overall method terminates after finitely many
iterations, and that each inner method features an r-linear convergence rate. The main
result is presented in Theorem 4.5.

In Section 4.5, the convergence of the inner iterations is quantified in the context of
the overall method, focussing on the question how the number of inner iterations required
at each outer step evolves throughout the method. The discussion ultimately culminates
in Section 4.6 with the result of Theorem 4.12 in which it is proven that the total num-
ber of l-BFGS iterations required for the entire Tikhonov-regularised IPM grows at most
polynomially in the imposed tolerance τ .

4.1 L-BFGS methods

In this section, the concept of Quasi-Newton methods is briefly introduced, followed by a
description of the well-known BFGS-update and the limited-memory variant arising from
this. The descriptions and statements in this section mainly follow [37, Chapters 6 and 7].
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4.1.1 Quasi-Newton methods

In this thesis, Quasi-Newton methods are used to find a minimiser of an unconstrained and
twice differentiable function ϕ ∈ C2(Rn,R). Starting point for these methods is the idea
to iteratively approximate the objective ϕ locally around the current iterate xk ∈ Rn by a
strongly convex quadratic function Qk, defined by

ϕ(xk + p) ≈ Qk(p) := ϕ(xk) +∇ϕ(xk)T p+
1

2
pTBkp, (4.1)

where Bk ∈ Rn×n is a symmetric positive definite (spd) matrix.
This quadratic function becomes minimal for

0 = ∇Qk(p) = ∇ϕ(xk) +Bkp,

yielding that its unique minimiser (Qk is strongly convex by Lemma 2.5 d)) is given by [37,
page 136]

pk = −B−1
k ∇f(xk).

In Quasi-Newton methods, the minimiser pk is then used as search direction for the
iteration, and the new iterate is obtained by

xk+1 = xk + αkpk

with a step size αk > 0. Thereby, pk is guaranteed to be a descent direction in ϕ, since Bk

and hence B−1
k are positive definite and therefore pTk∇ϕ(xk) < 0.

When Bk = ∇2ϕ(xk), that is, Bk is the Hessian matrix of ϕ in xk, then (4.1) corre-
sponds to the second-order Taylor approximation [37, Theorem 2.1] of ϕ in xk. In this case,
the quadratic approximation Qk is as accurate as possible among all quadratic functions
in the proximity of xk, and pk is the so-called Newton direction which is typically used
in Newton’s method [37, page 22]. However, a drawback of Newton’s method is that, in
each iteration, it requires the computation of the Hessian ∇2ϕ(xk) and the solution of a
linear system of equations with it, in order to obtain pk. For some problems, this might
be impossible as the Hessian is unknown, or, especially in higher dimensions, comes at a
prohibitive computational cost [4, 40].

The idea behind Quasi-Newton methods is to use a matrix Bk as approximation to
the Hessian ∇2ϕ(xk) which is viable and easier than the Hessian to compute, and from
which the search direction pk can be obtained with acceptable cost. Starting with an initial
guess B0 this approximation to the Hessian is then in each iteration updated to a new
matrix Bk+1 such that it describes the Hessian at the new iterate xk+1 in a useful way.

Hence, the question arises how the information gained in the iteration could be used
for the update. A basic condition for the updated matrix Bk+1 is that the next quadratic
approximation Qk+1, which arises from it, should not only have the same gradient as ϕ

in xk+1, but also in the previous iterate xk [37, page 137]. This yields

∇Qk+1(−αkpk) = ∇ϕ(xk+1)− αkBk+1pk
!
= ∇ϕ(xk). (4.2)
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By defining the latest update in the iterate and the difference of the gradients by

sk := xk+1 − xk = αkpk, yk := ∇ϕ(xk+1)−∇ϕ(xk),

the condition (4.2) is equivalent to the so-called secant equation [37, page 137]

Bk+1sk = yk. (4.3)

Evidently, if Bk+1 is positive definite and satisfies the secant equation, then sk and yk
must satisfy the curvature condition sTk yk > 0. This is intrinsically given when ϕ is strongly
convex, as it follows directly from Lemma 2.5 c), and hence must not be taken into consid-
eration in this thesis. Otherwise, the curvature condition could for example be ensured by
a line search which is conform to the Wolfe conditions [37, page 138]. It should be noted
that (4.3) is not generally satisfied by the Hessian ∇2ϕ at xk+1, but only by its average be-
tween xk and xk+1; for details, see [37, page 138]. Nonetheless, the secant equation proved
to be a reasonable imposition on Bk+1.

In general, an optimisation method is called Quasi-Newton method if it follows the con-
cept of iteratively approximating the objective by a quadratic function, and if the quadratic
matrix used for this satisfies the secant equation (4.3), cf. [46, page 65]. However, by only
requiring the secant equation, still many degrees of freedom are left for possible choices
of Bk+1 [37, page 138].

4.1.2 The l-BFGS update

There are several well-known Quasi-Newton update formulas. Among these, the BFGS
update is the one that is most widely used [37, page 139]. It is named after its inventors
Broyden, Fletcher, Goldfarb and Shanno who publicised the concept all independently of
each other in 1970 [9, 17, 23, 45].

The BFGS update for the matrix Bk is defined as [37, page 140]

Bk+1 = Bk −
(Bksk)(Bksk)

T

sTkBksk
+

yky
T
k

sTk yk
, (4.4)

and equivalently for the inverse matrix Hk := B−1
k by

Hk+1 =

(
I −

sky
T
k

sTk yk

)
Hk

(
I −

yks
T
k

sTk yk

)
+

sks
T
k

sTk yk
. (4.5)

It can be shown that Hk+1 is, in some sense, precisely the symmetric matrix which is
most similar to its predecessor Hk while satisfying the secant equation, for details see [37,
page 138].

In general, the BFGS update formula is considered most effective for line-search based
Quasi-Newton methods and has proven to yield robust results [37, pages 139–140]. It is
a rank-two update which preserves symmetry and positive definiteness [37, page 141] and
“has very effective self-correcting properties” [37, page 142].

In Quasi-Newton methods, it is usually not necessary to know and save the, gener-
ally dense, matrix Bk or, analogously, its inverse Hk explicitly. Instead, only the search
direction pk must be obtained in every iteration by computing

pk = −Hk∇ϕ(xk).
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When Hk is defined by the inverse BFGS update (4.5), this computation can be re-
duced to a recursive approach which only involves vector operations and one matrix-vector-
multiplication with the initial matrix H0 [37, Algorithm 7.4]. Thus, instead of computing
and saving each matrix Hk, it suffices to save all update vector pairs (si, yi)i=0,...,k as well
as H0, and to compute the search direction pk recursively from them.

However, the memory and computation requirement for this approach grows linearly
with the number of iterations k, while especially the first information might only contribute
very little to the approximation quality of Hk. This yields a limited-memory modification
of it: the so-called l-BFGS methods, first proposed by Nocedal in 1980 [36]. In these, only
the last ` vector pairs (si, yi)i=k−`,...,k−1 are stored and used for the computation of pk,
where the memory length is given by ` := min{k, `max} for some `max ∈ N0. Thus, in the
first `max iterations, the l-BFGS update coincides with the standard BFGS update, and
once k > `max, the oldest information are disregarded.

As described in [37], the main idea behind this is to “use curvature information from only
the most recent iterations to construct the Hessian approximation”, whereas the curvature
information from earlier iterations “is less likely to be relevant to the actual behaviour of
the Hessian at the current iteration” [37, page 176] and can therefore be discarded in order
to limit the memory and computation costs.

4.1.3 Seed matrix and two-loop recursion

Notably, this limited-memory approach of the l-BFGS update allows for varying the initial
matrix H0 with every iteration. Therefore, in every iteration k, a new symmetric positive
definite matrix H

(0)
k can be chosen as seed matrix for the recursion.

As described above, the quadratic matrix Bk = H−1
k in Quasi-Newton methods is sup-

posed to approximate the Hessian matrix ∇2ϕ(xk), so that the corresponding quadratic
approximation of ϕ near xk and thereby the search direction pk = −Hk∇ϕ(xk) is as ac-
curate as possible. Since Hk is computed from the curvature information of the ` latest
steps and the seed matrix H

(0)
k , it is desirable that already this seed matrix represents an

approximation to the inverse Hessian [34].
In practice, the seed matrix is often chosen as H

(0)
k = τ̂kI with a scaling factor τ̂k > 0,

as this is a simple, effective and easily computable choice which needs no direct knowledge
on the Hessian of ϕ [37]. Most commonly, one of the Barzilai-Borwein factors

τ̂yk :=
sTk−1yk−1

yTk−1yk−1
or τ̂ sk :=

sTk−1sk−1

sTk−1yk−1
(4.6)

is used as scaling factor [34, Section 2.2].
These factors are obtained by minimising the deviation in the secant equation (4.3)

for H
(0)
k in the direction of sk resp. yk; more on that in Section 4.2. It is well-known that

both factors lie between the smallest and largest eigenvalue of the average inverse Hessian
between xk−1 and xk [34, Lemma 2.2]. Therefore, they represent an approximation to the
spectrum of the inverse Hessian matrix. In practice, the factor τ̂yk proved to be preferable
for inverse l-BFGS methods [34, Section 2.2].

The recursive algorithm by which the search direction pk = −Hk∇ϕ(xk) is computed
based on the ` latest vector pairs (si, yi)i=k−`,...,k−1 and the initial matrix H

(0)
k , is described
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in Algorithm 4.1. It is also used as part of the inner solver specified in Section 4.3.

Algorithm 4.1 l-BFGS two-loop recursion, cf. [37, Algorithm 7.4]

Given: (sk−`, yk−`), ..., (sk−1, yk−1) ∈ Rn × Rn; q = −∇ϕ(xk) ∈ Rn; H
(0)
k ∈ Rn×n spd

1: for i = k − 1, k − 2, ..., k − ` do
2: ρi ← 1

sTi yi

3: αi ← ρis
T
i q

4: q ← q − αiyi
5: end for
6: p← H

(0)
k q

7: for i = k − `, k − `+ 1, ..., k − 1 do
8: β ← ρiy

T
i p

9: p← p+ (αi − β)si
10: end for
Return: p = −Hk∇ϕ(xk)

As long as the multiplication H
(0)
k p can be computed in O(n), for example by choos-

ing H
(0)
k as diagonal matrix, the computation and memory cost for this two-loop recursion

lie in O((` + 1)n). Typical choices for `max lie between 3 and 20 [37, page 177], and the
method is nowadays prevalently used [37, page 179].

In 1989, Liu and Nocedal proved that for strongly convex functions, l-BFGS methods
converge r-linearly in the function value to the minimum, as long as the step sizes αk satisfy
the Wolfe-conditions and the eigenvalues of the seed matrices B

(0)
k remain bounded away

from 0 and infinity, cf. [32, Theorem 7.1].
However, as stated in [37], the main weakness of l-BFGS methods is its slow convergence

on “ill-conditioned problems; specifically, on problems where the Hessian matrix contains
a wide distribution of eigenvalues” [37, page 180]. This issue is especially present with the
seed-matrix choice H

(0)
k = τ̂kI [34]. Therefore, an alternative choice for H

(0)
k is discussed

in Section 4.2. This structured l-BFGS approach was recently analysed in [34], and it will
be discussed in Section 4.3 how it is used to tackle the problem of ill-conditioning in the
context of this thesis.

4.2 The structured l-BFGS method

In the last section, the concept of l-BFGS methods was motivated and introduced, and it
was described that these methods allow for a new choice of the seed matrix H

(0)
k in every

iteration k. Most commonly, H(0)
k is chosen as an adaptively scaled identity matrix, but as

mentioned above, this can lead to slow convergence, especially for ill-conditioned problems.

4.2.1 General concept

To tackle this issue, another possible choice for the seed matrix was recently analysed in [34]
as so-called structured l-BFGS method. It is based on the idea that the objective ϕ is given
by the sum of two functions where the Hessian matrix of one part is known and supports a
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viable method to solve a linear system of equations with it, while the Hessian of the other
part is approximated by a scaled identity matrix. Therefore, consider the minimisation
problem

inf
x∈Rn

ϕ(x),

where
ϕ : Rn → R, ϕ(x) = D(x) + S(x)

for twice continuously differentiable functions D, S ∈ C2(Rn,R).
As described in Section 4.1, in Quasi-Newton methods, the quadratic matrix Bk =

H−1
k is supposed to approximate the Hessian matrix ∇2ϕ(xk). To obtain a more accurate

approximation, it is useful when already the seed matrix B
(0)
k =

(
H

(0)
k

)−1 approximates
the Hessian in some way. To improve this approximation, the structured l-BFGS approach
aims at utilising the available information about the Hessian of S and approximates only
the possibly problematic part of D by a scaled identity matrix, instead of setting the entire
base matrix to such a scaled identity.

Therefore, the authors of [34] suggest to use the non-inverse seed matrix

B
(0)
k := τkI + Sk, (4.7)

where τk ≥ 0 and Sk is a symmetric positive definite matrix, reasonably Sk ≈ ∇2S(xk).
This choice for B(0)

k is designed to improve the approximation accuracy of it to the Hessian
∇2ϕ(xk) = ∇2D(xk) +∇2S(xk), particularly for ill-conditioned problems in which a scaled
identity is not capable of properly capturing the spectrum of the Hessian.

One main difference and possible computational disadvantage of the structured ap-
proach is that, in contrast to the approach described in Section 4.1, the seed matrix B

(0)
k

approximates the Hessian of ϕ, whereas the seed matrix H
(0)
k approximates the inverse of the

Hessian. Therefore, the computation of p in line 6 of the two-loop recursion requires to solve
the linear system B

(0)
k p = q instead of simply obtaining p by the multiplication p = H

(0)
k q.

Therefore, it is important that Sk is chosen in a way that linear systems involving B
(0)
k

can be solved efficiently [34]. In practice, the linear system might also be solved only
inexactly [34, page 26], as the result is only used for the seed matrix of the l-BFGS recursion.
Hence, when Sk supports the efficient use of inexact solvers such as MINRES [38], it might
already prove useful.

4.2.2 Choice of the scaling factor

The question remains how the scaling factor τk should be chosen in (4.7). Similarly to the
Barzilai-Borwein factors τ̂yk and τ̂ sk defined in (4.6), the scaling factor τk can be computed
adaptively in each iteration based on the latest step. Again, the idea is to choose τk in a
way that already the base matrix B

(0)
k is “similar” to the Hessian of ϕ in the sense that it

explains how the latest step occurred. Hence, τk+1 ≥ 0 is sought such that B
(0)
k+1 satisfies

the secant equation (4.3) as well as possible. It follows [34, Section 3.1]

yk
!
≈ B

(0)
k+1sk = τk+1sk + Sk+1sk ⇔ τk+1sk

!
≈ yk − Sk+1sk =: zk. (4.8)

Based on that idea, the authors of [34] propose four different possible choices for τk+1

which, in some sense, optimise the objective τk+1sk
!
≈ zk.
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Lemma 4.1. [cf. 34, Definition 3.1] Let sk, zk ∈ Rn with sk 6= 0. Then the factor

a)

τ sk+1 := max
{
sTk zk

sTk sk
, 0

}
= arg min

τ≥0
‖τsk − zk‖2

minimises the distance between sk and zk in the direction of sk,
b)

τ gk+1 :=

√
zTk zk

sTk sk
=
‖zk‖2
‖sk‖2

= arg min
τ≥0

∥∥√τsk − zk/
√
τ
∥∥
2

minimises the distance between sk and zk geometrically weighted in both directions sk
and zk.

c) If furthermore sTk zk 6= 0, then

τ zk+1 := max
{
zTk zk

sTk zk
, 0

}
= arg min

τ≥0
‖sk − zk/τ‖2

minimises the distance between sk and zk in the direction of zk.
d) Again if sTk zk 6= 0, then

τuk+1 := max

zTk zk − sTk sk +
√

(zTk zk − sTk sk)
2 + 4(sTk zk)

2

2sTk zk
, 0


minimises the distance between sk and zk unbiased; for details, see [1, Lemma 2].

Remark.

• When Sk = 0, the factors τ zk+1 and τ sk+1 correspond to the (inverse) Barzilai-Borwein
factors τ̂yk and τ̂ sk defined in (4.6).

• The statement sTk zk > 0 does not generally hold when Sk 6= 0, not even for strongly
convex functions ϕ. Therefore, it is necessary to explicitly ensure that τk+1 ≥ 0

for τ sk+1, τ zk+1 and τuk+1. On the other hand, it always holds τ gk+1 ≥ 0.
• As long as sTk zk > 0, the factor τ gk+1 corresponds to the geometric mean of τ sk+1

and τ zk+1 [34].
• It holds 0 ≤ τ sk+1 ≤ τ gk+1 ≤ τ zk+1 and 0 ≤ τ sk+1 ≤ τuk+1 ≤ τ zk+1 (the latter being only

defined for sTk zk 6= 0) [34].
• In [34], the authors consider more general cases, even of non-convex functions ϕ, and

therefore confine the factors τk optionally to an interval [τmin
k , τmax

k ] ⊆ [0,∞] which
converges to [0,∞] as k → ∞. In the scenario considered in this thesis, however,
these restrictions are not necessary, and the constraint τk ≥ 0 suffices.

The geometrical meaning of all four factors for the objective τk+1sk
!
≈ zk is illustrated

in Figure 4.1.

Now, the question arises which factor should be chosen in order to observe the fastest
convergence, but unfortunately, there is no simple answer to that: In [1], it is observed how
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zk

sk

τk+1sk

τsk+1

τzk+1τuk+1

τgk+1

Figure 4.1: [cf. 34] Geometrical view on the scaling factors from Lemma 4.1. The upper
end of the blue lines marks the elongation of sk with the factor τk+1. The factors τ sk+1

and τ zk+1 correspond to the orthogonal projection of zk onto Rsk and of sk onto Rzk,
respectively. In the method presented in Algorithm 4.2, the factor τ gk+1 is always used. As
their geometric mean, it lies between the other two factors as long as the angle between sk
and zk is below 90°.

a smaller factor τk tends to lead to a longer search direction. This is not surprising since
a smaller τk yields greater eigenvalues of H(0)

k , which ultimately also influences the length
of pk = −Hk∇ϕ(xk). Hence, when using τ sk , more line-searches might be required, while
the use of τ zk tends to result in the necessity for more iterations as it yields shorter steps.
In [1], the authors conclude that τ sk and τ gk perform best in their numerical experiments,
and that τ gk proves more robust.

This discussion is extended in [34] where, in contrast to constantly choosing the same
factor, an algorithm for an adaptive factor choice is presented. For reasons of simplicity,
however, this thesis is limited to the usage of τ gk which has not only shown to be robust,
but is also in line with the recommendation in [34] for the case sTk zk < 0.

In [34], q-linear convergence in the objective function value ϕ(xk) and r-linear conver-
gence in the iterates xk and in the gradient ∇ϕ(xk) is proven for the structured l-BFGS
approach, requiring certain assumptions. These convergence results will later be invoked
for the convergence analysis of the inner iterations, as the latter are based on the structured
l-BFGS method.

The design of these inner iterations is described next in Section 4.3, and the analysis
of their convergence is carried out in Sections 4.4 and 4.5.

4.3 Structured l-BFGS as inner solver

In the last section, the concept of the structured l-BFGS method was described which had
been analysed in [34]. This section deals with the application of this method for solving
the inner problems of the Tikhonov-regularised interior-point method which was introduced
and analysed extensively in Chapter 3, and whose structure is specified in Algorithm 3.2.

In Theorems 3.11 and 3.12, it was shown that the outer iterates xj produced by Algo-
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rithm 3.2 converge to the minimal-norm solution x∗M , and that this convergence is quantified
in the objective function f by a rate of O(εj). In line 2, the method requires that in each
outer iteration j, an approximation xj to the current regularised barrier minimiser x̄εj ,µj

is
computed at which the residual gradient norm

∥∥∇fεj ,µj
(xj)

∥∥
2

is smaller than Cε2j for some
fixed constant C.

In IPMs, typically one or multiple Newton steps are employed to the respective barrier
problem (Pµj

) in order to obtain an iterate xj which is sufficiently close to the barrier
trajectory or lies within some trust region [18, 37]. But as Newton’s method might become
prohibitive for general large-scale problems [14, page 956], in this thesis, instead, an l-BFGS
method is used which is applied directly to the primal problem, as this allows to completely
proceed without the need of solving linear systems of equations.

In general, this comes with a great problem: As mentioned in Section 4.1, Quasi-Newton
methods are known to struggle with and only converge slowly for ill-conditioned problems,
and the Hessian of the barrier function becomes increasingly ill-conditioned as the barrier
parameter µ approaches zero [37, 41, 49]. Partly to deal with this problem, a Tikhonov
regularisation was included in the interior-point method, see Chapter 3, but this still does
not resolve the issue which active constraints impose on the problem condition.

Therefore, the idea in this thesis is to employ the structured l-BFGS method of Sec-
tion 4.2 by including the possibly most problematic part of the Hessian of fε,µ in the struc-
tured component Sk, while leaving the more complicated and possibly unavailable parts of
the Hessian to be approximated in the seed matrix B

(0)
k by a scaled identity matrix.

4.3.1 Choice of the seed matrix

The Hessian of the Tikhonov-regularised barrier function fε,µ is given in x ∈ F+ by

∇2fε,µ(x) = ∇2f(x) + εI + µ

m∑
i=1

( 1

gi(x)2
∇gi(x)∇gi(x)T︸ ︷︷ ︸

 Sk

− 1

gi(x)
∇2gi(x)

)
,

cf. (3.7). In this, the summands µ
gi(x)2

∇gi(x)∇gi(x)T can be expected to cause the greatest
issues for the conditioning, as gi(x̄ε,µ)→ 0 in any active constraint. Since furthermore the
gradients of all gi are available, needed during the l-BFGS iteration anyway, allow for an
efficient multiplication with a vector, and their outer product is positive semi-definite, it is
reasonable to include this part into the structure matrix Sk. Similarly, the regularisation
part εI should be integrated into Sk, as it represents the strong convexity of fε,µ and thereby
ensures positive definiteness in the l-BFGS system.

On the other hand, the matrices ∇2f and ∇2gi might be unknown in practice, too
complicated or too expensive to compute, or dense and therefore not suitable to be saved
or used efficiently in matrix-vector multiplications. For a fixed j-th outer iteration, the
proposal in this thesis hence is to use

Sk := εjI + µj

m∑
i=1

1

gi
(
xjk
)2∇gi(xjk)∇gi(xjk)T (4.9)

as structured Hessian part at the current inner iterate xjk. Note that Sk is symmetric
and positive definite with all eigenvalues being at least ε. The entire seed matrix for the
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structured l-BFGS method is then given by

B
(0)
k := τ gk I + Sk (4.10)

with τ gk as defined in Lemma 4.1 c). Thus, τ gk I approximates the in Sk missing part

∇2f
(
xjk
)
− µj

m∑
i=1

1

gi
(
xjk
)∇2gi

(
xjk
)
.

This approach allows to capture the possibly large and for j → ∞ increasingly wide
spectrum of ∇2fεj ,µj

more properly in the seed matrix of the l-BFGS method, and thereby
might considerably reduce the amount of inner iterations needed in the Tikhonov-regularised
IPM. In case the method is used with the Augmented Lagrangian modification as described
in Section 3.5, the term ρjA

TA, added to the Hessian matrix of fεj ,ρj ,µj ;λj by the penalty
term, can also be included in the structured part of the seed matrix Sk, as this might further
improve the convergence speed of the inner iterates.

It should be noted that, as mentioned in Section 4.2, the use of the structured l-BFGS
method requires, in each inner iteration k, the computation of the vector p as solution to
the linear system B

(0)
k p = q, see line 6 of Algorithm 4.1. In practice, it makes sense to let p

only approximate a solution to the linear system, as it is only used as initialisation for the
l-BFGS recursion, and the fast matrix-vector multiplications supported by Sk as defined
above allow for an efficient use of inexact solvers such as MINRES [38]. Clearly, this
approach marks a less severe trade-off than solving an entire Newton system inexactly, as
the curvature information of the last steps remains fully included in the search direction pk.
Furthermore, the proposed choice for Sk allows for a matrix-free implementation, so the
actual computation and storing of the matrix is not necessary.

4.3.2 Armijo backtracking

To obtain convergence to a minimiser, it is well-known for Quasi-Newton methods [32] that
the next iterate xk+1 := xk + αkpk should satisfy the Armijo condition [37, page 33]

fεj ,µj

(
xjk+1

)
≤ fεj ,µj

(xjk) + clsαk∇fεj ,µj

(
xjk
)T

pk (4.11)

for an Armijo or line-search constant cls ∈ (0, 1).
This condition enforces a “sufficient decrease” in the objective fεj ,µj

and is guaranteed to
be satisfied for sufficiently small αk > 0, as long as pk is a descent direction [37, Lemma 3.1].
Conveniently, the search direction pk = −Hk∇fεj ,µj

(
xjk
)

in l-BFGS methods is always a
descent direction, as Hk is positive definite.

Hence, a sufficiently small step size αk can be computed by an iterative reduction.
This procedure is referred to as (Armijo) backtracking line-search [37, Algorithm 3.1] and
here performed by testing αk = 1, ρls, ρ

2
ls, ρ

3
ls, ... with a line-search constant ρls ∈ (0, 1),

until (4.11) holds. For convergence results of l-BFGS methods, a curvature condition is
often additionally required, leading to the Wolfe conditions [37, page 34]. However, since
this thesis only deals with the application of an l-BFGS method to the strongly convex
functions fεj ,µj

, it is not necessary here as will later be seen in Section 4.4.
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4.3.3 Specification of the structured l-BFGS method

The procedure for the inner iterations of the Tikhonov-regularised IPM (line 2 in Algo-
rithm 3.2) now is as follows. Starting with the iterate of the latest outer step xj−1, the
structured l-BFGS method is applied, producing a sequence of inner iterates xjk, until the
stopping criterion

∥∥∇fεj ,µj

(
xjk
)∥∥

2
≤ Cε2j is satisfied. The resultant final inner iterate xjk is

then returned as new outer iterate xj .
The scheme for the inner iterations using the structured l-BFGS method is described

in Algorithm 4.2. It is inspired by [34, Algorithm TULIP].

Algorithm 4.2 Inner solver of the Tikhonov-regularised interior-point method
Given: Optimisation problem (P), current parameters εj , µj > 0, latest outer iter-

ate xj−1 ∈ F+, line-search parameters cls, ρls ∈ (0, 1), memory length `max ∈ N, con-
stant C > 0

Choose: τ0 > 0

1: Initialise xj0 ← xj−1, compute S0 as defined in (4.9)
2: for k = 0, 1, 2, ... do
3: if

∥∥∇fεj ,µj

(
xjk
)∥∥

2
≤ Cε2j then let xj ← xjk and break

4: Let ` := min{k, `max}
5: Compute pk := −Hk∇fεj ,µj

(
xjk
)

using the two-loop recursion of Algorithm 4.1 with
B

(0)
k := τkI + Sk, q := −∇fεj ,µj

(
xjk
)
, and the stored pairs {(si, yi)}i=k−`,...,k−1

6: Compute step size αk using Armijo backtracking line-search with parameters cls, ρls
7: Let sk := αkpk , xjk+1 := xjk + sk , yk := ∇fεj ,µj

(
xjk+1

)
−∇fεj ,µj

(
xjk
)

8: Append (sk, yk) to storage
9: if k ≥ `max then remove (sk−`, yk−`) from storage

10: Update Sk+1 as defined in (4.9), let zk := yk − Sk+1sk

11: Update τk+1 ←
√

zT
k zk
sTk sk

. Corresponds to τgk+1 in Lemma 4.1 c)
12: end for
Return: xj

Next in Section 4.4, it will be shown that the inner iterates xjk generated by Algo-
rithm 4.2 converge r-linearly to a point xj with sufficiently small residual gradient norm.
Afterwards in Section 4.5, a bound on the number of necessary inner iterations will be de-
rived in the context of the overall method, and in Section 4.6, it is proven that their total
number grows at most polynomially in the imposed tolerance.

4.4 Convergence of the inner iterates

In the last section, it was described how the structured l-BFGS method can be used to solve
the inner problems of the Tikhonov-regularised IPM, and the exact procedure was defined
in Algorithm 4.2. This section deals with the convergence of the inner iterates produced by
that algorithm.

In a first step, the analysis is carried out for one isolated outer step j, that is, for
arbitrary parameters εj , µj > 0. For ease of notation, the outer iteration index j will
be omitted throughout that discussion, so parameters ε, µ > 0 and iterates xk will be
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considered instead of εj , µj and xjk. In a second step, in Section 4.5, the results from this
isolated analysis are quantified in the context of the overall algorithm, ultimately proving
a polynomial growth of the number of required inner iterations.

The convergence analysis is mainly performed by applying the convergence results
stated for the structured l-BFGS method in [34] to the inner solver. For this, it must first
be verified that for any parameters ε, µ > 0, the procedure described in Algorithm 4.2
actually is a structured l-BFGS method in terms of the method discussed in [34]. In
fact, Algorithm 4.2 corresponds to Algorithm TULIP from [34] with J := fε,µ, Sk as
in (4.9), the step size consistently chosen as τk := τ gk , and the respective parameter
choices ε := Cε2, ` := `max, c0 := 0 and C0 :=∞. The parameter cs is not needed (or
could be chosen arbitrarily from the interval (0, ε)) as it always holds yTk xk ≥ ε ‖sk‖22 by
the ε

2 -strong convexity of fε,µ, see Lemma 2.5 c). The parameters c1 and c2 are irrelevant
due to the choices of c0 and C0.

Therefore, the results from [34] can be used for the analysis of Algorithm 4.2. As a
starting point, the algorithm for the inner iterations is well-defined and converges in the
objective fε,µ.

Theorem 4.2. [cf. 34, Lemma 4.3] Let the Slater CQ hold, i.e. F+ 6= ∅. For any ε, µ > 0,
Algorithm 4.2 is well-defined, and the sequence (fε,µ(xk))k∈N0

is strictly monotonically
decreasing and convergent.

Proof. The function fε,µ is continuously differentiable on F+, and due to its strong con-
vexity, it is also bounded below. Since Sk is spd for all k ∈ N0, the assumptions of [34,
Assumption 4.2] are satisfied and hence, [34, Lemma 4.3] can be applied for Algorithm 4.2,
yielding the statement of this theorem.

4.4.1 Matrix norm and Lipschitz continuity

The further convergence results of [34] yield convergence rates in the objective, in the
iterates, and in the gradient. To apply these to the inner iterations, it must be shown that
a number of requirements is satisfied. They involve, amongst other things, the spectral
norm for matrices which, for completeness, will briefly be recalled here: For a symmetric
positive definite (spd) matrix A, the spectral norm is given by (cf. [20, page 326])

‖A‖2 := max
x∈Rn

‖x‖
2
=1

‖Ax‖2 = λmax(A),

and conversely for its inverse by∥∥A−1
∥∥
2
= λmax

(
A−1

)
=

1

λmin(A)
,

where λmax(A) and λmin(A) denote the maximal and minimal eigenvalue of A, respectively.
Due to A being spd, these eigenvalues are always real and strictly positive [20, Satz A.5].

A major requirement in the following convergence analysis is that the gradient of the
inner objective function fε,µ must be Lipschitz continuous. To this purpose, the following
standard result on Lipschitz continuous gradients and its relation to a bounded Hessian for
twice continuously differentiable functions ϕ will be needed.
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Lemma 4.3. [cf. 29, page 103] Let ϕ ∈ C2(Ω,R) be a twice continuously differentiable
function on an open set Ω ⊆ Rn, and let K ⊂ Ω be a compact convex subset. Then the gra-
dient of ϕ is Lipschitz continuous on K with Lipschitz constant L := sup

x∈K

∥∥∇2ϕ(x)
∥∥
2
<∞,

that is, for all x, y ∈ K it holds

‖∇ϕ(x)−∇ϕ(y)‖2 ≤ L ‖x− y‖2 .

Hence, a bounded Hessian matrix implies that the gradient is Lipschitz continuous. Due
to the barrier term in fε,µ, however, Lipschitz continuity of its gradient clearly does not hold
on the entire domain F+, not even if f and all gi had a Lipschitz continuous gradient: For
example, the one-dimensional constraint g(x) := x ≤ 0 already yields d

dx(− ln(−x)) = − 1
x ,

which is neither bounded nor Lipschitz continuous on (−∞, 0).
Therefore, it is necessary to limit the discussion to a compact subset of F+; specifically,

this will be done with the level set of fε,µ, based on the function value at the first iteration x0:
Hence, for parameters ε, µ > 0 and starting point x0 ∈ F+, consider the level set

Ωε,µ := {x ∈ F+ | fε,µ(x) ≤ fε,µ(x0)} . (4.12)

By Lemma 3.3, the set Ωε,µ is compact, and since fε,µ(xk) decreases strictly in k as stated
in Theorem 4.2, all inner iterates xk lie in that set. It should be noted that Ωε,µ corresponds
to the set Ω in [34].

Now, the compactness of Ωε,µ and the fact that fε,µ is twice continuously differentiable
on F+ and therefore especially on Ωε,µ, yield that its Hessian is bounded on the latter,
leading to fε,µ having a Lipschitz continuous gradient on Ωε,µ:

Lemma 4.4. For any parameters ε, µ > 0, the gradient of fε,µ is Lipschitz continuous on
the set Ωε,µ, that is, there exists a constant Lε,µ > 0 such that for all x, y ∈ Ωε,µ it holds

‖∇fε,µ(x)−∇fε,µ(y)‖2 ≤ Lε,µ ‖x− y‖2 .

Proof. Lemma 3.3 implies that Ωε,µ is compact, i.e. closed and bounded. Since fε,µ is twice
continuously differentiable on the open set F+ ⊃ Ωε,µ, Lemma 4.3 implies that ∇fε,µ is
Lipschitz continuous on Ωε,µ with some Lipschitz constant Lε,µ > 0.

4.4.2 Convergence rate for the inner iterations

With a similar argument, the extreme value theorem of continuous functions on compact
sets [29, page 31] yields an upper bound for the structured Hessian part Sk, as all terms in
its definition (4.9) are continuous on Ωε,µ, and all iterates xk remain in this set. Thus, the
sequence

(
‖Sk‖2

)
k∈N0

is bounded.
Now, all needed prerequisites are prepared, and it follows that Algorithm 4.2 meets all

requirements for the aforementioned convergence results, that is namely (cf. [34, Assump-
tion 4.4] and [34, Assumption 4.10]):

• fε,µ is continuously differentiable,
• the gradient of fε,µ is Lipschitz continuous on Ωε,µ,
• the sequence

(
‖Sk‖2

)
k∈N0

is bounded,
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• it holds sup
k∈N0

∥∥∥(B(0)
k

)−1
∥∥∥
2
< ∞ (this is the case since Sk is strongly positive definite

with all eigenvalues being greater than ε > 0, so
∥∥∥(B(0)

k

)−1
∥∥∥
2
≤ 1

ε for all k),

• the step size τk lies in [τ sk , τ
g
k ] for all k, and

• the sequences
(
‖Bk‖2

)
k∈N0

and
( ∥∥B−1

k

∥∥
2

)
k∈N0

are bounded (this holds by [34, Re-
mark 4.11] with the given choice of τk and the strong positive definiteness of Sk; for
details, see Lemma 4.6).

It should be noted that the requirements [34, Assumption 4.4 - 4)] and [34, Assump-
tion 4.10 - 4)] involving the uniform continuity of fε,µ in a neighbourhood of Ωε,µ were
dropped here as they are not necessary in the scenario considered in this thesis; for details,
see [34, Remark 4.9] and [34, Theorem 4.15].

As all requirements are met, the results from [34] can be applied to each inner iteration
procedure defined by Algorithm 4.2.

Theorem 4.5. [cf. 34, Theorem 4.8 and Theorem 4.12] Let the Slater CQ hold, i.e. F+ 6= ∅,
and let ε, µ, C > 0 and x0 ∈ F+. Then, Algorithm 4.2 terminates after finitely many iter-
ations with an iterate xk that satisfies ‖∇fε,µ(xk)‖2 ≤ Cε2. Furthermore, if the algorithm
is applied until ‖∇fε,µ(xk)‖2 = 0, then it either terminates after finitely many iterations k,
or it generates an infinite sequence (xk)k∈N0

which satisfies:

a) lim
k→∞

‖∇fε,µ(xk)‖2 = 0.

b) The iterates (xk)k∈N0
converge r-linearly to x̄ε,µ.

c) The gradients (∇fε,µ(xk))k∈N0
converge r-linearly to 0.

d) The function values (fε,µ(xk))k∈N0
converge q-linearly to fε,µ(x̄ε,µ).

In particular, these convergence results are quantified for k ∈ N0 by

‖xk − x̄ε,µ‖22 ≤ νk

(
β̂

1−
√
ν

)2
Lε,µ

2
‖x0 − x̄ε,µ‖22 ,

‖∇fε,µ(xk)‖22 ≤ νk

(
β̂

1−
√
ν

)2
L2
ε,µ

ε
‖∇fε,µ(x0)‖22 ,

fε,µ(xk+1)− fε,µ(x̄ε,µ) ≤
(
1− clsαkε

‖Bk‖2

)(
fε,µ(xk)− fε,µ(x̄ε,µ)

)
≤ ν

(
fε,µ(xk)− fε,µ(x̄ε,µ)

)
,

where

β̂ := sup
k∈N0

√
αk

∥∥B−1
k

∥∥
2

cls
, ν := sup

k∈N0

(
1− clsαkε

‖Bk‖2

)
with cls ∈ (0, 1) being the Armijo constant from (4.11).

Proof. As discussed above, the procedure of Algorithm 4.2 meets the requirements for the
referenced theorems of [34]. The termination after finitely many steps for an inexact solution
then follows from [34, Theorem 4.8], as well as the convergence of the gradient of fε,µ to 0.
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As stated in [34, Remark 4.13 and Theorem 4.15], fε,µ satisfies the required
Kurdyka-Łojasiewicz inequality for all k ∈ N0 with µ := ε as it is ε

2 -strongly convex. Thus,
by [34, Theorem 4.12], the iterates xk converge to a point x̄ at which the gradient of fε,µ is 0.
Since this is only the case for x̄ = x̄ε,µ (see Section 3.3), convergence to x̄ε,µ is obtained. The
other statements now follow directly from [34, Theorem 4.12] and [34, Remark 4.13].

Remark. The parameter ν describes the rate of the linear convergence of Algorithm 4.2. It
holds ν < 1 since all step sizes αk are bounded away from 0 when obtained by backtracking
line-search [34, page 20], and the norms ‖Bk‖2 are bounded as was discussed above and will
further be quantified in Lemma 4.6.

These results prove that the algorithm of the inner solver converges for any parame-
ters ε, µ > 0, and that the stopping criterion ‖∇fε,µ(xk)‖2 ≤ Cε2 is satisfied after finitely
many iterations. Therefore, as the overall Tikhonov-regularised IPM described in Algo-
rithm 3.2 requires only finitely many outer steps (see Theorem 3.12), it also terminates
after finitely many inner / l-BFGS iterations. Furthermore, the convergence of each inner
procedure in the residual gradient norm is r-linear.

It should be pointed out that these convergence results are independent of the actual
choice of Sk, as long as the latter remains ε-strongly positive definite. This especially
means that the results do not take into account that the choice (4.9) aims at capturing the
spectrum of the Hessian of fε,µ more properly. The use of Sk as defined in (4.9) is therefore
solely a practical consideration to improve the numerical convergence speed of the inner
iterations.

So far, the convergence analysis for the inner iterations was carried out for the isolated
consideration of one outer iteration j, that is, for fixed parameters εj , µj > 0. However, as
Algorithm 4.2 is applied iteratively with decreasing parameters εj and µj , the question arises
how this inner convergence evolves with progressing outer iterations. For this purpose, in
the next section, estimates for the inner convergence will be derived which globally depend
on the parameters εj and µj , ultimately allowing to prove the polynomial complexity result
for the total number of l-BFGS iterations which is derived in Section 4.6 and presented in
Theorem 4.12.

4.5 A bound on the number of required inner iterations

In the last section, it was shown that each inner iteration procedure described in Section 4.3
terminates after finitely many steps, and that the convergence in the residual gradient norm,
which is relevant for the inner stopping criterion, is r-linear, cf. Theorem 4.5. However, these
results are limited to an isolated inner loop, that is, to fixed parameters ε and µ. Based
on that, in this section, it will be analysed how the convergence and especially the number
of required iterations evolves during the outer method, that is, for iteratively decreasing
parameters. For this, global convergence estimates in terms of the parameters ε and µ are
needed.
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4.5.1 Bounds on the l-BFGS matrices

Unfortunately, the estimates in the convergence result of Theorem 4.5 are not only very
conservative as can be verified in the proofs in [34], but they are also rather unspecific,
as the constants ν and β̂ include suprema over the step sizes αk and the norms of Bk

and B−1
k . Especially when a comparison of the cost for the respective inner method during

the progressing outer iterations is sought, these unspecific terms cause an issue. Therefore,
at first, specific estimates for the norm of Bk and B−1

k are derived.

Lemma 4.6. Let ε, µ > 0 with ε ≤ 1, and let the corresponding Lipschitz constant Lε,µ ≥ 1.
For the l-BFGS matrices Bk = H−1

k occurring in the iterations of Algorithm 4.2, it holds
for all k ∈ N0 that

‖Bk‖2 ≤ 2 ‖Sk‖2 + Lε,µ +
`L2

ε,µ

ε
, (4.13)∥∥B−1

k

∥∥
2
≤ 5`

ε

(
Lε,µ

ε

)2`

, (4.14)

where ` := min{k, `max} denotes the current memory length of the l-BFGS iteration.

Proof. The derivation of the estimates mainly follows the computations in [34, Lemma 4.1
and Lemma 4.6] and applies the specific case given here to those results.

a) To obtain the estimate for Bk, it will first be reduced to its seed matrix B
(0)
k by

analysing the BFGS update formula (4.4). For this, verify that by the ε
2 -strong

convexity and the Lipschitz continuous gradient of fε,µ it holds

yTk sk

‖sk‖22
≥ ε ,

sTk yk

‖yk‖22
≥

sTk yk

L2
ε,µ ‖sk‖

2
2

≥ ε

L2
ε,µ

.

Now, for any v ∈ Rn with ‖v‖2 = 1 it holds with (4.4), the positive-definiteness
of Bk, and the Cauchy-Schwarz inequality [37, page 600] that

vTBk+1v = vTBkv −
(vTBksk)

2

sTkBksk
+

(vT yk)
2

sTk yk
≤ vTBkv +

‖v‖22 ‖yk‖
2
2

sTk yk
,

where Bk−` := B
(0)
k is defined as the seed matrix here. Hence,

‖Bk+1‖2 = λmax(Bk+1) ≤ λmax(Bk) +
‖yk‖22
sTk yk

≤ ‖Bk‖2 +
L2
ε,µ

ε
,

and inductively it follows after the ` undertaken l-BFGS update steps that

‖Bk‖2 ≤
∥∥∥B(0)

k

∥∥∥
2
+

`L2
ε,µ

ε
.

For the seed matrix B
(0)
k := Sk+τkI, on the other hand, the choice τk = τ gk , defined

in Lemma 4.1, and the definition zk−1 := yk − Sksk−1 in (4.8) yield

τ gk =
‖zk−1‖2
‖sk−1‖2

≤
‖yk−1‖2 + ‖Sksk−1‖2

‖sk−1‖2
≤ Lε,µ + ‖Sk‖2 ,
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so it follows ∥∥∥B(0)
k

∥∥∥
2
= ‖Sk‖2 + τk ≤ 2 ‖Sk‖2 + Lε,µ.

Taking all estimates together, the statement (4.13) is obtained.
b) Similarly, the following estimate for the norm of B−1

k can be derived, cf. [34, Lem-
ma 4.1]:

∥∥B−1
k

∥∥
2
≤ 5` max

{
1,
∥∥∥(B(0)

k

)−1
∥∥∥
2

}
max

{
1,

(
1

ε

)`

,

(
Lε,µ

ε

)2`
}
.

Now, the fact that Sk is ε-strongly positive definite yields with τk ≥ 0 that

λmin
(
B

(0)
k

)
≥ λmin(Sk) + τk ≥ ε+ τk ≥ ε,

so it follows ∥∥∥(B(0)
k

)−1
∥∥∥
2
=

1

λmin(B
(0)
k )
≤ 1

ε
.

With the assumptions ε ≤ 1 and Lε,µ ≥ 1 which imply
(
Lε,µ

ε

)2
≥ Lε,µ

ε ≥ 1
ε ≥ 1,

one finally obtains

∥∥B−1
k

∥∥
2
≤ 5` max

{
1,

1

ε

}
max

{
1,

(
1

ε

)`

,

(
Lε,µ

ε

)2`
}
≤ 5`

1

ε

(
Lε,µ

ε

)2`

,

which is precisely (4.14).

Remark. The assumptions ε ≤ 1 and Lε,µ ≥ 1 are not restrictive: During the method, εj is
strictly reduced with every outer iteration and ultimately converges to zero, so from some
outer iteration on it will lie below 1. The Lipschitz constant Lε,µ, on the other hand, is
only an upper estimate and hence could always be chosen greater than 1. Moreover, the
assumptions are only necessary to obtain the bound (4.14) without the need to distinguish
the cases in the maximum terms.

Lemma 4.6 yields upper estimates for the norms of Bk and B−1
k , but in order to establish

a result for the overall convergence with respect to ε and µ, they still require a bound on the
norm of Sk as well as specific dependencies of the Lipschitz constant Lε,µ in the parameters ε
and µ.

4.5.2 Assumptions required for the quantitative analysis

As will be seen later in this section, two assumptions are needed to obtain bounds on ‖Sk‖2
and Lε,µ which hold for all inner iterations throughout the overall method. In addition to
that, a third assumption is required to bound the step sizes away from zero.

Firstly, it is necessary to globally bound the size of all iterates xjk and of the gradients
of all gi, as well as to derive global Lipschitz constants for the gradients of f and all gi.
In contrast to the isolated case considered in the last section, however, the overall method
does not intrinsically yield that it is globally limited to a compact set.
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Therefore, it must be assumed for the further analysis that the entire method actually
operates on a compact set, that is, that the size of all iterates xjk is globally bounded by
some constant Cx. Overall, this assumption appears reasonable and not too restrictive,
since the following is known from the discussions above:

• In each outer iteration j, the inner iterates
(
xjk
)
k∈N0

start at the last outer iterate xj−1

and converge r-linearly towards x̄εj ,µj
, until the iteration is stopped when the residual

gradient norm is sufficiently small, yielding the next outer iterate xj (cf. Sections 4.3
and 4.4).

• The outer iterates
(
xj
)
j∈N0

themselves are bounded as their distance to the respective
current minimiser x̄εj ,µj

decreases with j, and the sequence
(
x̄εj ,µj

)
j∈N0

is bounded
(cf. Sections 3.3 and 3.4).

• Furthermore, the outer iterates ultimately converge to x∗M .

Thus, the only way how the conglomeration of all iterates xjk could not be bounded, is
that, with increasing parameter j, there were some inner iterates xjk which, on their trajec-
tory from the bounded xj−1 to the bounded xj , would grow unboundedly large. This seems
rather unlikely and did also not occur in the numerical tests discussed in Chapter 5, but the
nature of the l-BFGS method and the objective fεj ,µj

which changes with every outer it-
eration did not allow us to actually prove such a bound on all iterates; hence the assumption.

The second assumption requires that the gradient of the respective regularised barrier
function fεj ,µj

is bounded globally in all inner iterates xjk, that is, that it
holds

∥∥∥∇fεj ,µj

(
xjk
)∥∥∥

2
≤ C ′ for all j, k and some constant C ′. For this assumption, it is

less straight forward to argue whether it is reasonably satisfied, since the function fεj ,µj

changes with every outer iteration j, and especially its gradient might generally be un-
bounded when approaching the boundary of F+: For example, the one-dimensional con-
straint g(x) := x ≤ 0 corresponds to the gradient d

dx(− ln(−x)) = − 1
x which clearly grows

unboundedly as x→ 0−, yielding that the gradient of fεj ,µj
is not bounded on F+ = (−∞, 0)

for any j ∈ N.
However, for the later derived convergence results it is only necessary that the gradient

norm remains bounded at all inner iterates xjk of the respective outer iteration j. Although
it could not be shown that this requirement is always met, similarly to above, the design
of the overall method suggests that the assumption should usually not be problematic or
represent a great restriction, as the following holds:

• In each outer iteration j, the residual gradient norm at the inner iterates xjk converges
r-linearly to 0 (cf. Theorem 4.5).

• Each inner iteration loop is started at the last outer iterate xj−1 which satisfies∥∥∇fεj−1j,µj−1
(xj−1)

∥∥
2
≤ Cε2j−1.

• The gradient of the regularised barrier function in a current outer iteration j differs
from the one in the previous step only by the updated parameters:

∇fεj ,µj
(x) = ∇fεj−1,µj−1

(x) + (εj − εj−1)x− (µj − µj−1)

m∑
i=1

1

gi(x)
∇gi(x).
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Thus, since the gradient norm of fεj−1,µj−1
was reduced in the previous step until it lied

below Cε2j−1, it is reasonable to expect that it does neither explode with the parameter up-
dates, nor during the inner iterations. This expectation is also supported by the numerical
results presented in Chapter 5.

The third assumption, which is necessary for bounding the steps sizes αk away from
zero, can be considered as an extension of the Lipschitz continuity of∇fεj ,µj

to certain points
along the search directions: It requires that, whenever the step size αk = 1 is not accepted
as it violates the Armijo condition (4.11), there exists some smaller step δk ∈ (0, 1) for which
the Armijo condition is still violated and the gradient of fεj ,µj

is Lipschitz continuous on
the slice towards the latest iterate. In this Lipschitz estimate, the corresponding Lipschitz
constant must not exceed CLLεj ,µj

for some global constant CL > 0.
As well as the other two assumptions, also this third assumption seems reasonable by

the following considerations:

• As stated in Section 4.3, there always exists a step size αk > 0 which satisfies the
Armijo condition. Hence, whenever αk = 1 is not accepted, the condition is violated
down to a certain step size.

• In the next iterate xjk+1 = xjk + αkpk, the gradient of fεj ,µj
is Lipschitz continuous

with constant Lεj ,µj
.

• By definition of the backtracking line-search, αk is given as the first power ρils for
which the Armijo condition holds. Hence, the condition is still violated for ρi−1

ls , and
the sought step size δk can be taken from the interval

(
ρils, ρ

i−1
ls
]
.

• Thus, δk can be chosen such that xjk + δkpk lies in the proximity of xjk+1. By the
continuity of ∇fεj ,µj

, it is not expected that the Lipschitz estimate changes more
between xjk and xjk + δkpk than what can be absorbed by some global constant CL.

Together, this yields the following three assumptions which are required for the further
quantitative convergence analysis of the overall method.

Assumption 4.7. Consider the Tikhonov-regularised IPM described in Algorithm 3.2 with
the structured l-BFGS method of Algorithm 4.2 applied as inner solver. It is assumed that

a) all iterates xjk produced by the method remain bounded, that is, there exists a con-
stant Cx > 0 such that for all outer iterations j ∈ N and for all corresponding inner
iterations k ∈ N0 it holds ∥∥∥xjk∥∥∥

2
≤ Cx,

b) at all iterates xjk, the gradient of the respective regularised barrier function fεj ,µj

is bounded globally, that is, there exists a constant C ′ > 0 such that in all outer
iterations j ∈ N it holds for all corresponding inner iterations k ∈ N0 that∥∥∥∇fεj ,µj

(
xjk
)∥∥∥

2
≤ C ′,

c) there exists a constant CL > 0 such that in all outer iterations j ∈ N and all
corresponding inner iterations k ∈ N0 always one of the following holds:
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i. Either the step size αk = 1 satisfies the Armijo condition (4.11), or
ii. there exists a step size δk ∈ (0, 1) such that the step xjk + δkpk does not satisfy

the Armijo condition (4.11) and it holds∥∥∥∇fεj ,µj

(
xjk + θδkpk

)
−∇fεj ,µj

(xjk)
∥∥∥
2
≤ CLLεj ,µj

θδk ‖pk‖2 ∀ θ ∈ (0, 1),

where xjk denotes the last iterate and pk the current search direction.

For clarification it is noted that the constants Cx, C ′ and CL are assumed to be given
globally. In part c), on the other hand, the distinction whether case i. or ii. holds as well as
the step size δk may differ with every iteration. Without loss of generality, the assumption
implies that xjk + δkpk is strictly feasible.

The set of all points which are bounded by the constant Cx will from here on be denoted
by

Ω := {x ∈ Rn | ‖x‖2 ≤ Cx} . (4.15)

Moreover, for any parameters ε, µ > 0, the set of all points at which further the gradient
norm of fε,µ is bounded by C ′ will be denoted by

Nε,µ :=
{
x ∈ F+ ∩ Ω | ‖∇fε,µ(x)‖2 ≤ C ′} . (4.16)

By construction, all iterates xjk lie in the respective set Nεj ,µj
, and the entire Tikhonov-

regularised IPM operates on Ω.

4.5.3 Derivation of the quantitative estimates

With these assumptions and definitions, the quantitative estimates which are necessary for
globally analysing the inner convergence rate can be derived. Since the set Ω is compact,
the extreme value theorem of continuous functions on compact sets [29, page 31] yields the
existence of Lipschitz constants for the gradients of f and all gi as well as a global bound
on the gradient of all gi.

Lemma 4.8. Let Ω be defined as above. There exist constants L∇f , L∇g, C∇g > 0 such
that for all x, y ∈ Ω it holds:

‖∇f(x)−∇f(y)‖2 ≤ L∇f ‖x− y‖2 ,
‖∇gi(x)−∇gi(y)‖2 ≤ L∇g ‖x− y‖2 for i = 1, ...,m ,

‖∇gi(x)‖2 ≤ C∇g for i = 1, ...,m.

Proof. Similarly to Lemma 4.4, the existence of the constants follows directly from the
compactness of Ω, the extreme value theorem [29, page 31] applied to the continuous func-
tions ‖∇gi(·)‖2,

∥∥∇2gi(·)
∥∥
2

and
∥∥∇2f(·)

∥∥
2
, and from Lemma 4.3.

These bounds now allow for the derivation of two key estimates which are needed for
the quantification of the convergence: The first limits how close to the boundary of F+ a
point x can at most be as long as it lies in Nε,µ, while the second one is an upper estimate
on the Lipschitz constant Lε,µ and states that the latter does not grow faster than O( 1µ).
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Lemma 4.9. Let Assumption 4.7 hold, and for each outer iteration j ∈ N, let Nεj ,µj
be

defined as above. Then it holds:

a) There exists a constant Cb > 0 such that for any j ∈ N and x ∈ Nεj ,µj
it holds:

m∑
i=1

1

−gi(x)
≤ Cb 1

µj
. (4.17)

b) For any j ∈ N, the gradient of fεj ,µj
is Lipschitz continuous on the set Nεj ,µj

with
Lipschitz constant

Lεj ,µj
:= L∇f + CbL∇g + εj +

(
Cb
)2(

C∇g
)2 1

µj
, (4.18)

where Cb is the constant from statement a), and L∇f , L∇g, C∇g are the constants
from Lemma 4.8.

Proof.

a) Firstly, if the set of strictly feasible points F+ is empty, then Nεj ,µj
= ∅ for all j,

and the statement is true. Otherwise, the Slater CQ is satisfied, so there exist
some Slater point xSlat ∈ F+ and, by definition of F+, some constant θ > 0 such
that −gi(xSlat) ≥ θ for all i = 1, ...,m.

Now, let x ∈ Nεj ,µj
. It holds −gi(x) > 0 for all i, but in general, it is unclear how

close to 0 the term gi(x) might be. The idea for deriving a bound on this “closeness”
is to reduce it to the gradient of fεj ,µj

, which is bounded on Nεj ,µj
. For this, it will

be distinguished between those constraints which are more than twice as close to 0
as θ, and those which are not. Therefore, let I :=

{
i = 1, ...,m | −gi(x) ≤ θ

2

}
. For

any i ∈ I it holds with the convexity of gi that

θ

2
≤ gi(x)︸ ︷︷ ︸

≥− θ

2

− gi(x
Slat)︸ ︷︷ ︸

≤−θ

Lemma 2.3 b)
≤ ∇gi(x)T (x− xSlat),

so ∑
i∈I

∇gi(x)T (x− xSlat)

−gi(x)
≥ θ

2

∑
i∈I

1

−gi(x)
.

Thus, the “smaller” gi can be bounded away from 0 by some term dependent on the
gradient of the respective barriers, cf. Section 2.3. For i /∈ I, on the other hand, it
is −gi(x) > θ

2 , so since |{1, ...,m} \ I| ≤ m, it holds

∑
i/∈I

1

−gi(x)
<

2m

θ
.
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Together, this yields
m∑
i=1

1

−gi(x)
=
∑
i/∈I

1

−gi(x)
+
∑
i∈I

1

−gi(x)

<
2m

θ
+

2

θ

∑
i∈I

∇gi(x)T (x− xSlat)

−gi(x)

=
2m

θ
+

2

θ

m∑
i=1

∇gi(x)T (x− xSlat)

−gi(x)
− 2

θ

∑
i/∈I

∇gi(x)T (x− xSlat)

−gi(x)
.

For the last term, it follows from the proof of Lemma 2.16 that

−
∑
i/∈I

∇gi(x)T (x− xSlat)

−gi(x)
≤ m− |I| ≤ m,

while the central term includes all constraints and thereby is precisely the inner
product of (x−xSlat) and the gradient of the barrier term b(x) = −

∑m
i=1 ln(−gi(x)),

which is given by ∇b(x) = −
∑m

i=1
1

gi(x)
∇gi(x). Hence,

m∑
i=1

1

−gi(x)
<

4m

θ
+

2

θ
∇b(x)T (x− xSlat).

With fεj ,µj
(x) = fεj (x) + µjb(x) and the Cauchy-Schwarz inequality [37, page 600]

it now follows
m∑
i=1

1

−gi(x)
≤ 4m

θ
+

2

θµj

(
∇fεj ,µj

(x)−∇fεj (x)
)T

(x− xSlat)

≤ 4m

θ
+

2

θµj

(∥∥∇fεj ,µj
(x)
∥∥
2
+
∥∥∇fεj (x)∥∥2) ∥∥x− xSlat∥∥

2
.

Finally, Assumption 4.7 comes into play: Since x ∈ Nεj ,µj
, it implies directly

that
∥∥∇fεj ,µj

(x)
∥∥
2
≤ C ′, and furthermore that there exist global constants C̃1, C̃2 > 0

such that ∥∥∇fεj (x)∥∥2 ≤ C̃1 and
∥∥x− xSlat∥∥

2
≤ C̃2

for any j ∈ N. These bounds exist as ‖x‖2 ≤ Cx, and as ‖∇f(·)‖2 is bounded on the
compact set Ω, so both terms∥∥∇fεj (x)∥∥2 ≤ ‖∇f(x)‖2 + εj ‖x‖2 ≤ ‖∇f(x)‖2 + ε0

√
Cx

and ∥∥x− xSlat∥∥
2
≤ ‖x‖2 +

∥∥xSlat∥∥
2
≤
√
Cx +

∥∥xSlat∥∥
2

are bounded on Ω independent of the parameters εj , µj .
With µ0 > µ1 > ... > 0, it finally follows that there exists a global constant Cb > 0

such that
m∑
i=1

1

−gi(x)
≤ 4m

θ
+

2

θµj

(
C ′ + C̃1

)
C̃2 ≤ Cb 1

µj

for all j ∈ N and x ∈ Nεj ,µj
, so (4.17) is shown.
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b) Let x, y ∈ Nεj ,µj
. To derive the Lipschitz constant for the gradient of fεj ,µj

, the
latter will be split into its components: By the triangle inequality [37, page 600] and
the Lipschitz continuity of ∇f , given by Lemma 4.8, it holds:∥∥∇fεj ,µj

(x)−∇fεj ,µj
(y)
∥∥
2
= ‖∇f(x)−∇f(y) + εj(x− y) + µj (∇b(x)−∇b(y))‖2

≤ ‖∇f(x)−∇f(y)‖2︸ ︷︷ ︸
L∇f‖x−y‖

2

+εj ‖x− y‖2 + µj ‖∇b(x)−∇b(y)‖2 .

For the remaining term ‖∇b(x)−∇b(y)‖2, a bound on the Hessian of the barrier
term b will be derived and afterwards Lemma 4.3 used to transfer that bound to the
Lipschitz constant for the gradient of b. For any x ∈ Nεj ,µj

it holds:

∥∥∇2b(x)
∥∥
2
=

∥∥∥∥∥
m∑
i=1

(
1

gi(x)2
∇gi(x)∇gi(x)T −

1

gi(x)
∇2gi(x)

)∥∥∥∥∥
2

≤
m∑
i=1

∥∥∥∥ 1

gi(x)2
∇gi(x)∇gi(x)T

∥∥∥∥
2

+

m∑
i=1

∥∥∥∥ 1

gi(x)
∇2gi(x)

∥∥∥∥
2

≤
m∑
i=1

(
1

−gi(x)
‖∇gi(x)‖2

)2

+

m∑
i=1

1

−gi(x)
∥∥∇2gi(x)

∥∥
2
.

Now, Lemma 4.8 and its proof yield the bounds ‖∇gi(x)‖2 ≤ C∇g and∥∥∇2gi(x)
∥∥
2
≤ L∇g for all i = 1, ...,m, so together with the estimate from part a)

of this lemma it follows

∥∥∇2b(x)
∥∥
2
≤

m∑
i=1

(
1

−gi(x)
‖∇gi(x)‖2︸ ︷︷ ︸

≤C∇g

)2

+

m∑
i=1

1

−gi(x)
∥∥∇2gi(x)

∥∥
2︸ ︷︷ ︸

≤L∇g

≤
(
C∇g

)2 m∑
i=1

(
1

−gi(x)

)2

+ L∇g
m∑
i=1

1

−gi(x)

≤
(
C∇g

)2( m∑
i=1

1

−gi(x)︸ ︷︷ ︸
≤Cb

µj

)2

+ L∇g
m∑
i=1

1

−gi(x)︸ ︷︷ ︸
≤Cb

µj

≤
(
C∇g

)2(
Cb
)2 1

µ2
j

+ L∇gCb 1

µj
.

Hence, Lemma 4.3 yields that the gradient of b is Lipschitz continuous on Nεj ,µj

with Lipschitz constant
(
Cb
)2(

C∇g
)2 1

µ2
j
+CbL∇g 1

µj
. Altogether, this ultimately gives

∥∥∇fεj ,µj
(x)−∇fεj ,µj

(y)
∥∥
2
≤
(
L∇f + εj +

(
Cb
)2(

C∇g
)2 1

µj
+ CbL∇g

)
‖x− y‖2 ,

from which precisely the Lipschitz constant Lεj ,µj
specified in (4.18) follows.
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Figure 4.2: Visualisation of the Tikhonov-regularised barrier function fε,µ (blue), its
gradient (teal) and the resulting set Nε,µ (orange) for f(x) = −x, g(x) = x, and param-
eters ε = 1, µ = 1 (left) and ε = 1

2 , µ = 1
4 (right). When ε and µ are decreased, then the

minimiser of fε,µ approaches 0, the boundary of the feasible set. Analogously, also the
set Nε,µ gets closer to 0, as the global constant C ′ is fixed to 3. Lemma 4.9 a) states
that 1

−x ≤
Cb

µ for all x ∈ Nε,µ. Thus, the smaller µ, the closer might Nε,µ be to the bound-
ary, which is precisely the case here.

Remark. The dependencies of both estimates in µj are not too surprising: The statements
are limited to the set Nεj ,µj

which enforces a certain proximity to the minimiser x̄εj ,µj
.

The latter, in turn, lies in the strictly feasible set F+, and the gradient of fεj ,µj
is zero in

it. Now, when approaching the boundary of F+, this is accompanied by an increase in the
gradient of fεj ,µj

and thus only possible within Nεj ,µj
to a certain degree. A larger barrier

parameter µj thereby puts more weight on the barrier term, so a greater distance to the
boundary of F+ is ensured. Conversely, when reducing µj , the constraints gi are allowed to
get closer to 0, yielding the in 4.17 observed increase of the upper bound.

Similarly, the Lipschitz constant Lεj ,µj
might increase with smaller barrier parame-

ter µj , as it bounds how much curvature the function fεj ,µj
can at most have on Nεj ,µj

,
and this curvature might increase rapidly near to the boundary of F+. This behaviour is
illustrated in Figure 4.2.

The same computations as in the proof of Lemma 4.9 b) furthermore yield that, when
Assumption 4.7 holds, the norm of the structured part of the seed matrix Sk defined by (4.9)
is in each outer iteration j ∈ N bounded for all corresponding inner iterations k ∈ N0 by

‖Sk‖2 ≤ ‖εjI‖2 +

∥∥∥∥∥µj

m∑
i=1

1

gi
(
xjk
)2∇gi(xjk)∇gi(xjk)T

∥∥∥∥∥
2

≤ εj +
(
Cb
)2(

C∇g
)2 1

µj
. (4.19)

Here, it was used that xjk ∈ Nεj ,µj
by definition.
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Lemma 4.9 a) also yields another interesting observation: In Assumption 4.7, it is
assumed that the norm of the gradient of fεj ,µj

evaluated at the respective iterates xjk
remains bounded throughout the entire iteration. And in fact, the equation

∇fεj ,µj
(x) = ∇fεj−1,µj−1

(x) + (εj − εj−1)x− (µj − µj−1)

m∑
i=1

1

gi(x)
∇gi(x)

implies that, for x ∈ Nεj−1,µj−1
, the norm of the next gradient will at most constitute of

∥∥∇fεj ,µj
(x)
∥∥
2
≤
∥∥∇fεj−1,µj−1

(x)
∥∥
2
+ (εj−1 − εj)C

x + (µj−1 − µj)C
bC∇g 1

µj−1
.

Hence, when running the previous inner loop until
∥∥∇fεj−1,µj−1

(xj−1)
∥∥
2
≤ Cε2j−1 and using

the linear update procedure εj ← βεj−1, µj ← βγµj−1 as in line 4 of Algorithm 3.2, it holds
at the first iterate x0j := xj−1 of the new inner loop that∥∥∇fεj ,µj

(
x0j
)∥∥

2
≤
∥∥∇fεj−1,µj−1

(
x0j
)∥∥

2︸ ︷︷ ︸
≤Cε2j−1

+(1− β)Cxεj−1 + (1− βγ)CbC∇g, (4.20)

which lies in O(1) as j →∞.
With these estimates, the only missing parts for estimating the constants β̂ and ν are

an upper and lower bound on the step sizes αk. As is proven in the following lemma, these
can be derived using Assumption 4.7 c) and the bound for the norm of B−1

k derived in
Lemma 4.6.

Lemma 4.10. Let Assumption 4.7 hold, let εj ≤ 1, and let the corresponding Lipschitz
constant Lεj ,µj

≥ 1. The step sizes αk computed during the iterations of Algorithm 4.2 with
line-search parameters cls, ρls ∈ (0, 1) are for all k ∈ N0 bounded by

1 ≥ αk ≥
(1− cls)ρls

CLLεj ,µj

∥∥B−1
k

∥∥
2

≥ (1− cls)ρls

CL5`

(
εj

Lεj ,µj

)2`+1

. (4.21)

Proof. First note that, by Lemma 4.6, the norm of B−1
k is bounded by (4.14), so the

last inequality holds. By the concept of the Armijo backtracking line-search described in
Section 4.3, the step size αk is the largest, i.e. first, of the values 1, ρls, ρ

2
ls, ρ

3
ls, ... for which

the Armijo condition (4.11) is satisfied. This already implies αk ≤ 1.
For the remaining lower bound, the idea now is to use the fact that αk is precisely the

smallest possible power of ρls, so it either is 1 or its predecessor has still violated the Armijo
condition. If αk = 1 already satisfies the Armijo condition, then the statement (4.21)
trivially follows. Otherwise, the step size is given by αk = ρils with exponent i ∈ N for
which (4.11) is satisfied, while for ρi−1

ls ≤ 1 it is not.
By Assumption 4.7 c), there exists some step size δk ∈ (0, 1) such that the Armijo

condition is violated at the point xjk + δkpk ∈ F+ and it furthermore holds∥∥∥∇fεj ,µj

(
xjk + θδkpk

)
−∇fεj ,µj

(xjk)
∥∥∥
2
≤ CLLεj ,µj

‖θδkpk‖2 ∀ θ ∈ (0, 1). (4.22)
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Since fεj ,µj
is convex and the Armijo condition becomes satisfied somewhere on the

interval
[
ρils, ρ

i−1
ls
)
, the step size δk can be chosen from the interval

(
ρils, ρ

i−1
ls
]
. As the

Armijo condition (4.11) is violated for δk, it holds

fεj ,µj

(
xjk + δkpk

)
> fεj ,µj

(
xjk
)
+ clsδk∇fεj ,µj

(
xjk
)T

pk.

Following the computations of [33, page 11], this can be rewritten with the mean value
theorem [37, page 629] as

−clsδk∇fεj ,µj

(
xjk
)T

pk > fεj ,µj

(
xjk
)
− fεj ,µj

(
xjk + δkpk

)
= −δk∇fεj ,µj

(
xjk + θδkpk

)T
pk

for some θ ∈ (0, 1). Dividing by −δk and subtracting ∇fεj ,µj

(
xjk
)T

pk yields

(cls − 1)∇fεj ,µj

(
xjk
)T

pk <
(
∇fεj ,µj

(
xjk + θδkpk

)
−∇fεj ,µj

(
xjk
))T

pk,

which, by the Cauchy-Schwarz inequality [37, page 600] and (4.22), can be estimated by

(cls − 1)∇fεj ,µj

(
xjk
)T

pk <
∥∥∥∇fεj ,µj

(
xjk + θδkpk

)
−∇fεj ,µj

(
xjk
)∥∥∥

2
‖pk‖2

≤ θδkC
LLεj ,µj

‖pk‖22 .

Finally, with the inverse norm of B−1
k and the search direction pk = −B−1

k ∇fεj ,µj

(
xjk
)

used in the l-BFGS method (cf. Section 4.1), it follows that

1− cls∥∥B−1
k

∥∥
2

‖pk‖22 = (1− cls)λmin(Bk) ‖pk‖22 ≤ (1− cls)p
T
kBkpk < θδkC

LLεj ,µj
‖pk‖22 ,

which yields
1− cls

CLLεj ,µj

∥∥B−1
k

∥∥
2

< θδk < δk ≤ ρi−1
ls .

Therefore, it holds
αk = ρils = ρlsρ

i−1
ls >

(1− cls)ρls

CLLεj ,µj

∥∥B−1
k

∥∥
2

,

and statement (4.21) is proven.

4.5.4 A global rate for the number of inner iterations

With these estimates, now, all components are prepared which are necessary for the global
quantification of the convergence rate of the inner loop. In Theorem 4.5, it was stated
that, for given parameters εj , µj > 0, the inner iterates converge r-linearly in the residual
gradient norm with the upper bound

∥∥∥∇fεj ,µj

(
xjk
)∥∥∥2

2
≤ νk

(
β̂

1−
√
ν

)2
L2
εj ,µj

εj

∥∥∥∇fεj ,µj
(xj0)

∥∥∥2
2
. (4.23)

To quantify the convergence rate and especially to derive a rate for the number of inner
iterations which are at most necessary in the entire outer loop, the constants

β̂ := sup
k∈N0

√
αk

∥∥B−1
k

∥∥
2

cls
and ν := sup

k∈N0

(
1− clsαkε

‖Bk‖2

)

– 66 –



4 A structured l-BFGS method for solving the inner problems

must be bounded with respect to the parameters εj and µj .
For this, the upper bounds

‖Bk‖2 ≤ 2 ‖Sk‖2 + Lεj ,µj
+

`L2
εj ,µj

εj
≤ 2εj + 2

(
Cb
)2(

C∇g
)2 1

µj
+ Lεj ,µj

+
`L2

εj ,µj

εj

and ∥∥B−1
k

∥∥
2
≤ 5`

εj

(
Lεj ,µj

εj

)2`

,

given by Lemma 4.6 and (4.19), and the bounds on the step size

(1− cls)ρls

CL5`

(
εj

Lεj ,µj

)2`+1

≤ αk ≤ 1,

derived in Lemma 4.10, yield the estimates

β̂ = sup
k∈N0

√
αk

∥∥B−1
k

∥∥
2

cls
≤

√
5`

εjcls

(
Lεj ,µj

εj

)2`

and

ν = sup
k∈N0

(
1− clsαkεj
‖Bk‖2

)
≤ 1−

cls(1− cls)ρlsε
2`+2
j

CL5`L2`+1
εj ,µj

(
2εj + 2

(
Cb
)2(

C∇g
)2 1

µj
+ Lεj ,µj

+
`L2

εj,µj

εj

) .
These estimates hold for the entire inner loop of one outer iteration j.

The goal behind the global quantification now is to express these results and thereby
ultimately the entire convergence as a rate in the parameters εj and µj which decrease
during the method. For this, the upper estimate of the Lipschitz constant Lεj ,µj

which was
derived in Lemma 4.9 b) yields that it is at most increasing at a rate of

Lεj ,µj
= L∇f + CbL∇g + εj +

(
Cb
)2(

C∇g
)2 1

µj
= O

(
1

µj

)
. (4.24)

Hence, the convergence parameter β̂ which is part of the prefactor in the estimate (4.23)
increases during the outer iterations at a rate of at most

β̂ ≤

√
5`

εjcls

(
Lεj ,µj

εj

)2`

= O

(
1

ε`+0.5
j µ`

j

)
(4.25)

as j → ∞, whereas the parameter ν which determines the minimal convergence speed in
each inner iteration loop and furthermore also occurs in the prefactor, satisfies that 1 − ν

decreases to 0 at most at a rate of

1− ν ≥
cls(1− cls)ρlsε

2`+2
j

CL5`L2`+1
εj ,µj

(
2εj + 2

(
Cb
)2(

C∇g
)2 1

µj
+ Lεj ,µj

+
`L2

εj,µj

εj

)
= Ω

 ε2`+2
j

1
µ2`+1

j

(
εj +

1
µj

+ 1
µj

+ 1
εjµ2

j

)


= Ω
(
ε2`+3
j µ2`+3

j

)
, (4.26)
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and correspondingly
1−
√
ν = Ω

(
ε`+1.5
j µ`+1.5

j

)
(4.27)

as j →∞.
This can now finally be used to quantify the rate at which the number of iterations

required in each inner loop evolves throughout the overall method. As motivated in Sec-
tion 3.4 and used as stopping criterion in Algorithm 4.2, the objective of each inner iteration
procedure is to reduce the residual gradient norm of fεj ,µj

until it lies below Cε2j . The es-
timate (4.23) given by the convergence result in Theorem 4.5 implies that this is the case
when

νk

(
β̂

1−
√
ν

)2
L2
εj ,µj

εj

∥∥∥∇fεj ,µj
(xj0)

∥∥∥2
2

!
≤ C2ε4j .

Altogether, the estimates (4.20), (4.24), (4.25) and (4.27) yield that the prefactor on
the left-hand side increases at most at a rate of(

β̂

1−
√
ν

)2
L2
εj ,µj

εj

∥∥∥∇fεj ,µj
(xj0)

∥∥∥2
2
= O

(
1

ε2`+1
j µ2`

j

1

ε2`+3
j µ2`+3

j

1

εjµ2
j

1

)

= O

(
1

ε4`+5
j µ4`+5

j

)
. (4.28)

Therefore, the stopping criterion
∥∥∥∇fεj ,µj

(xjk)
∥∥∥
2
≤ Cε2j is guaranteed to be satisfied when

it holds for the number of inner iterations k that

νk = O
(
ε4`+9
j µ4`+5

j

)
as j →∞.

If the inner convergence rate ν was constant throughout the entire method, then this
would yield that the number of inner iterations which are required at most in one outer step
increases at most at a rate of kmax = O (|ln εj |+ |lnµj |). However, in (4.26) it was only
shown that the rate at which 1−ν decreases to 0 can be bounded below by Ω

(
ε2`+3
j µ2`+3

j

)
,

not that it is globally bounded away from 0. Therefore, “only” the following estimate on
the rate at which the number of inner iterations increases at most can be derived.

Theorem 4.11. Consider the Tikhonov-regularised IPM described in Algorithm 3.2 with
the structured l-BFGS method of Algorithm 4.2 applied as inner solver, and assume that
Assumption 4.7 holds. Then the maximum number of inner iterations kmax required at each
outer step j satisfies

kmax = O

(
|ln εj |+ |lnµj |
ε2`+3
j µ2`+3

j

)
(4.29)

as j →∞.

Proof. As stated above, Theorem 4.5 yields that in each outer iteration j, the inner stopping
criterion

∥∥∥∇fεj ,µj
(xjk)

∥∥∥
2
≤ Cε2j of line 3 in Algorithm 4.2 is satisfied when

(νj)
k

(
β̂

1−√νj

)2
L2
εj ,µj

εj

∥∥∥∇fεj ,µj
(xj0)

∥∥∥2
2︸ ︷︷ ︸

=:Aj

≤ C2ε4j . (4.30)
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Note that ν is denoted with an index j here to emphasise that it changes during the outer
iterations and thereby affects the convergence rate. Defining the prefactor in (4.30) as Aj

and solving the inequality for k gives

(νj)
kAj ≤ Cε4j

⇔ k ln νj︸︷︷︸
<0

+ lnAj ≤ lnC + 4 ln εj

⇔ k ≥ lnC + 4 ln εj − lnAj

ln νj
.

By (4.28), Aj lies in the order O
(

1
ε4`+5
j µ4`+5

j

)
, so for sufficiently large j it holds

Aj ≤
C1

ε4`+5
j µ4`+5

j

for some constant C1 > 0. Furthermore, (4.26) implies that

νj ≤ 1− C2ε
2`+3
j µ2`+3

j

for some C2 > 0.
Thus, for sufficiently large j, (4.30) and thereby the inner stopping criterion are satisfied

when
k ≥ lnC + 4 ln εj − lnC1 + (4`+ 5) ln εj + (4`+ 5) lnµj

ln
(
1− C2ε

2`+3
j µ2`+3

j

) .

The term in the numerator lies in O (|ln εj |+ |lnµj |) (note that εj and µj converge to 0,
so the logarithms become negative), while the term in the denominator yields an order
of O

(
1

ε2`+3
j µ2`+3

j

)
since it holds − 1

ln(1−x) = O
(
1
x

)
for x→ 0+.

By taking both rates together, the order in (4.29) is obtained.

Remark. As can be seen in Theorem 4.11, the number of l-BFGS iterations required in each
outer step heavily depends on the update procedure for the parameters εj and µj (line 4
in Algorithm 3.2). Intuitively, the greater these updates, the more inner iterations will be
needed as they go along with a greater distance between the previous optimum x̄εj−1,µj−1

and the new inner minimiser x̄εj ,µj
. It especially follows that the barrier parameter µj

should not be updated much faster than the regularisation parameter εj , leading to the
recommendation for a rather small update parameter γ > 1 in Algorithm 3.2.

The dependency on the l-BFGS memory length ` arises from the problem that
the ε-strong positive definiteness of B

(0)
k cannot be ensured to be maintained during the

l-BFGS updates, hence yielding only the estimate (4.14). However, since ` = min{k, `max},
it is limited by the chosen maximum memory length `max.

Theorem 4.11 yields that there is some constant C̃ > 0 such that in each outer iter-
ation j ∈ N, the number of required inner iterations lies below C̃ |ln εj |+|lnµj |

ε2`+3
j µ2`+3

j

. In a final
step, this upper estimate can now be used to establish a bound on the rate at which the
total number of l-BFGS iterations in the overall Tikhonov-regularised IPM of Algorithm 3.2
increases. This rate will be derived in the next section, concluding the discussion in this
chapter with the polynomial complexity result Theorem 4.12.
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4.6 Polynomial complexity of the Tikhonov-regularised
interior-point method

As final part of the convergence analysis conducted in this chapter, in this section, a poly-
nomial complexity result for the Tikhonov-regularised IPM of Algorithm 3.2 is derived. It
states that the total number of l-BFGS iterations required to reach a desired tolerance grows
at most polynomially in this tolerance as it is reduced. The result is based on the upper
estimate for the number of inner iterations required in each outer step which is given in
Theorem 4.11.

The implications of Theorem 4.11 for the convergence analysis of the overall method
are as follows: When the linear update procedure εj ← βεj−1, µj ← βγµj−1 is employed as
proposed in Algorithm 3.2, then the overall method converges r-linearly in the objective with
respect to the number of outer iterations (see Theorem 3.12), but in worst case, the number
of necessary inner iterations at each outer step might grow exponentially with increasing
outer iteration index j; or at least, it is not shown otherwise here. This can be verified by
inserting the corresponding parameters εj = βjε0 and µj = βγjµ0 into the upper iteration
bound (4.29), by which one obtains

kmax = O

(
|j lnβ|+ |γj lnβ|
βj(2`+3)βγj(2`+3)

)
= O

(
je−j lnβ(1+γ)(2`+3)

)
(4.31)

as j →∞. As β < 1 implies lnβ < 0, a positive exponent is given in the last term.
Hence, an exponential growth in the number of inner iterations cannot be ruled out

with Theorem 4.11 for the linear update procedure. However, this exponential growth is
only observed when considering the convergence with respect to j, that is, with the update
choice given here, with respect to an “exponential improvement” in the accuracy of the
solution, such as an accuracy improvement by one decimal place.

On the other hand, when analysing the convergence in terms of the actually imposed
solution accuracy, that is, in terms of the tolerance τ > 0, or, equivalently, in terms of a
parameter ε∗ which must be reached in the outer stopping criterion (line 3 of Algorithm 3.2),
then this corresponds only to a logarithmic increase in the number of outer iterations. Hence,
the overall number of necessary l-BFGS iterations is polynomial in ε∗ and thereby in τ .

Theorem 4.12. Consider the Tikhonov-regularised IPM described in Algorithm 3.2 with
the structured l-BFGS method of Algorithm 4.2 applied as inner solver, and assume that
Assumption 4.7 holds. Then the total number of inner iterations K which are at most
required to reach a tolerance τ > 0 increases at most polynomially in τ . Specifically, it holds

K = O

(
(ln τ)2

(
1

τ

)(1+γ)(2`+3)
)

(4.32)

for τ → 0+.

Proof. First note analogously to the proof of Theorem 3.12 that the outer iterates xj pro-
duced by Algorithm 3.2 are bounded. Thereby, also the norm of the gradient of f evaluated
in these iterates remains bounded. Hence, with µj = o(εj) it follows that the regularisa-
tion parameter ε∗ at which the left term in the stopping criterion in line 3 falls below the
tolerance τ , is linear in the latter.
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Now let J ∈ N denote the smallest number of outer iterations after which this param-
eter ε∗ is reached. With above argument, it holds

εJ = Ω(τ).

By (4.31), the number of inner iterations kJ required in the J-th outer step is bounded at
a rate

kJ = O
(
Je−J lnβ(1+γ)(2`+3)

)
. (4.33)

The total number of inner iterations K is given as the sum over the number of all inner
iterations k1, ..., kJ . But since, in their limit, all those kj are bounded by (4.31), and the
term inside the brackets and thereby the maximum number of iterations is monotonically
increasing with j, all k1, ..., kJ are in particular bounded by (4.33). Hence,

K =

J∑
j=1

kj = J ·O
(
Je−J lnβ(1+γ)(2`+3)

)
= O

(
J2e−J lnβ(1+γ)(2`+3)

)
. (4.34)

The update rule εj+1 ← βεj yields that εJ = βJε0, so it follows

J =
ln εJ

ε0

lnβ
.

Inserting this formula for J into (4.34) yields

K = O
(
J2e−J lnβ(1+γ)(2`+3)

)
= O

(( ln εJ
ε0

lnβ

)2

e−
ln εJ

ε0
ln β

lnβ(1+γ)(2`+3)

)

= O

((
ln εJ

ε0

)2(εJ
ε0

)−(1+γ)(2`+3)
)

= O

(
(ln εJ)

2

(
1

εJ

)(1+γ)(2`+3)
)
.

Here, the order is considered for J →∞ or, equivalently, for εJ → 0+.
With εJ = Ω(τ), it finally follows

K = O

(
(ln τ)2

(
1

τ

)(1+γ)(2`+3)
)
,

and the polynomial complexity result (4.32) is proven.

Remark. A more elaborate rate could be obtained when taking the monotone increase of j
into account in (4.34) instead of simply estimating it by the maximal value J . But for
the concept of the polynomial complexity result (4.32), this is not necessary and therefore
omitted here.
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As alternative to the linear update procedure considered in Algorithm 3.2 and the dis-
cussion here, also a sublinear update rule such as the harmonic choice εj ← 1

j ε0, µj ← 1
jγ µ0

with γ > 1 could be used. It still satisfies the requirement µj = o(εj) as j →∞, so all re-
sults except for the linear convergence rate in Theorem 3.12 remain valid. With this choice,
the increase in the number of inner iterations is by (4.29) then restricted to

k = O


∣∣∣ln ε0

j

∣∣∣+ ∣∣∣ln µ0

jγ

∣∣∣
ε2`+3
0

j2`+3

µ2`+3
0

jγ(2`+3)

 = O
(

ln j j(1+γ)(2`+3)
)
,

which, in difference to the exponential growth in the linear update, is polynomial in the
outer iteration index j.

However, this sublinear update scheme only yields a sublinear convergence rate in the
objective f with respect to the outer iterations, as Theorem 3.11 b) states that the rate of
this convergence lies in O(εj). Therefore, an ”exponential accuracy improvement” such as
by one decimal place goes along with an exponential increase in the number of necessary
outer iterations, so overall, the number of l-BFGS iterations would again grow exponentially
in this case.

On the other hand, when considering the improvement directly in terms of the imposed
tolerance τ as it is done in Theorem 4.12, then the number of outer iterations is now linear
in τ , and again, a polynomial number of total inner iterations is obtained. This polynomial
rate is similar to the rate (4.32) derived for the linear update procedure, and can easily be
verified when inserting J = ε?

ε0
into the estimate above and continuing as in the proof of

Theorem 4.12.
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Numerical results

In the context of this thesis, the proposed and analysed Tikhonov-regularised IPM of Algo-
rithm 3.2 was implemented and numerically tested. It is written in Python and published
on GitHub [22]. As final part of the thesis, in this chapter, numerical results of the method
are presented for nonlinear inequality-constrained problems, structured as follows.

In Section 5.1, details on the implementation are given. Afterwards in Section 5.2, the
used test problems are described in detail. In Section 5.3, numerical results are presented for
low-dimensional problems. These validate the theoretical convergence results of Chapters 3
and 4 and are used to discuss the numerical convergence behaviour of the method in detail.
Finally, results for large-scale problems are presented and discussed in Section 5.4.

5.1 Implementation details

The code mainly consists of two files: The file “qnregipm.py” (Quasi-Newton based regu-
larised interior-point method) contains a class with a solver for purely inequality constrained
problems as given in (P), whereas the file “qnregipmm.py” (Quasi-Newton based regularised
interior-point method of multipliers) contains an extension of this class for problems with
additional linear equality constraints. There, the Augmented Lagrangian method described
in Section 3.5 is used.

Both classes support the use of Tikhonov regularisation as well as of the proximal-point
regularisation outlined in Section 3.5, and for the inner solver it can be chosen between the
structured l-BFGS method described in Section 4.3 and an l-BFGS version in which the seed
matrix is only computed as scaled identity, cf. Section 4.1. If the structured l-BFGS method
is used, then it optionally allows to use a matrix-free version of the seed matrix, which can
be more suitable especially for large-scale problems. Furthermore, it can be decided whether
the linear system in the l-BFGS two loop recursion (cf. line 6 in Algorithm 4.1) is solved
exactly, or only computed approximately up to a specified tolerance using MINRES [38].

The Augmented Lagrangian method in the equality constrained case is implemented in a
way that the barrier parameter ρ is initialised with ε0 and afterwards increased at the same
speed as the reciprocal decrease of the barrier parameter µ; for details, see Section 3.5.
In parts, this follows the idea of [41]. However, ρ is only updated here as long as the
residual ‖Ax− b‖22 does not lie below the tolerance τ , in order to reduce the ill-conditioning
of the overall method. It should be noted that in the equality constrained case, the upper
estimate (3.16) used as stopping criterion does not in general hold as the iterates xj will
likely not satisfy the equality constraints exactly. However, the method is not terminated
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until ‖Ax− b‖22 lies below τ .
To avoid issues with machine accuracy, the line-search breaks when it reaches α ≤ 10−12.

Similarly, the inner iteration is stopped prematurely when the size of the latest update in
the iterate is too small, specifically, when ‖αkpk‖2 < 10−12. Furthermore, the factor τk+1

is only computed as long as the corresponding denominator lies above 10−13; otherwise,
the previous factor τk+1 is used. Finally, the method only imposes an inner approximation
accuracy, i.e.

∥∥∇fεj ,µj
(xj)

∥∥
2
, of at most 10−8. Once the inner tolerance Cε2j falls below

this threshold, it is kept at 10−8.
In addition to the two files mentioned above, the GitHub repository [22] also includes

the code by which the numerical results and plots presented in Sections 5.3 and 5.4 were
generated, as well as the programs used to illustrate Example 3.7.

5.2 Test problems

The results presented in this chapter were obtained by applying the Tikhonov-regularised
IPM to the following three problems: Firstly, to the non-convex two-dimensional Rosenbrock
function [37]

f(x1, x2) := 100(x2 − x21)
2 + (1− x1)

2,

which was augmented with the inequality constraints

g(x1, x2) :=


−x1
x22 − 3

x2 − 1

(x1 − 1)2 + (x2 + 1)2 − 4

 ≤ 0.

Since the unique minimiser x∗ = (1, 1)T of the unconstrained problem lies on the boundary
of the feasible set, it is also the unique solution for the constrained problem. The correspond-
ing minimum is given by f∗ := f(x∗) = 0. As strictly feasible starting point, x0 = (1.5, 0.5)T

was used.

Secondly, following [8, page 573], the method was applied to inequality-constrained
geometric programs (GP). Specifically, problems of the form

inf
x∈Rn

ln

Lobj∑
l=1

exp (Flx+ bl)

 s.t. ln

Lobj∑
l=1

exp (−Flx− bl + 1− 2 lnLobj)

 ≤ 0

ln

Lineq∑
l=1

exp (Gi,lx+ ci,l)

 ≤ 0 for i = 2, ...,m

were considered, where n,m,Lobj, Lineq ∈ N, Fl, Gi,l ∈ R1×n, and bl, cl ∈ R for all i and l.
The inequality constraints were specifically designed in the context of this thesis to

suit the considered setting. By their choice, it is ensured that, on the feasible set, the
objective function always lies above 1. Thus, the optimisation problem is bounded below,
and for the minimal value it holds f∗ ≥ 1. In fact, it is f∗ = 1 if there exists x ∈ F such
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that Flx+ bl = 1− lnLobj for all l. Whether this is the case, therefore depends especially
on the number of “objective summands” Lobj and constraints m relative to the problem
dimension n.

The geometric programs were generated randomly by choosing the para-
meters Fl ∈ [−2,−1)n, Gi,l ∈ [1, 2)n, bl ∈ [0, 1) and cl ∈ [4, 5) from a uniform distribution
on the respective interval. As starting point,

x0 = min

−
max
i,l

ci,l − lnLineq

n min
i,l,ν

Gi,l,ν
,
max

l
bl + lnLobj − 1

−n max
l,ν

Fl,ν

 (1, ..., 1)T

was used. By its design, it is guaranteed to be strictly feasible, while avoiding numerical
problems which occur when x is too small.

The third problem class for which results are presented consists of quadratically-cons-
trained quadratic programs (QCQP) [8, Section 4.4]

inf
x∈Rn

1

2
xTP0x+ qT0 x s.t. 1

2
xTPix+ qTi x+ ri ≤ 0 for i = 1, ...,m,

where P0, ..., Pm ∈ Rn×n are symmetric positive definite, q0, ..., qm ∈ Rn, and the offsets
satisfy r1, ..., rm < 0. Again, the problems were built randomly: The matrices P0, ..., Pm

were obtained by randomly generating sparse matrices Ai ∈ [0, 10)n×n and compu-
ting Pi := AT

i Ai + I. The entries of the vectors q0, ..., qm were chosen uniformly from the
interval [0, 1), and the offsets ri uniformly from [−100,−1). By this choice, the used starting
point x0 = (0, ..., 0)T is strictly feasible.

In some of the figures presented next, a comparison to the optimal function value f∗ and
the optimal solution x∗ is given. As described above, these are known for the Rosenbrock
function. In the other cases, the parameters f∗ and x∗ were set to the minimal objective
function value obtained during the iterations and to the corresponding iterate, respectively.
Furthermore, if possible, solutions to the same problems were computed with CVXOPT [3]
for the GPs and with CVXPY [15] for the QCQPs, and the parameters f∗ and x∗ were
correspondingly updated when a smaller objective value was achieved.

All results were obtained by employing the structured l-BFGS method presented in
Algorithm 4.2 as inner solver, where the linear systems were solved approximately with
tolerance 10−10. Thereby, accurate initial guesses were computed while allowing for the use
of matrix-free techniques. As line-search parameters, cls = 10−5 and ρls = 0.5 were used,
and the l-BFGS memory size was limited to `max = 5.

5.3 Results for small-scale problems

In order to numerically analyse the convergence behaviour of the Tikhonov-regularised IPM
and compare it to the theoretical results derived in Chapters 3 and 4, at first, numerical re-
sults are presented for all three problems with a small number of variables: For the problem
based on the Rosenbrock function, it holds n = 2 and m = 4, as described in Section 5.2;
the geometric program was generated with n = 4, m = 6, Lobj = 5 and Lineq = 5, and the
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QCQP was generated with n = 10 and m = 5. For all problems, the method was applied
with parameters ε1 = µ1 = 1, β = 0.9, γ = 1.1. and C = 1. It was applied until a tolerance
of 10−6 for Rosenbrock and the QCQP, and 10−3 for the GP was reached in the upper
bound (5.1).

In Figure 5.1, the convergence results of all three problems with respect to the outer
iterations j are presented. The first row shows the difference between the function value
in the current iterate xj and the optimal solution f∗, as well as the upper bound on the
function value which was used as stopping criterion. The latter was computed in every
iteration based on the estimate (3.14) by

“upper bound” :=
1

εj

∥∥∇f(xj)∥∥
2

∥∥∇fεj ,µj
(xj)

∥∥
2
+mµj + 2εj

∥∥xj∥∥2
2
. (5.1)

The plots validate that this estimate bounds the residual in the function value from above,
and that both terms decrease at a linear rate with respect to the barrier parameter εj ,
visualised by the linear graph on the logarithmically scaled y-axis. For the GP, high fluctu-
ations in the upper bound were observed which are likely caused by the precautions taken
to avoid numerical problems, as is further discussed below.

The linear convergence is also clearly visible in the plots in the second row, which
furthermore show a convergence rate of 0.9 for Rosenbrock and GP, and even of 0.8 for
most of the QCQP iteration. In all three cases, an update rate β = 0.9 was used, so the
numerical observation is consistent with the theoretical result presented in Theorem 3.12 by
which the r-linear convergence rate is given by at least β. In addition, the plots mostly even
show a q-linear convergence in the iterate which is stronger than the theoretically proven
r-linear result.

In case of the QCQP, the method reached an accuracy of 10−9 after about 100 iterations.
However, the method continued for 40 additional iterations until the upper bound used as
stopping criterion fell below the imposed accuracy of 10−6. In these iterations, hardly any
further improvement was observed which is likely caused by the aforementioned precautions.

Similarly to the first two rows of Figure 5.1, the third and fourth row show the evolution
of the distance between the outer iterates xj and the optimal solution x∗. Although no
theoretical results for the convergence rate in the iterates were derived in this thesis, the
plots indicate that, at least for the problems considered here, the convergence is again
q-linear, albeit with a slightly slower rate.

In the last row of Figure 5.1, an approximation to the KKT residual is presented for
each outer iterate xj . It is based on the KKT conditions of the original problem (P) which
were defined in Theorem 2.11, and it is computed by

“KKT residual” :=

∥∥∥∥∥∇f(xj) +
m∑
i=1

(
λ̄µj

)
i
∇gi(xj)

∥∥∥∥∥
2

+

∥∥∥∥( (λ̄µj

)
1
g1(x

j), ...,
(
λ̄µj

)
m
gm(xj)

)T∥∥∥∥
2

=

∥∥∥∥∥∇f(xj)− µj

m∑
i=1

1

gi(xj)
∇gi(xj)

∥∥∥∥∥
2

+ µj

√
m, (5.2)

where the approximation
(
λ̄µj

)
i

:= − µj

gi(xj) is used for the Lagrange multiplier,
cf. (2.7)–(2.8). As the first term corresponds to the gradient norm of fεj ,µj

after removing
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Rosenbrock GP (small-scale) QCQP (small-scale)

Figure 5.1: Evolution of the Tikhonov-regularised IPM of Algorithm 3.2 in the outer
iterations for a small number of variables. The first two rows show how the method converges
linearly in the objective at a rate of β = 0.9 for Rosenbrock and GP, and even of 0.8 for
the QCQP. Similarly, the plots in the third and fourth row indicate that linear convergence
is obtained in the iterates. In the last row, the decrease of the KKT residual is presented,
which again is linear in the logarithmic y-axis.
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Rosenbrock GP (small-scale) QCQP (small-scale)

Figure 5.2: Number of inner iterations required in each outer step of the
Tikhonov-regularised IPM of Algorithm 3.2 for a small number of variables. In the GP
and QCQP scenarios, a general trend for an approximately linear increase is observed,
whereas for Rosenbrock, the number of iterations mainly remains constant.

the part εjxj , and this gradient norm as well as the barrier parameter µj are decreased lin-
early with rate βγ and β2, respectively, a linear decrease of the KKT residual with respect
to the logarithmic y-axis is observed.

In Figure 5.2, the number of l-BFGS iterations required in each outer step is shown.
Although it fluctuates over the steps, a general trend for an increasing number of required
iterations was observed in case of the GP and QCQP. In the latter, this trend is at least
given during the first 100 outer iterations in which the method did not interfere with the
precautions regarding the machine accuracy.

Results on the inner iterations of the method are presented in Figure 5.3. It shows the
inner iteration progress over the entire method. The x-axis therefore describes the accu-
mulated number of inner iterations plus 1, denoted by k̄. In particular, k̄ = 0, 1, 2, ... cor-
responds to the inner iterate x00, x

0
1, x

0
2, ..., until, after k inner iterations, the iterate x0k is ob-

tained for which the first inner loop is terminated. Then, k̄ = k + 1 continues
with x10 = x1 = x0k. This duplicate appearance of all outer iterates is purposely done to
include their value in fεj ,µj

and the gradient norm of the latter both for the outer iteration
which it had terminated, as well as for the following outer iteration in which it was used as
starting point.

The plots are designed as follows. For each outer iteration, the values for the corre-
sponding inner iterations are shown with a colour gradient: from red for the first inner
iterate xj0 to blue for the last inner iterate xjk. On the transition between two outer itera-
tions, the connecting lines are omitted. Therefore, jumps are clearly visible whenever they
occur.

In the first row of Figure 5.3, it is shown how the value of the regularised barrier func-
tion fεj ,µj

evolved during the iterations. As the function consists, on the one hand, of the
objective f which decreases throughout the outer iterations, and on the other hand of the
regularisation term and of the possibly negative barrier term, it might decrease as well as
increase with progressing outer iterations, as the results for the GP and the QCQP illus-
trate. Within each inner loop, however, Theorem 4.2 guarantees that fεj ,µj

(xjk) is strictly
decreasing.
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Rosenbrock GP (small-scale) QCQP (small-scale)

Figure 5.3: Inner iteration behaviour of the Tikhonov-regularised IPM of Algorithm 3.2
for a small number of variables. The results for each inner loop are shown with a colour
gradient: from red in the first inner iterate to blue in the last one. By construction of fεj ,µj

,
its values can increase as well as decrease with progressing outer iterations; in each inner
loop, however, they strictly decrease. The overall method demands that each inner loop
reduces the gradient norm of fεj ,µj

below Cε2j . With the subsequent update of εj and µj , a
sudden increase in the gradient norm is observed, ultimately resulting in an overall increasing
margin between the initial and final gradient norm in each inner loop. The inner iterates
mainly follow the overall trend of the outer iterates observed in Figure 5.1. Their trajectories
furthermore indicate that they follow a consistent pattern in each inner loop. In the last
row, the step sizes are presented which were obtained in the inner iterations.
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Below this, in the second row of Figure 5.3, the evolution of the gradient norm of
fεj ,µj

is plotted. As each inner loop was terminated once the gradient norm fell below the
tolerance Cε2j , a considerable reduction is observed for each loop. Furthermore, the final
gradient norm

∥∥∇fεj ,µj
(xj)

∥∥
2
, additionally plotted in teal, decreases, with some fluctuation,

mainly linearly on the logarithmic y-scale. Note that the generally increasing number of
inner iterations increasingly stretches the x-axis with respect to the outer iterations, so the
decrease appears more damped in the plot.

Following every inner loop, the parameters εj and µj were updated, resulting in a
sudden increase in the norm of the new gradient. In case of Rosenbrock and the QCQP,
the initial gradient norm also decreased with progressing outer iterations. However, in case
of the GP, it consistently returned to nearly the same value. This is consistent with the
worst-case rate derived in Section 4.5 by which it holds

∥∥∇fεj ,µj
(xj−1)

∥∥
2
= O(1).

In the first inner loops of the Rosenbrock scenario, it is shown how the gradient norm
at first increased, before the curvature information gathered by the l-BFGS update yielded
a search direction along which a decrease was obtained. As discussed above, after around
100 outer iterations in the QCQP, corresponding to k̄ = 1250, no further improvement was
observed in the function value. The plot in Figure 5.3 indicates that this correlates with
the residual gradient norm not being reduced below 10−7.

The reason for this is likely given by the precautions which were taken to avoid prob-
lems with the machine accuracy: Once the latest step αkpk was too small, then the inner
loop was terminated prematurely. This did not only affect the second half of the outer iter-
ations in the QCQP case, but also occurred throughout most of the GP scenario, resulting
in the fluctuations in the gradient norm as well as in the upper bound depicted in Figure 5.1.

In the third row, the evolution of the distance between the current iterate xjk and the
solution x∗ is shown—analogously to the third row of Figure 5.1. They follow the general
trend of the linear convergence observed in the outer iterates, but the progression within each
inner loop shows a certain pattern: In Rosenbrock and the GP, each inner trajectory bends
upwards, indicating that the first steps were almost orthogonal to the direction towards x∗,
and improved later with the inclusion of more curvature information in the l-BFGS update.
In contrast to that, the decrease observed in the QCQP bends downwards, indicating that
the initial steps pointed more towards the overall minimiser x∗ than towards the current
regularised barrier minimiser x̄εj ,µj

.
The step sizes αk which were obtained in the inner iterations by backtracking line-search

are presented in the last row of Figure 5.3. Whereas in most iterations the step size αk = 1

was accepted, much smaller steps could sometimes be observed throughout the GP and
in the second half of the QCQP scenario. This likely caused the inner loop to terminate
prematurely, as the blue colour of the step sizes indicates. In order to include the cases
when the line-search returned αk = 0, as the Armijo condition (4.11) was not satisfied for a
step size greater than 10−12, these are represented in the plot at the level 10−14. As can be
seen in Figure 5.3, this was only the case for a few l-BFGS iterations in the GP scenario.

In summary, the numerical results presented in Figures 5.1 to 5.3 are consistent with
the convergence results derived in Chapters 3 and 4. Overall, the Tikhonov-regularised
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IPM converges to a solution with the theoretically expected linear convergence rate in
the objective, and also the outer iterates appear to converge linearly, at least for the three
considered problems. However, it can be observed that the actual deviation from the optimal
function value is way below its upper bound which is used as stopping criterion, so the
method might be continued much longer than necessary. Hence, it would be worthwhile to
develop a more accurate stopping criterion. Furthermore, the method might struggle with
too small updates, causing issues with the machine accuracy.

5.4 Results for large-scale problems

As presented and discussed in the last section, the theoretical convergence results for the
Tikhonov-regularised IPM can also be observed numerically, at least for low-dimensional
problems. In this section, numerical results for larger-scale problems are presented: on the
one hand, a GP with n = 5000 variables, m = 501 inequality constraints, and Lobj = 50

and Lineq = 5 summands in the objective and constraint functions. On the other hand, a
QCQP was generated with n = 10000 variables and m = 500 inequality-constraints.

For the GP, the method was applied with parameters ε1 = µ1 = 1, β = 0.95, γ = 1.1

and C = 100; and for the QCQP, the parameters ε1 = µ1 = 1, β = 0.9, γ = 1.2 and C = 1

were used. In order to illustrate the evolution of the method more extensively, in both
scenarios, the tolerance τ was chosen sufficiently small so that it was never reached by the
stopping criterion (5.1), as is discussed below.

Analogously to Figures 5.1 to 5.3 for the small-scale problems, the results in this section
are presented in the two figures 5.4 and 5.5, separated between the outer and inner iteration
behaviour.

In general, there are many similarities between the results for the large-scale problems
and the ones presented in the last section. As is shown in the first two rows of Figure 5.4,
mainly q-linear convergence was obtained in the objective. For the GP, the convergence
rate coincided with the update parameter β = 0.95 as is expected by Theorem 3.12, and in
the first 140 iterations, the QCQP again converged at a rate of even 0.8 instead of β = 0.9.
After about 150 iterations, an approximation to a solution was obtained for the QCQP for
which further improvements were impeded by the machine accuracy.

In both cases, however, the upper bound on the residual began to increase linearly in
the logarithmic y-axis after an initial decrease. The reason for this was the inability of the
inner solver to decrease the gradient norm of fεj ,µj

to the required tolerance Cε2j . Instead,
it always terminated once the gradient norm had reached a certain level. As can be seen in
Figure 5.5, this appears to have been the case around 10−1 for the GP. Thus, after about 70
outer iterations, corresponding to k̄ = 1000, the achieved gradient norm started deviating
from the imposed inner tolerance.

The inner iterations of the QCQP, on the other hand, terminated prematurely once a
tolerance around 10−5 was reached, which was the case after about 50 iterations, or, corre-
spondingly, k̄ = 5000. However, the upper bound still decreased for around 100 additional
iterations, likely because the terms mµj and 2εj

∥∥xj∥∥2
2

were dominant in (5.1).
The results in Figure 5.4 show that, even though the achieved “inner
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GP (large-scale) QCQP (large-scale)

Figure 5.4: Evolution of the Tikhonov-regularised IPM of Algorithm 3.2 in the outer
iterations for large-scale problems. The objective converges linearly at a rate of β = 0.95

(GP) and 0.8 (QCQP). Furthermore, the plots in the third row indicate a linear convergence
in the iterates. After about 70 and 150 iterations for the GP and QCQP, respectively, the
upper bound starts to increase in O(1/εj), as the inner solver is not able to further reduce
the gradient norm of fεj ,µj

. The KKT residual is affected similarly by this.
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accuracy”
∥∥∇fεj ,µj

(xj)
∥∥
2

was not improved further, the linear convergence in the objec-
tive was still maintained, as well as the approximately linear convergence in the iterates.

The impact of the premature inner termination on the KKT residual (5.2) is shown in
the last row of Figure 5.4. Whereas it stagnated correspondingly to the gradient norm in the
GP scenario, it continued to decrease in case of the QCQP, until the method interfered with
the machine accuracy. This different behaviour is likely related to the question whether the
norm or the term µj

√
m were dominant in the KKT residual (5.2).

In the first row of Figure 5.5, the evolution of the number of required inner iterations
is shown. It differs notably between both scenarios: For the GP, the maximum number of
iterations which was set 100 there was exhausted without reaching the required accuracy in
the first inner loops. Afterwards, it always terminated after around 10 inner iterations due
to an insufficiently large update. The number of inner iterations for the QCQP, on the other
hand, increased almost linearly until the inner iterations started terminating prematurely.

This also corresponds to the evolution of the gradient norm, presented in the third row
of Figure 5.5. As, in case of the GP, it always returned to the same value of around 101 with
each outer update, and was then reduced until around 10−1, the inner loop always required
about 10 iterations. For the QCQP, on the other hand, both the initial and the ultimately
reached gradient norm decreased linearly. But as the latter decreased faster, the difference
between both grew, leading to the almost linear increase in the number of inner iterations.
Once the premature terminations began, the difference in the gradient norm and thereby
also the number of required inner iterations decreased with progressing outer steps.

The premature termination of the inner iterations was caused by the updates αkpk be-
coming too small. This is related to the step sizes obtained in each inner iteration, presented
in the last row of Figure 5.5. Especially in the GP scenario, the zero step sizes, represented
by an entry at 10−14, and the generally smaller step sizes correspond to the termination of
an inner loop, as their blue colour indicates. The increasing trend in the lower right corner
of the plot thereby further indicates that, with progressing outer iterations, the search direc-
tions became smaller and smaller, so that even larger step sizes did not yield a sufficiently
large update.

In general, it can be expected that higher problem dimensions lead to a larger, i.e.
earlier obtained, threshold at which the inner iterations start to terminate prematurely.
The reason for this lies in the nature of the Euclidean norm by which even small deviations
in each component of the gradient add up to a large gradient norm.

The major problem with this premature inner termination is that, once the residual
gradient norm is stagnating instead of being reduced in O(ε2j ), the definition of the upper
bound (5.1) yields an increase of it in O (1/εj). As the upper bound is used as stopping
criterion for the overall method, the latter might therefore never terminate in practice. This,
however, could be avoided by choosing a different stopping criterion for the overall method.

Nonetheless, the results presented in this section indicate that the Tikhonov regularised
IPM proposed in this thesis still converges linearly to a solution for large-scale problems in
practice, even when the inner loops are terminated prematurely.

– 83 –



5 Numerical results

GP (large-scale) QCQP (large-scale)

Figure 5.5: Inner iteration behaviour of the Tikhonov-regularised IPM of Algorithm 3.2
for large-scale problems. In the plots in the second and third row, the results for each inner
loop are shown with a colour gradient from red to blue. In the GP scenario, the inner loop
is at first either terminated after few iterations or when their maximum number is reached.
After around 70 outer steps, corresponding to k̄ = 1000, the inner solver is not able to
sufficiently reduce the gradient norm any more. Instead, it is terminated constantly after
around 10 iterations due to an insufficiently large update, always reaching a gradient norm
of around 10−1. In case of the QCQP, the number of inner iterations first grows linearly,
correlating with the increasing margin between initial and final gradient norm. After about
50 outer steps, corresponding to k̄ = 5000, the inner solver reaches its limit for the reduction
of the gradient norm. As the margin subsequently decreases, also the number of employed
inner iterations decreases.
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Conclusion

In this thesis, an l-BFGS based Tikhonov-regularised primal interior-point method was
proposed, analysed, and numerically validated. The method aims at solving a general
inequality-constrained convex problem, and its analysis is based on the mild and for feasible
interior-point methods common assumptions that the problem has a minimiser and that a
Slater point exists, cf. Assumption 2.10.

The method combines a Tikhonov regularisation with the barrier approach of
interior-point methods, thereby allowing for unconstrained optimisation techniques while
ensuring strong convexity in each sub-problem. During the iteration, the weight of both
regularisation and barrier term is simultaneously reduced. The regularisation parameter is
the central parameter in the method, and the barrier parameter as well as the inner approx-
imation accuracy are forced to decrease faster than it. The precise design of the method
was presented in Algorithm 3.2.

It was shown that each sub-problem in the method has a unique solution, and that these
solutions converge to the minimal-norm solution of the original problem with a convergence
rate linear in the regularisation parameter, cf. Theorem 3.6 and Lemma 3.8. Furthermore,
conditions on the update procedure for the parameters and the inner approximation accu-
racy were derived (Section 3.4), and it was proven that also the outer iterates of the method
converge to the minimal-norm solution, cf. Theorem 3.12. The convergence was further
quantified with an r-linear convergence rate in the objective which was also observed in the
numerical results presented in Chapter 5.

The convergence to the minimal-norm solution stands in contrast to other IPMs which
typically converge to the analytic centre of the solution set, cf. Section 2.4. An advantage of
this different behaviour is the clear characterisation of the limit point and the possibility to
influence the optimisation and the obtained solution by shifting the regularisation centre,
cf. Section 3.5. Furthermore, convergence of the method was proven in Theorem 3.12
without the additional assumption that the solution set of the problem is bounded, which is
otherwise typical for IPMs [4, 18, 46, 48]. As one can easily construct examples, including
Linear Programs, for which this is not the case, this is a notable advantage of the method
proposed in this thesis.

The integration of a Tikhonov regularisation was mainly motivated with the goal to
reduce the issue of increasing nonlinearity and ill-conditionedness which is well-known for
primal IPMs, thereby reasonably allowing for the use of Quasi-Newton methods to solve
the inner problems. But simultaneously, the different convergence behaviour caused by the
regularisation might lead to a faster approach of the iterates to the boundary of the feasible
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set. Thereby, it might also increase the nonlinearity and ill-conditionedness more drastically
than other IPMs would, as the latter intrinsically strive to remain as far in the interior of
the feasible set as possible.

To make the method suitable for large-scale nonlinear convex problems, an l-BFGS
method was employed as inner solver. In contrast to Newton’s method, it requires neither
knowledge on the Hessian of the objective and constraint functions, nor the solution of
linear systems of equations. As the latter might become prohibitive when a large number of
variables or constraints is given [4, 14]—a problem which also affects Quasi-Newton based
primal-dual IPMs [5]—the here proposed method aims particularly at large-scale problems.

It was proven in this thesis that the overall method reaches an imposed accuracy in
the function value after finitely many iterations, and that, under the requirements stated in
Assumption 4.7, the total number of required l-BFGS iterations grows at most polynomially
in the accuracy, cf. Theorems 3.12 and 4.12. To the best of our knowledge, this polynomial
iteration complexity result is the first of its kind for purely Quasi-Newton based IPMs in
nonlinear convex optimisation.

Although the derived rate (4.32) excludes an exponential growth, it still allows for an
increase in the number of iterations which might not be suitable in practice. The numerical
results presented in Section 5.4, however, indicate that the actual increase in the number
of total l-BFGS iterations remains acceptable. Furthermore, at least for the considered test
problems, the linear convergence rate was still observed even when the inner problems were
not solved as accurately as theoretically required, limiting the number of inner iterations
even further in practice.

In contrast to Newton-based IPMs [35, 43], the result does not explicitly estimate the
required number of iterations, but only bounds its growth. Furthermore, the constants
used in Section 4.5 might differ from problem to problem. Thereby, they especially do not
allow to estimate the total number of l-BFGS iterations with respect to the variable and
constraint dimensions n and m.

To deal with the increasing ill-conditionedness and thereby improve the convergence
speed of the inner iterations, a structured l-BFGS method was proposed which aims at
capturing the spectrum of the Hessian more properly by including its likely most problematic
part directly in the seed matrix. Although the convergence and complexity results derived
and presented in Chapter 4 do not cover the actual choice of the seed matrix, but only
require that it contains εI, it is reasonable to believe that the choice proposed in Section 4.3
improves the performance considerably.

The main drawback of the proposed structured inner solver is that, in each l-BFGS
iteration, it requires the solution of a linear system of equations. This contrasts the concept
of the overall method, as the latter explicitly aims at working without linear systems. But
since the resultant solution is only used as initial guess for the next search direction, it may
be computed only approximately, cf. Section 4.3. Furthermore, with the proposed choice
for the seed matrix, a matrix-free implementation can be employed by which the matrix
neither needs to be computed nor stored.

The convergence and complexity results derived in this thesis are not explicitly based on
the structured l-BFGS method. Therefore, they still hold when the seed matrix is only given
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as scaled identity, by which the entire method does not require the solution of linear systems.

In the context of general convex optimisation, the overall method has mainly two limi-
tations: Firstly, it is a feasible IPM and therefore requires a strictly feasible starting point.
If this is not given a priori, then a Phase I method [8, Section 11.4] can be employed to
compute such a point. However, infeasible IPMs might be advantageous in these situations.
As the method discussed in this thesis avoids linear systems, it cannot simply be converted
to an infeasible one as it is done in [5] or [37, Chapter 19].

Secondly, if linear equality constraints are given in addition, then the convergence re-
sults of this thesis only remain valid if the optimisation is carried out on a corresponding
reduced subspace. An alternative which is well-suited for the structured l-BFGS method is
the integration of linear equality constraints via an Augmented Lagrangian method, cf. Sec-
tion 3.5. However, deriving theoretical results for this approach is likely challenging.

With the extensive convergence analysis and the polynomial iteration complexity result,
this thesis establishes a theoretical basis for the integration of Tikhonov regularisation into
Quasi-Newton based primal interior-point methods. The proposed method may be refined
with further modifications on the parameter and update choices, the stopping criteria, and
the memory management, and it allows for additional extensions, such as in the design of
the inner solver and the integration of linear equality constraints. Therefore, this thesis can
serve as starting point for further research on similar methods in the context of large-scale
constrained convex optimisation.
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