
Diffeomorphism-Equivariant Neural Networks

Diffeomorphismusäquivariante Neuronale Netze

Masterarbeit

verfasst am
Institute of Mathematics and Image Computing, Universität zu Lübeck

im Rahmen des Studiengangs
Mathematik in Medizin und Lebenswissenschaften
der Universität zu Lübeck

vorgelegt von
Josephine Elisabeth Oettinger

ausgegeben und betreut von
Prof. Dr. Jan Lellmann

mit Unterstützung von
Zakhar Shumaylov und Prof. Dr. Carola Bibiane Schönlieb,
Department of Applied Mathematics and Theoretical Physics, University of
Cambridge

Lübeck, den 06. November 2025

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich diese Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Josephine Elisabeth Oettinger

– iii –

Zusammenfassung

Deep-Learning-Methoden haben sich zu einem Eckpfeiler der modernen da-
tengesteuerten Forschung entwickelt und finden in den verschiedensten wis-
senschaftlichen Bereichen Anwendung. Die meisten Netzwerke sind jedoch
stark von den im Training verwendeten Daten abhängig und erfordern gro-
ße Mengen an hochwertigen Daten sowie erhebliche Rechenressourcen.

In dieser Arbeit schlagen wir einen Ansatz vor, mit dem sich ein beliebi-
ges neuronales Netz in ein diffeomorphismusäquivariantes neuronales Netz
transformieren lässt, und analysieren ihn. Wir verwenden ein energiebasiertes
Kanonisierungs-Framework, das von LieLAC inspiriert ist, einem Verfahren
zur Erzeugung äquivarianter Netzwerke für Lie-Gruppen. Wir erweitern die-
ses Framework und passen es an die Gruppe der Diffeomorphismen an. Unser
Netzwerk erreicht eine annähernde Äquivarianz, ohne auf umfangreiche Da-
tenaugmentation oder erneutes Training angewiesen zu sein, da es nur einmal
auf einem einfachen Datensatz trainiert werden muss, aber dennoch gut auf
unbekannte Transformationen generalisiert.

Wir liefern eine theoretische Analyse der Generalisierungseigenschaften
der energiebasierten Kanonisierung und leiten Schranken für den erwarteten
Verlust her. Diese theoretischen Erkenntnisse spiegeln sich in unserer prakti-
schen Realisierung wider, in der wir beispielhaft eine diffeomorphismusäqui-
variante Segmentierung implementieren. Die experimentelle Validierung an-
hand eines synthetischen Datensatzes mit verschachtelten Quadraten bestätigt
die Wirksamkeit unseres Ansatzes, da unser Netzwerk einen naiven Ansatz
übertrifft und eine nahezu vergleichbare Segmentierungsgenauigkeit wie ein
erweitertes U-Net erreicht, dabei jedoch deutlich weniger Trainingsdaten be-
nötigt. Darüber hinaus weist unser Netzwerk weniger drastische Ausreißer auf.
Wir evaluieren die Leistung unseres Netzwerks außerdem auf realen Thorax-
Röntgenaufnahmen zur Lungensegmentierung. Hier erreicht oder übertrifft
unser Netzwerk den naiven Ansatz bei etwa 80% der ausgewerteten Bilder.

Insgesamt stellt diese Arbeit einen theoretisch fundierten und praktisch
validierten Rahmen vor, um Diffeomorphismusäquivarianz in neuronalen
Netzen durch energiebasierte Kanonisierung zu erreichen und ebnet damit
den Weg für dateneffiziente und transformationskonsistente Deep-Learning-
Modelle.

– iv –

Abstract

Deep learning models have become a cornerstone of modern data-driven re-
search, finding applications across various scientific domains. Most networks
rely heavily on the data seen in training and require large amounts of high-
quality data as well as computational resources.

In this work, we propose and analyse a strategy for turning any neural net-
work into a diffeomorphism-equivariant neural network. We use an energy-
based canonicalisation framework, inspired by LieLAC, a framework for cre-
ating equivariant networks for Lie groups. We extend the framework to the
group of diffeomorphisms. Our network achieves approximate equivariance
without relying on extensive data augmentation or retraining, as it only needs
to be trained once on a simple dataset. Nevertheless, it generalises well to un-
seen transformations.

We provide a theoretical analysis of the generalisation properties of energy-
based canonicalisation, and derive bounds on the expected loss. The theoreti-
cal insights are reflected in a practical network architecture, which achieves ap-
proximate diffeomorphism-equivariance for an exemplary segmentation task.
The experimental evaluation on a synthetic dataset of nested squares confirms
the effectiveness of our approach, as we outperform a naïve approach and
achieve a segmentation accuracy that is close to that of an augmented U-Net,
while requiring significantly less training data. In addition, our network has
less drastic outliers. We also evaluate the performance of our network on real-
world chest X-ray images for lung segmentation. Here, our network matches
or outperforms the naïve approach on approximately 80% of the evaluated im-
ages.

Overall, this work introduces a theoretically motivated and practically
validated framework for achieving diffeomorphism-equivariance in neural
networks through energy-based canonicalisation, paving the way for data-
efficient and transformation-consistent deep learning models.

– v –

Acknowledgements

First of all, I would like to thank everyone who gave me the opportunity to
write my thesis in Cambridge. Thank you, Carola, for taking me in; Jan,
for making the connection and supervising my thesis in Lübeck; Zak, for
supervising me in Cambridge; and everyone else who supported me along
the way. I had a splendid time and learnt so much.

Furthermore, I would like to thank everyone who helped me write this
thesis. It involved rather a lot of “trail and error” (and yes, at one point I used
the word “trail” instead of “trial” in my thesis, my apologies to everyone who
had to proofread my sometimes chaotic drafts). Special thanks go to Peter
and Zak, who spent many Fridays with me wrestling through the theoretical
parts; missing lunch and/or happy hour in the process. Thank you also for
patiently proofreading everything. In addition, I would like to thank every-
one else, especially Ole, Johannes, Flo, and Ulvo, for their proofreading and
mental support.

And now, after countless misspellings and mispronunciations of “canon-
icalisation”, it is finally done. So buckle your seatbelts everyone, and (hope-
fully) enjoy the ride...

AI Disclaimer
While working on this thesis, AI models such as ChatGPT and Claude AI
were used to improve writing and correct errors. Additionally, the code
writing was assisted by the GitHub Copilot in VS Code and ChatGPT. All
texts/outputs were manually scrutinised and validated.

– vi –

Contents

1 Introduction 3
1.1 Motivation 3
1.2 Canonicalisation 5
1.3 Contributions 7
1.4 Structure of this Work 8
1.5 Related Work 8

2 Theoretical Background 15
2.1 Topology, Manifolds, and Diffeomorphisms 15
2.2 Lie Group Theory 22
2.3 Measure Theory 26

3 On Generalisation of Canonicalisation 31
3.1 Setup of the Learning Scenario 32
3.2 Bounding the Expected Generalisation Loss 38

4 Diffeomorphism-Equivariant Neural Network 47
4.1 Problem Setup 48
4.2 Canonicalisation 49
4.3 Segmentation 55
4.4 Reverse Canonicalisation 57
4.5 Theoretical Connection and Summary 57

5 Experiments and Results 59
5.1 Synthetic Datasets 59
5.2 Hyperparameter Tuning and Implementation of DiffeoNN 62
5.3 Benchmarking 67
5.4 Invariance of the Canonicalisation 68
5.5 DiffeoNN for Lung Segmentation 69

6 Conclusion and Discussion 73

Bibliography 75

– vii –

A Appendix 82
A.1 Artificial Neural Networks 82
A.2 Synthetic Dataset 86
A.3 DiffeoNN on the Synthetic Dataset 87
A.4 Experiments on Invariance of the Canonicalisation 90
A.5 DiffeoNN for Lung Segmentation 91

– viii –

List of Used Symbols

ℊ Lie algebra.
𝐴𝑐

𝛿 complement of 𝐴𝛿, i.e., set of elements with poorly-sampled orbits.
𝐴𝛿 set of elements 𝑥 for which the orbits 𝒪𝑥 is well-sampled.
𝐶Lip Lipschitz-constant of 𝑥 ↦ 𝐿(𝑓𝜃(𝑥), 𝑦).
𝐸𝑋𝐸

image similarity energy.
𝐸VAE VAE-based energy.
𝐸adv adversarial energy.
𝐸can canonicalisation energy, 𝐸can ∶ 𝒳 ×𝒟SVF(Ω) → ℝ.
𝐸reg regularising energy.
𝐺𝑥 stabiliser of 𝑥.
𝐺 group, here usually a compact Lie group.
𝑆𝜎 set of 𝑥 ∈ 𝑋, where a small loss can be ensured.
𝑉max upper bound of orbit volume vol𝒪(𝒪𝑥).
𝑋/𝐺 orbit space.
𝑋𝐸 training dataset, in experiments split into𝑋train

𝐸 , 𝑋val
𝐸 , and𝑋test

𝐸 for train-
ing networks.

𝑋𝑇𝐸 diffeomorphically transformed synthetic training dataset, mainly used
to test DiffeoNN, like the training data 𝑋𝐸: in experiments split into
𝑋train

𝑇𝐸 , 𝑋val
𝑇𝐸, and 𝑋test

𝑇𝐸.
𝑋 diffeomorphically transformed training dataset, input dataset.
𝑌𝐸 set of ground truth segmentations of 𝑋𝐸.
𝑌𝑇𝐸 set of ground truth segmentations of 𝑋𝑇𝐸.
Ω image domain.
𝑓𝜃 diffeomorphism-equivariant neuronal network, references DiffeoNN.
det(𝒥𝑔) Jacobian determinant of function 𝑔.
𝜇̂𝐸 smooth estimation of the empirical measure 𝜇𝐸 with density 𝜌𝐸.
𝟙𝐴 indicator function of set 𝐴.
ℬ(𝑋) Borel 𝜎-algebra of a topological space 𝑋.
𝒟(𝒳) groups of diffeomorphisms mapping fom the manifold 𝒳 to 𝒳.
𝒟SVF(𝒳) group of SVF-based diffeomorphisms.
𝒪𝑥 group orbit of 𝑥.
𝒳 manifold, describes the data manifold.
𝒴 output dataset.
𝜇𝐸 discrete empirical measure that places equal weights on all training

samples 𝑋𝐸.

– 1 –

Contents

𝜇𝑇 “true” distribution over manifold 𝒳 in the sense that it is the distribu-
tion, under which our data is drawn independently.

𝜔𝒪𝑥
orbit measure.

𝜋 projection map, mapping 𝑥 to its orbit 𝒪𝑥, 𝜋 ∶ 𝑋 → 𝑋/𝐺.
vol𝒪(𝒪𝑥) volume of the orbit 𝒪𝑥.
𝑐(𝑥) set of optimisers for the canonicalisation problem.
𝑓∗𝜇 pushforward measure 𝑓∗𝜇(𝐵) ∶= 𝜇(𝑓−1(𝐵)).
𝑓𝜃 inner neuronal network, here only trained on the small training

dataset 𝑋𝐸.
𝑔−1
𝑥 reverse canonicalising element.
𝑔𝑥 canonicalising element for the input 𝑥.
𝑚𝐸 empirical orbit mass.
𝑥𝑐 canonicalised input 𝑥.
𝑥𝑖 ∼ Law(𝜇𝑇) 𝑥𝑖 is drawn independently under the distribution 𝜇𝑇.
𝑦𝑥 output for input 𝑥.
|𝐺| power of the group 𝐺.

DiffeoNN our diffeomorphism-equivariant neuronal network.

SVF stationary velocity field.

VAE variational autoencoder.

– 2 –

1
Introduction

In the last few decades, deep learning models have become more and more popular and
have been applied to numerous scientific fields, such as biology [1], physics [59], and
engineering [29]. Especially in computer vision [83] and medical imaging [84, 23], deep
learning has become a central tool, as it can be used to automatically solve many tasks
such as classification [54], object detection [88], and segmentation [67].

Two of the main obstacles in training deep learning models are the large amounts
of high-quality data and computing resources needed [35, 77]. But even with sufficient
data, generalisation properties cannot be guaranteed, as they highly depends on the data
seen in training and testing [58, 87].

1.1 Motivation

In the quest for more robust and generalisable machine learning models, the focus has
shifted towards exploiting group symmetries of the task’s problem through invariant or
equivariant neural networks [21]. While group invariance means that a model’s output re-
mains unchanged when the input is transformed by any element of the group, group
equivariance means that the model’s output transforms in a predictable way under the
group action that is applied to the input. More formally, let 𝒳 and 𝒴 be manifolds.
Furthermore, let 𝐺 be a group of transformations with the actions ⋅𝒳 and ⋅𝒴, defined as
maps ⋅𝒳 ∶ 𝐺×𝒳 → 𝒳 and ⋅𝒴 ∶ 𝐺×𝒴 → 𝒴 that satisfy composition properties. A function
𝑓𝜃 ∶ 𝒳 → 𝒴 is called:

• 𝐺-invariant if for all 𝑔 ∈ 𝐺 and all 𝑥 ∈ 𝒳,

𝑓𝜃(𝑔 ⋅𝒳 𝑥) = 𝑓𝜃(𝑥), (1.1)

• 𝐺-equivariant if for all 𝑔 ∈ 𝐺 and all 𝑥 ∈ 𝒳,

𝑓𝜃(𝑔 ⋅𝒳 𝑥) = 𝑔′ ⋅𝒴 𝑓𝜃(𝑥), (1.2)

where 𝑔′ is the corresponding output transformation induced by 𝑔. The correspond-
ing output transformation 𝑔′ depends on the action ⋅𝒴 and 𝑔. When 𝒳 = 𝒴 and
⋅𝒳 = ⋅𝒴, it could, for example, be the classical inverse of 𝑔.

– 3 –

1 Introduction

Input 𝑥 Output 𝑓𝜃(𝑥)

𝑅(𝜋2)

Transformed Input
𝑅(𝜋2) ⋅ 𝑥

𝑅(𝜋2)

Output of Transformed Input
𝑓𝜃(𝑅(𝜋2) ⋅ 𝑥) = 𝑅(𝜋2) ⋅ 𝑓𝜃(𝑥)

Segmentation 𝑓𝜃

Segmentation 𝑓𝜃

(a) Group-equivariance on the example of segmentation.

Input 𝑥

𝑅(𝜋2)

Transformed Input
𝑅(𝜋2) ⋅ 𝑥

“Lung”

Output
𝑓𝜃(𝑅(𝜋2) ⋅ 𝑥) = 𝑓𝜃(𝑥)

Classification 𝑓
𝜃

Clas
sifi

cat
ion 𝑓

𝜃

(b) Group-invariance on the example of classification.

Figure 1.1: Difference between group-equivariance (left) and group-invariance (right) for the group of rotations
in the 2D plane 𝑆𝑂(2) using lung images from [76]. In segmentation, equivariance is desired, as rotating the
input image by 𝑅(𝜋2) ∈ 𝑆𝑂(2) should result in a correspondingly rotated segmentation output, which means
𝑓𝜃(𝑅(𝜋2) ⋅ 𝑥) = 𝑅(𝜋2) ⋅ 𝑓𝜃(𝑥). Group-invariance is, for example, desired for a classification task: A rotated input
image should yield the same class label, i.e., 𝑓𝜃(𝑅(𝜋2) ⋅ 𝑥) = 𝑓𝜃(𝑥).

For simplicity, we will refer to ⋅𝒳 and ⋅𝒴 as ⋅ if it is clear from the context. Depend-
ing on the task, either group-invariance (e.g., classification) or group-equivariance (e.g.,
segmentation) is desired. This is illustrated in Figure 1.1, where an exemplary group-
equivariant segmentation and an exemplary group-invariant classification for the group
of rotations in the 2D plane 𝑆𝑂(2) is visualised on lung images from [76].

Enforcing invariance or equivariance with respect to a relevant transformation group
can not only increase robustness but also reduce the need for extensive annotated data
augmentation, and, therefore, the training time [26, 21, 15, 20].

Previous works have primarily focused on small, discrete symmetry groups or very
specific learning settings [26, 31]. However, in many applications, the relevant transfor-
mations are not simple rigid motions but smooth, non-linear deformations of the input
domain. These transformations are naturally modelled as diffeomorphisms, which form an
infinite-dimensional group:

Definition 1.1 (Diffeomorphism). Let 𝒳 and 𝒴 be differentiable manifolds. A map
𝑓 ∶ 𝒳 → 𝒴 is called a diffeomorphism if it is bijective, differentiable, and its inverse
𝑓−1 ∶ 𝒴 → 𝒳 is also differentiable. The set of all such maps is denoted as 𝒟(𝒳,𝒴).

This set forms an infinite-dimensional group under composition, when 𝒳 = 𝒴. We
call that group 𝒟(𝒳). A more detailed definition and more background can be found
in Section 2.1. Informally, diffeomorphisms are smooth, invertible mappings between
manifolds with smooth inverses. They are frequently used in imaging applications, par-
ticularly medical image registration [12, 28, 19, 8], where they model realistic anatomi-
cal transformations while preserving topological properties [60, 75]. A neural network
that is equivariant to diffeomorphisms would therefore be highly valuable for real-world
tasks.

– 4 –

1 Introduction

For example, in medical image segmentation, two anatomically identical lungs may
appear very different across scans. Variations in patient positioning or changes in breath-
ing phase can stretch, compress, or warp the anatomy. A naïve network trained without
special precautions would often fail to segment both inputs consistently. By contrast, a
diffeomorphism-equivariant network could capture the equivalence between such scans
and adapt the segmentation accordingly.

In this work, we focus on the infinite-dimensional group of diffeomorphisms 𝒟(𝒳)
and introduce a diffeomorphism-equivariant neural network. However, achieving diffeo-
morphism-equivariance is very challenging: unlike finite groups or simple transforma-
tions, such as rotations or translations, the group of diffeomorphisms is infinite-dimen-
sional, and cannot be parametrised compactly in a way that is suitable for building it into
deep learning architectures directly. Most classical strategies fail:

• Data augmentation, where training data is synthetically transformed to mimic group
symmetries [71, 37], cannot guarantee equivariance for infinite-dimensional groups,
due to their dependence on finitely sampled data and resources.

• Group-equivariant layers, which encode symmetries directly into the network’s ar-
chitecture [26, 25, 44], need a known finite or at least compact group structure.

• Methods focusing on group orbits by averaging over predictions of transformed in-
puts, e.g., group and frame averaging [64, 66], become impractical for non-compact
and high-dimensional groups.

For more details on these approaches and their limitations, see Section 1.5. A feasible
strategy to achieve diffeomorphism-equivariance is canonicalisation [40, 72]. Canonicali-
sation is based on group orbits, and maps each input to a fixed representative in its group
orbit. Besides being able to handle diffeomorphisms, canonicalisation has the advan-
tage of creating a diffeomorphism-equivariant neural network that can easily be adapted
for various tasks, e.g., object detection and image segmentation, as the equivariance is
achieved without changing the network itself. Our diffeomorphism-equivariant neural
network therefore uses a canonicalisation strategy, which is inspired by LieLAC [72].

1.2 Canonicalisation

Let𝒳 be a data manifold. The central idea of our method is to train a simple model 𝑓𝜃 only
on a small labelled training dataset 𝑋𝐸 ⊆ 𝒳 and then extend it to perform well on the en-
tire dataset 𝑋 ⊆ 𝒳, containing all diffeomorphic transformations of the training dataset
𝑋𝐸 without additional training. This allows us also to adapt pretrained networks without
changing them. In analogy with [28], we parametrise the diffeomorphisms using station-
ary velocity fields (SVFs). We call this set of SVF-based diffeomorphisms 𝒟SVF(𝒳) ⊂ 𝒟(𝒳).

The extended model 𝑓𝜃 consists of three steps: a canonicalisation step, an inner model
trained on the training data 𝑋𝐸, and a reverse canonicalisation step, illustrated in Figure 1.2.

1. In the canonicalisation step, we find a representation 𝑥𝑐 for a given input 𝑥 ∈ 𝑋 such
that 𝑥𝑐 is “close” to the training data 𝑋𝐸. A canonicalising element 𝑔𝑥 ∈ 𝒟𝑆𝑉 𝐹(𝒳) is

– 5 –

1 Introduction

Input 𝑥 Ground Truth

Without Canonicalisation (naïve)

Canonicalised Input With Canonicalisation (ours)

True Segmentation

Network 𝑓𝜃

Network 𝑓𝜃 𝑔−1
𝑥

𝑔𝑥 ∈ arg min
𝑔∈𝒟𝑆𝑉𝐹(𝒳)

𝐸can(, 𝑔)

Figure 1.2: Canonicalisation strategy for segmentation. The task is to segment the inner square. The network 𝑓𝜃
is pretrained on a dataset of squares. Applying the model 𝑓𝜃 to a diffeomorphically transformed square image
without canonicalisation results in an Intersection-over-Union (IoU) of 0.6887 (naïve strategy). One can see ob-
vious classification errors. Using canonicalisation before applying the network 𝑓𝜃, and then transforming it back,
increases the IoU to 0.9299 (our method). The predicted output is nearly identical to the ground-truth segmenta-
tion. Our segmentation is significantly closer to a perfect segmentation, which would have an IoU of 1, as the naïve
approach.

found by minimising a task specific canonicalisation energy:

𝑔𝑥 ∈ arg min
𝑔∈𝒟𝑆𝑉𝐹(𝒳)

𝐸can(𝑥, 𝑔). (1.3)

The canonicalised input is then 𝑥𝑐 ∶= 𝑔𝑥 ⋅ 𝑥.
2. At the core is a model 𝑓𝜃 ∶ 𝒳 → 𝒴, 𝑥 ↦ 𝑓𝜃(𝑥) =∶ 𝑦𝑥 ∈ 𝒴 that is trained on the

dataset 𝑋𝐸. The model performs the task that is desired for the whole model and
outputs 𝑦𝑥𝑐

= 𝑓𝜃(𝑥𝑐) ∈ 𝒴 for the canonicalised input 𝑥𝑐. The output space 𝒴 depends
on the task of the whole network.

3. To obtain the final output, a reverse canonicalisation is applied:

𝑓𝜃(𝑥) ∶= 𝑦𝑥 ∶= 𝑔−1
𝑥 ⋅ 𝑦𝑥𝑐

= 𝑔−1
𝑥 ⋅ (𝑓𝜃(𝑔𝑥 ⋅ 𝑥)), (1.4)

where 𝑔−1
𝑥 ∈ 𝒟𝑆𝑉 𝐹(𝒴) reverses the map corresponding to the canonicalising ele-

ment 𝑔𝑥 on 𝒴. This could, for example, be the inverse of 𝑔𝑥; but reverse canonicalisa-
tion depends on the action of 𝐺 on 𝒴, which depends on the task, and could thus be
something completely else.

While this framework is general, we illustrate its relevance in the context of image seg-
mentation: For segmentation, diffeomorphism-equivariance means that if the input image is

– 6 –

1 Introduction

deformed by a diffeomorphism 𝑔, the predicted segmentation output should deform ex-
actly the same way: Let 𝑓𝜃 ∶ 𝒳 → 𝒴 be a segmentation network for a set of images 𝑋 ⊆ 𝒳
with an output set of segmentation 𝒴 ⊆ 𝒳. For this, a network 𝑓𝜃 is diffeomorphism-
equivariant if for all 𝑔 ∈ 𝒟(𝒳) and all 𝑥 ∈ 𝑋

𝑓𝜃(𝑔 ⋅ 𝑥) = 𝑔 ⋅ 𝑓𝜃(𝑥) (1.5)

holds. In this case, the reverse canonicalisation is exactly the inverse of the canonicalising
element 𝑔𝑥, i.e., 𝑓𝜃(𝑥) = 𝑔−1 ⋅ 𝑓𝜃(𝑔 ⋅ 𝑥)

An example setup of our method for a segmentation task is illustrated in Figure 1.2.
The segmentation model 𝑓𝜃 is trained on a dataset 𝑋𝐸 of images that contain two nested
squares. The task is to find a segmentation for the inner square. When following a naïve
approach, applying the model 𝑓𝜃 directly to diffeomorphically deformed squares, we
have an Intersection-over-Union (IoU) of 0.6887. The segmentation with canonicalisation
has an IoU of 0.9299, which is significantly closer to the IoU of a perfect segmentation
of 1. This demonstrates the benefit of our approach.

1.3 Contributions

The main contributions of this thesis can be summarised as follows:
We introduce a diffeomorphism-equivariant neural network. For this, we adapt

LieLAC [72] to the infinite-dimensional group of diffeomorphisms, i.e., instead of an ar-
bitrary Lie group, we construct equivariance over the group of diffeomorphisms. We
parametrise the diffeomorphisms through stationary velocity fields. While following its
general framework, we modify LieLAC so that it is usable for the group of diffeomor-
phisms. This is a novel approach, as LieLAC has primarily been studied for finite- or low-
dimensional continuous groups. We extend the idea to an infinite-dimensional group:
For the canonicalisation, we construct our own canonicalisation energy combining a vari-
ational autoencoder (VAE) loss with an adversarial discriminator [57, 63], and a defor-
mation regularisation following [19]. Furthermore, we replace the optimisation strategy
from LieLAC with a gradient-based optimisation strategy [19], which is specifically de-
signed to find SVF-based diffeomorphisms. To be able to use this gradient-based strategy,
we replace the typically supervised energy with our canonicalisation energy. Our method
is a general framework, and can be used for various tasks requiring diffeomorphism-
equivariance. As an example application, we perform a segmentation task, which has
not been done by Shumaylov et al. [72] or anyone else to our knowledge.

To evaluate our diffeomorphism-equivariant neural network, we perform several ex-
periments with the example diffeomorphism-equivariant segmentation. This is done on
a synthetic dataset of nested squares that we created for this purpose, and on a real-world
dataset of chest X-ray images. After hyperparameter tuning, we compare our method on
the synthetic dataset to a naïve approach and a data augmentation approach. Further-
more, the performance on a real-world dataset is compared to a naïve approach. The
canonicalisation step is theoretically diffeomorphism-invariant by construction. We
confirm this in practice by comparing the canonicalised input of an original image and a
diffeomorphically transformed one visually and by energy level.

– 7 –

1 Introduction

Next to the practical investigations, we examine the generalisation properties of
canonicalisation: We provide an informal proof that canonicalisation (as done in [72])
is generalisable. Under mild assumptions, training on canonicalised data ensures low ex-
pected loss on new canonicalised samples. This supports the choice of using the strategy
of canonicalisation in a theoretical manner.

1.4 Structure of this Work

In this section, we provide an overview of the organisation of this work: After motivat-
ing the goal of this work as well as giving a summary of our proposed diffeomorphism-
equivariant neural network and our distributions, we will finish this chapter (Section 1.5)
by introducing a selection of related methods.

In Chapter 2, we introduce the mathematical foundations required throughout this
work. Those include key concepts from topology, manifold theory, Lie groups, and mea-
sure theory.

Chapter 3 focuses on the theoretical generalisation properties of the canonicalisation
method that we use. We first formalise the problem setup and then present results on
generalisation and robustness of energy-based canonicalisation in a finite-dimensional
and compact setting.

Our diffeomorphism-equivariant neural network is properly introduced in Chap-
ter 4. We focus on an example segmentation task, which makes our general framework
more tangible. Starting with the proposed model architecture, we then detail the canon-
icalisation process, segmentation step, and reverse canonicalisation.

We evaluate the proposed approach in Chapter 5. For this, a synthetic dataset is
created. We describe the data generation process, implementation details, and hyperpa-
rameter tuning. This is followed by a presentation and discussion of the results, in which
we compare our method with a naïve and a data augmentation approach on a synthetic
dataset. Furthermore, we verify the invariance properties of the learned canonicalisation.
We also evaluate the performance of DiffeoNN compared to a naïve approach for lung
segmentation on real-world chest X-ray images.

In Chapter 6, we summarise the main findings, discuss limitations, and outline pos-
sible directions for future research.

1.5 Related Work

In the last decade, several strategies have been proposed to incorporate group symme-
tries into neural networks. These approaches range from task-specific designs for seg-
mentation to more general architectural or orbit-based approaches. In the following, we
discuss four classical approaches for equivariant networks: data augmentation, group-
equivariant layers, group-/frame-averaging and canonicalisation. We present a selec-
tion of examples for these, and evaluate their suitability for achieving diffeomorphism-
equivariance. An overview of these strategies is provided in Figure 1.3.

As we adapt our diffeomorphism-equivariant network exemplary for a segmentation

– 8 –

1 Introduction

strategy training
data size

computa-
tional cost

group-
equivariance
theoretically
guaranteed?

diffeomor-
phism
group

possible?

requires
retraining if
extending
pretrained

model?
data

augmentation
[71, 37]

large high no yes yes

group-
equivariant

layers
[26, 25, 44]

small
low +

architecture
realisation

yes no yes

group-/
frame-

averaging
[64, 66]

small low +
averaging approx. no no

canonicalisa-
tion [40, 72] small

low +
canonicali-
sation step

approx. yes no

Figure 1.3: Different strategies to realise group-equivariant neural networks. Even though data augmentation al-
lows the group of diffeomorphisms, group-equivariance cannot be theoretically guaranteed. In addition, there is a
large dataset needed for training and the computational costs are high, mainly because of the large (augmented)
training data. The other strategies only require a relatively low amount of data in training. Group-equivariant lay-
ers can guarantee the group-equivariance by design but do not allow the group of diffeomorphisms, as the latter
is not finite or compact. The computational cost for group-equivariant layers is only a low training cost and the
cost needed to realise the network’s architecture. In contrast, group- and frame-averaging do not need a modifi-
cation of the network, but extend it, which results in a low general cost and the additional cost of the averaging
step. In addition, group-equivariance can be theoretically guaranteed. A drawback is that the group of diffeomor-
phisms is not implementable, as it is infinite-dimensional, and does not have a Haar measure. On the contrary,
the canonicalisation strategy does not have such restrictions and allows diffeomorphisms while still guaranteeing
its equivariance approximately. Moreover, its computational cost is low, and it only the training of a simple model
(that is also not modified) and the canonicalisation step are required. Another advantage of canonicalisation (and
group-/ frame-averaging) is that those strategies can extend pretrained models to be group-equivariant without
requiring retraining of them. Overall, the only strategy that is feasible to create a diffeomorphism-equivariant neu-
ral network is therefore canonicalisation.

task, we further review two strategies that are specialised for diffeomorphism-equivariant
segmentation. Both approaches are based on image registration, a task closely connected
to diffeomorphisms and image segmentation.

1.5.1 Data Augmentation

A common approach to improve a model’s generalisation capacity and to avoid overfit-
ting is data augmentation [71]. In this approach, additional training samples are gener-
ated synthetically by applying transformations to the original training data. When the
transformations are symmetry-preserving, this method can be used to make the model
invariant or equivariant to them.

Mainly used in computer vision, a classical data augmentation approach applies
affine transforms such as scalings, rotations, translations, and reflections to the train-
ing data [45]. This approach has been extended to elastic deformation and noise in-

– 9 –

1 Introduction

jection, as well as cropping and random erasing, and even modality changes (contrast,
brightness) [22, 30, 73, 62]. A crucial requirement is that the transformations are label-
preserving: for instance, rotating the digit six (“6”) by 180 degrees turns it into the digit
nine (“9”), which changes its class.

The transformation of the data is usually performed on-the-fly while training. The
influence of data augmentation on the performance of a network has been widely studied
in [71]: While it is highly effective in reducing overfitting, data augmentation cannot
overcome all biases present in a small dataset. Nevertheless, it has been shown that data
augmentation can prevent or at least reduce several forms of biases, e.g., lighting, scale,
background, and noise.

Equivariance via Data Augmentation. Group-equivariance can be induced through
data augmentation by selecting transformations from a symmetry group 𝐺. The network
is then not only trained on the training data, but also on the same data transformed by the
group 𝐺. In this way, group-equivariance is approximately achieved without the need to
modify the network architecture. An example of creating a diffeomorphism-equivariant
neural network through data augmentation can be found in [37].

The main drawback of data augmentation is that, by creating more data, the train-
ing is also computationally more expensive: Firstly, it requires applying a transforma-
tion to each training image, which can be quite expensive for diffeomorphisms. Sec-
ondly, with augmentation, the training data increases substantially. In addition, finitely
sampling from a high-dimensional group of transformations, such as the group of dif-
feomorphisms, cannot capture the whole variability of the group. As a result, group-
equivariance cannot be guaranteed in theory. Furthermore, the approach relies on the
assumption that the network has the capacity to learn the symmetry in the first place.
This makes data augmentation not suitable for the infinite-dimensional group of diffeo-
morphisms.

1.5.2 Group Equivariant Layers

In contrast to data-based methods, incorporating symmetries through equivariant archi-
tectures can guarantee group-equivariance by design. Recent years have seen increasing
interest in such approaches, as they provide a way to encode known symmetries in neural
networks directly and reduce the need for data augmentation or extra-processing, such
as averaging [66, 64] or canonicalisation [40, 72]. This line of research falls under the
umbrella of geometric deep learning [21], which studies models that respect symmetries
and invariances induced by group actions on data.

Group-EquivariantConvolutionalNetworks. Convolutional neural networks (CNNs)
are famously (approximately) translation-equivariant due to the weight-sharing in their
convolutional layers [34, 51]. A standard convolution of a signal 𝑓 ∶ ℤ → ℝ with a kernel
𝑘 ∶ ℤ → ℝ is defined as

[𝑓 ∗ 𝑘](𝑥) ∶= ∑
𝑦∈ℤ

𝑓(𝑦)𝑘(𝑥 − 𝑦), (1.6)

and is equivariant under the group of translations. It has been suggested that this is an

– 10 –

1 Introduction

important reason for the efficiency of CNNs in tasks such as image classification [46, 39].
As there might be other symmetries in the data, this has motivated several other neural
networks, where group-equivariance or group-invariance is incorporated in the network
layers. Dieleman et al. [31] proposed, for example, a rotation-invariant convolutional
neural network.

This idea has been generalised to arbitrary finite groups via Group Convolutional
Networks (G-CNNs) [26], where the standard convolutions are replaced with group con-
volutions over discrete symmetry groups. Given a finite group 𝐺 acting on 𝑋, a feature
map 𝑓 ∶ 𝐺 → ℝ𝑑 and a kernel 𝑘 ∶ 𝐺 → ℝ𝑑, the group convolution is defined as

[𝑓 ∗𝐺 𝑘](𝑔) ∶= ∑
ℎ∈𝐺

𝑓(ℎ)𝑘(𝑔−1 ⋅ ℎ), 𝑔 ∈ 𝐺. (1.7)

Group convolutions are 𝐺-equivariant by construction, and therefore, group convolu-
tional networks (G-CNNs) guarantee exact equivariance to the group 𝐺. This setup gen-
erally assumes “nice” group actions, usually linear actions. Since their introduction, G-
CNNs have been extended in multiple directions: to compact groups such as 𝑆𝑂(2) and
𝑆𝑂(3) via spherical CNNs [25], and to efficient implementations using fast Fourier trans-
forms on groups [44].

In general, group convolutions require the group 𝐺 to be finite (or at least compact
and tractably parametrised [26]), as the convolution is defined by a discrete sum over 𝐺.
This makes G-CNNs incompatible with continuous and infinite groups. This assumption
fails for the diffeomorphism group, which is infinite-dimensional and cannot be repre-
sented by a finite set of group elements. Furthermore, the group of diffeomorphisms
does not behave linearly. Therefore, G-CNNs cannot be used to build a diffeomorphism-
equivariant network.

Lie Group Approaches. An approach to tackle these limitations is generalising to arbi-
trary Lie groups, which are continuous and differentiable groups. The idea is to replace
the discrete sum by an integral with respect to the Haar measure 𝜂 on a Lie group 𝐺,
yielding the Lie group convolution

[𝑓 ∗Lie 𝑘](𝑔) = ∫
𝐺
𝑓(ℎ)𝑘(𝑔−1 ⋅ ℎ)d𝜂(ℎ). (1.8)

This definition preserves equivariance under the continuous group 𝐺 in the same way
as in the discrete case. As Lie groups are locally compact, they always admit a Haar
measure [82]. To make the Lie group convolutions computationally manageable, several
strategies have been proposed:

LieConv [33] suggests parametrisations of Lie groups via their Lie algebras. Other ap-
proaches have focused on specific groups such as roto-translation groups [14], or used B-
spline parametrisations to approximate filters on Lie groups [13]. A more recent method
exploits the local structure of the Lie algebra to approximate group convolutions more
efficiently [48].

While Lie group convolutions extend the idea to continuous and infinite groups via
integration with respect to the Haar measure, the group needs to have a Haar measure.
While the existence of a Haar measure is guaranteed for locally compact groups, it is gen-
erally not the case for non-compact groups. The group of diffeomorphisms is not locally

– 11 –

1 Introduction

compact and does not have a Haar measure [61]. The approaches above can therefore
not be used for diffeomorphisms. Furthermore, even if a fitting measure existed, we still
needed to integrate over the whole group 𝐺, which is rather expensive for the group of
diffeomorphisms. This motivates orbit-based approaches such as frame-averaging (Sec-
tion 1.5.3) and canonicalisation (Section 1.5.4).

1.5.3 Averaging-based Approaches

An alternative to explicitly modifying the network architecture is to exploit symmetries
by operating directly on the orbits of the group action. Instead of building equivariance
into the layers, these methods either average over the orbit or parts of the orbit [64, 66, 32].
A group orbit of a given element 𝑥 is defined as the set of all elements that can be reached
from 𝑥 by the action of all elements of a group 𝐺:

𝒪𝑥 ∶= {𝑔 ⋅ 𝑥 ∣ 𝑔 ∈ 𝐺}. (1.9)

The main averaging-based strategies are group averaging [64], frame averaging [66] and
weighted frames [32]. These strategies have the advantage that the network’s architecture
itself does not need to be adjusted. Equivariance is achieved solely by the averaging step.

Group Averaging and Frames. A common approach to achieve 𝐺-equivariance for a
finite group 𝐺 is frame averaging [66]. Frame averaging generalises the classical group
averaging or Reynolds operator [64], which for a finite group 𝐺 acts on a bounded con-
tinuous function 𝑓 ∶ 𝑋 → 𝑌 as

𝑅𝐺(𝑓)(𝑥) = 1
|𝐺|

∑
𝑔∈𝐺

𝑓(𝑔−1 ⋅ 𝑥). (1.10)

The Reynolds operator is𝐺-equivariant, but requires a summation over the whole group𝐺,
which makes it impractical when |𝐺| is large or infeasible when it is infinite.

To overcome this, frames restrict the averaging to a smaller, input-dependent subset:
Let 𝑥 ∈ 𝑋 be the input. The subset 𝐹(𝑥) ⊆ 𝐺 is defined through a 𝐺-equivariant function
𝐹 ∶ 𝑋 → 2𝐺/{∅}, i.e., 𝐹(𝑔 ⋅ 𝑥) = 𝑔 ⋅ 𝐹(𝑥) for all 𝑔 ∈ 𝐺. The resulting frame average [66] is
then

𝐹(𝑓)(𝑥) = 1
|𝐹(𝑥)|

∑
𝑔∈𝐹(𝑥)

𝑓(𝑔−1 ⋅ 𝑥). (1.11)

Weighted frames [32] extend this idea further by allowing an input-dependent mea-
sure 𝜇𝑥 on 𝐺 such that

𝜇(𝑓)(𝑥) = ∫
𝐺
𝑓(𝑔−1 ⋅ 𝑥) 𝑑𝜇𝑥(𝑔). (1.12)

This helps to define frames for non-finite groups and can guarantee continuity of the
representation. But for non-compact or high-dimensional groups, it may be difficult to
compute 𝜇𝑥, as there exists no Haar measure, and therefore, the measure needs to be
approximated. This can be computationally expensive, especially as the measure 𝜇𝑥 is
input-dependent. Furthermore, we need to integrate over the whole group 𝐺. Therefore,
group averaging, frame averaging, and weighted frames are not suitable for achieving
diffeomorphism-equivariance.

– 12 –

1 Introduction

1.5.4 Canonicalisation

An approach that is closely related to, but distinct from frame averaging is orbit canon-
icalisation [40]. Here, each input 𝑥 ∈ 𝑋 is mapped to a representative element of its
group orbit under the action of a transformation group 𝐺. The assumption is that the
network performs well on those canonical representatives, and hence, once every input is
replaced by its canonical form, a standard architecture can be applied without modifica-
tions. The step of finding the canonical representatives is called canonicalisation step and
is usually realised by solving an optimisation problem that depends on the desired task
and given data. We denote the set of optimal solutions to that problem 𝑐(𝑥). A canonical
representative of an input 𝑥 is then 𝑥𝑐 ∈ 𝑐(𝑥). By reducing the input 𝑥 to a canonical rep-
resentative, the problem complexity of the network is reduced, as it only has to work well
on the canonical representatives. Therefore, the approach is particularly suitable for large
or continuous groups, where constructing fully equivariant architectures is expensive or
even infeasible.

Canonicalisation is computationally efficient and easy to integrate with arbitrary mod-
els, but depending on the group, it cannot always guarantee continuity at the orbit bound-
aries [32]. It is also well-suited for handling approximate symmetries, since small perturba-
tions can be absorbed by choosing stable canonical representatives [40]. Canonicalisation
has been shown to outperform group averaging in sample efficiency when the dataset is
sufficiently large [78].

The representational power of the canonical representative can be further improved
through probabilistic symmetry breaking [50], which replaces equivariant functions with
equivariant conditional distributions. In [50], this is implemented by introducing ran-
domness into the canonicalisation step.

Lie Algebra Canonicalization (LieLAC). A promising approach is Lie Algebra Canon-
icalization (LieLAC) [72] that applies canonicalisation to arbitrary Lie groups. Given an
energy function 𝐸 ∶ 𝑋 → [0,∞], we define the canonical representative of an orbit as the
minimiser of the energy function 𝐸 over the group orbit 𝒪𝑥

𝐶𝐸(𝑥) ∶= arg min
𝑦∈𝒪𝑥

𝐸(𝑦). (1.13)

Intuitively, the energy𝐸 is chosen such that its minima are “close” to the training data𝑋𝐸.
The minimisation problem can be lifted to a distribution over the group orbit instead of
the group orbit. LieLAC uses Lie algebra descent [72] to find a minimiser. The canonical-
isation step can be combined with a pretrained model on simple training data 𝑋𝐸, which
achieves equivariance without modifying the model’s architecture. This makes it highly
attractive for several applications, as existing models only need to be extended, and not
modified.

Our work builds on the LieLAC approach [72] and adapts it to achieve diffeomor-
phism-equivariance. We use this energy-based canonicalisation idea but use another
method to find the minimisers. Furthermore, we apply the method to a segmentation
task for the first time, to our knowledge. So far, LieLAC has only been used for solving
PDEs and in image classification [72]. Although the group of diffeomorphisms is not a
Lie group, we can still apply the LieLAC strategy by changing the optimisation method.

– 13 –

1 Introduction

In contrast to the other approaches mentioned above, the main principle of LieLAC does
not depend on the group 𝐺 being finite or locally compact, and we do not need to inte-
grate over the whole group 𝐺. Through a specific choice of parametrisation of the group
of diffeomorphisms, we can justify, why the theoretical guarantees on generalisation of
the LieLAC strategy still hold approximately for diffeomorphisms.

1.5.5 Registration-based Approaches for Image Segmentation

As an example, we apply our diffeomorphism-equivariant method to an image segmen-
tation task. In addition to the more general approaches from above, we therefore discuss
two methods that present a diffeomorphism-equivariant network that is created task-
specific for segmentation. As diffeomorphisms are widely used in medical image regis-
tration [19, 12], a combination of segmentation and image registration naturally arises to
create diffeomorphism-equivariant networks. Furthermore, registration bears similarity
to canonicalisation. As such, we use a modified registration method to find the minimiser
of the energy in the canonicalisation step of our network.

An approach by Beekman et al. [11] for diffeomorphism-equivariant segmentation
is to join image registration and segmentation in one network. The input image is seg-
mented by voxel-wise classification through registering a prior segmentation. The diffeo-
morphic transformations are modelled via stationary velocity fields [28], and integrated
using a Scaling and Squaring method [7]. For our method, we adopt this strategy to
parametrise diffeomorphisms.

Similarly, Sheikhjafari et al. [70] combined registration and segmentation in a super-
vised framework. This framework is based on a deep learning parametrisation of diffeo-
morphic image registration. There, a deep learning network learns transformations from
image pairs and corresponding segmentation outputs while ensuring diffeomorphisms
through heavy constraints. The segmentation is achieved by transforming a “phantom”
prior with the learned diffeomorphism, whereas canonicalisation maps the input to a
common representative.

A limitation of both approaches is that they rely on labelled image pairs for train-
ing. This is not the case for our method. Moreover, they are tailored to segmentation
tasks. Our strategy to achieve diffeomorphism-equivariance is more general and follows
classical strategies to build equivariant neural networks.

– 14 –

2
Theoretical Background

This chapter introduces the mathematical background required for our diffeomorphism-
equivariant framework, which extends the LieLAC approach [72] from finite-dimensional
Lie groups to the infinite-dimensional group of diffeomorphisms. To establish both the
theoretical and practical foundations of our method, we draw on concepts from differen-
tial geometry, Lie theory, and measure theory. The first two provide the geometric frame-
work necessary for defining diffeomorphisms and equivariance, while measure theory is
essential for the theoretical generalisation results discussed in Chapter 3.

Section 2.1 introduces the fundamental notions of topological spaces and manifolds,
while also introducing diffeomorphisms. Section 2.2 then formalises Lie groups and re-
lated constructions, which form the basis of the equivariant architecture of LieLAC. Fi-
nally, Section 2.3 provides a brief introduction to measure theory, focusing on the concepts
required for analysing the generalisation properties of energy-based canonicalisation in
Chapter 3.

2.1 Topology, Manifolds, and Diffeomorphisms

To analyse an energy-based canonicalisation approach theoretically, we follow the setup
of LieLAC [72], where the data space is modelled as a compact manifold. LieLAC fo-
cuses on Lie groups, which have the special property of being both smooth manifolds
and groups simultaneously. While Lie groups and their related theory are introduced
later in Section 2.2, we begin here by introducing smooth manifolds and the underlying
geometric structure.

In our work, we extend the LieLAC framework, which achieves Lie group-equivari-
ance to the infinite-dimensional group of diffeomorphisms. Diffeomorphisms are smooth,
invertible maps between manifolds whose inverses are also smooth. They describe con-
tinuous deformations of a space and provide the natural framework for modelling smooth
geometric transformations of images or shapes.

This section defines compact and smooth manifolds, introduces diffeomorphisms as
smooth mappings between them, and establishes the background required for the theo-
retical and practical developments in later chapters. The presentation mainly follows [53]
with contributions from [49, 43, 86, 2, 3].

– 15 –

2 Theoretical Background

Figure 2.1: The surface of the Earth ℰ modelled as the sphere in ℝ3 is a manifold from [89]. A subset ℛ ⊂ ℰ can be
mapped with 𝜑 to a plane in ℝ2.

2.1.1 Compact and Smooth Manifolds

A manifold is a topological space that locally resembles a real Euclidean space. A tangible
example of a manifold is the surface of the Earth, modelled as the sphere in ℝ3. There
exists a map, for example, a geographic map, for every region of Earth, such that this
region can be mapped to a plane in ℝ2, as visualised in Figure 2.1 There also exists a
collection of maps covering the whole Earth. This collection is called an atlas. In order to
define a topological manifold, the concepts of a map and an atlas must be transferred to
it. For this, some theoretical concepts are necessary. We begin with the most fundamental
concept, a topological space:

Definition 2.1 (Topology, Topological Space, [53]). A topology on a set 𝑋 is a collection
𝒯 of subsets of 𝑋 such that:

1. ∅,𝑋 ∈ 𝒯,
2. any arbitrary union of elements of 𝒯 belongs to 𝒯, and
3. any finite intersection of elements of 𝒯 belongs to 𝒯.

The elements of 𝒯 are called open sets. A subset 𝐶 ⊆ 𝑋 is closed if its complement 𝑋 ∖ 𝐶
is an open set. A pair (𝑋,𝒯) consisting of a set 𝑋 and a topology 𝒯 on 𝑋 is called a
topological space. If the topology 𝒯 is clear from the context, we refer to the topological
space (𝑋,𝒯) as 𝑋.

Note that arbitrary unions in a topology may be infinite, whereas intersections are re-
quired to be finite.

Hausdorff Space. The definition of a topological space is very general and flexible.
This can lead to undesirable properties and complications. For example, every sequence

– 16 –

2 Theoretical Background

in 𝑋 converges to every point in 𝑋 in the trivial topology {∅,𝑋} [53]. To avoid cases like
this, one usually focuses their attention on Hausdorff spaces.

Definition 2.2 (Hausdorff Space, [53]). A Hausdorff space 𝑇2 is a topological space in
which distinct points have disjoint neighbourhoods (open subsets). More specifically, if
𝑥, 𝑦 ∈ 𝑇2 with 𝑥 ≠ 𝑦, then

∃𝑈𝑥, 𝑉𝑦 ∈ 𝑇2 ∶ 𝑈𝑥 ∩ 𝑉𝑦 = ∅. (2.1)

An important property of a Hausdorff space is that every convergent sequence has a
unique limit. A classic example of a Hausdorff space is the 𝑛-dimensional Euclidean
space.

Example 2.3 (Euclidean Space, [53]). For any integer 𝑛 ≥ 1, the 𝑛-dimensional Eu-
clidean space is the set ℝ𝑛 of ordered 𝑛-tuples of real numbers. We denote a point in
ℝ𝑛 by (𝑥1, ..., 𝑥𝑛), (𝑥𝑖)𝑛𝑖=1 or 𝑥. The real numbers 𝑥𝑖 (with 𝑖 = 1, ..., 𝑛) are called the
coordinates of 𝑥.

We use the Hausdorff space to define a compact manifold.

Second Axiom of Countability. Another property that we need to define the latter is
second countability, which is based on the concept of open bases.

Definition 2.4 (Open Base, [53]). Let (𝑋,𝒯) be a topological space. A collection of open
sets ℬ ⊆ 𝒯 is called a base for 𝒯 if every open set 𝑈 ∈ 𝒯 can be written as a union of
elements of ℬ. This means: for every open set 𝑈 ∈ 𝒯, there exists 𝒜 ⊆ ℬ such that
𝑈 = ⋃𝑉 ∈𝒜 𝑉.

A topological space (𝑋,𝒯) can be defined through a base. The second axiom of countability
is then defined as follows:

Definition 2.5 (Second Countable Space, [53]). A topological space (𝑋,𝒯) is said to
satisfy the second axiom of countability if there exists a countable open base for the topol-
ogy 𝒯. A topological space (𝑋,𝒯) satisfying the second axiom of countability is called a
second countable space.

Continuous Maps. A central notion in topology, and later in the study of manifolds,
is that of continuous maps. Intuitively, continuity formalises the idea that nearby points
in one space are mapped to nearby points in another without changing the underlying
topological structure. This concept allows us to compare spaces, as well as define, for
example, differentiable maps between manifolds, which we need to define the “atlas” of
a manifold. Moreover, continuity is the basis for many later constructions, as it underlies
the definition of measurable and smooth maps, as well as diffeomorphisms, when we
move from topology to measure theory and analysis on manifolds.

Definition 2.6 (Continuous Map, [53]). Let 𝑋 and 𝑌 be topological spaces. A map
𝑓 ∶ 𝑋 → 𝑌 is continuous if 𝑓−1(𝑈) is open in 𝑋 for all open sets 𝑈 ⊆ 𝑌.

– 17 –

2 Theoretical Background

Combining the notion of compactness with continuous maps results in the extreme value
theorem on topological spaces, which guarantees that continuous functions on compact
spaces attain their maximum and minimum values.

Theorem2.7 (ExtremeValueTheoremonCompact Spaces, [69]). Let (𝑋,𝒯) be a compact
topological space and let

𝑓 ∶ 𝑋 → ℝ (2.2)

be a continuous function. Then 𝑓 attains both a maximum and a minimum value on𝑋, i.e., there
exist points 𝑥min, 𝑥max ∈ 𝑋 such that

𝑓(𝑥min) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥max), ∀𝑥 ∈ 𝑋. (2.3)

Proof. See [69].

The classical Weierstrass theorem for continuous functions on closed and bounded sub-
sets of ℝ𝑛 is a special case of Theorem 2.7, since such sets are compact in the standard
topology. The generalised form applies equally to continuous functions on compact man-
ifolds that are compact topological spaces (see Definition 2.10). This ensures the existence
of global extrema for smooth functions defined on compact manifolds, which we need in
Chapter 3 to prove the existence of the canonicalising elements.

A bijective continuous map 𝑓 whose inverse 𝑓−1 is also continuous is a homeomor-
phism.

Definition 2.8 (Homeomorphism, [53]). Let 𝑋 and 𝑌 be two topological spaces. The
function 𝑓 ∶ 𝑋 → 𝑌 is a homeomorphism if

(i) 𝑓 is a bijection,
(ii) 𝑓 is continuous,

(iii) the inverse 𝑓−1 ∶ 𝑌 → 𝑋 is also continuous.

Locally Euclidean. We can now use homeomorphisms to define what it means to be
locally Euclidean. This is used to formalise the intuitive notion that a manifold behaves
locally like an Euclidean space, even though the global structure might differ drastically.

Definition 2.9 (Locally Euclidean, [53]). A topological space 𝑋 is called locally Eu-
clidean of dimension 𝑛 if every point 𝑥 of 𝑋 has a neighbourhood 𝑈𝑥 that is homeo-
morphic to a subset of ℝ𝑛. In other words: for each 𝑥 ∈ 𝑋, there exist

• an open set 𝑈𝑥 ⊂ 𝑋,
• an open set 𝑉𝑥 ⊂ ℝ𝑛, and
• a homeomorphism 𝜓𝑥 ∶ 𝑈𝑥 → 𝑉𝑥.

Having introduced all the necessary properties, we are now able to define topological
manifolds:

Definition 2.10 (Topological Manifold, Compact Manifold, [53]). Let 𝑋 be a topologi-
cal space. We say 𝑋 is an 𝑛-dimensional topological manifold 𝑋 (or 𝑛-manifold) if it has
the following properties:

– 18 –

2 Theoretical Background

• 𝑋 is a Hausdorff space (Definition 2.2),
• 𝑋 is second countable (Definition 2.5), and
• 𝑋 is locally Euclidean of dimension 𝑛 (Definition 2.9).

A topological manifold 𝑋 is said to be compact if it is compact as a topological space, i.e., if
every open cover of 𝑋 admits a finite subcover. If the dimension is clear from the context
or does not need to be specified, we refer to an 𝑛-manifold as a manifold.

Very useful subclasses of manifolds are smooth and differentiable manifolds. A differ-
entiable manifold is locally similar enough to a vector space to have a globally defined
differential structure.

Definition 2.11 (SmoothManifold, DifferentiableManifold, [43]). A smooth manifold
𝑋, is a second countable Hausdorff space with a collection 𝐶 of maps (𝑈, 𝜓) such that:

(i) Every map (𝑈, 𝜓) ∈ 𝐶 is a homeomorphism 𝜓 ∶ 𝑈 → 𝑉 with 𝑈 ⊂ 𝑋 and 𝑉 ⊂ ℝ𝑛

open. We call such a pair chart.
(ii) Every point 𝑥 ∈ 𝑋 is in the domain of some chart.

(iii) For two charts (𝑈𝑖, 𝜓𝑖), (𝑈𝑗, 𝜓𝑗) ∈ 𝐶, 𝜓𝑖 ∶ 𝑈𝑖 → 𝑉𝑖 and 𝜓𝑗 ∶ 𝑈𝑗 → 𝑉𝑗 with 𝑈𝑖 ∩ 𝑈𝑗 ≠ ∅,
the map (𝜓𝑖 ∘ 𝜓−1

𝑗) ∶ 𝜓𝑗(𝑈𝑖 ∩ 𝑈𝑗) → 𝜓𝑖(𝑈𝑖 ∩ 𝑈𝑗) is 𝒞∞.
(iv) The collection 𝐶 of charts is maximal under all collections satisfying (i) - (iii) (mean-

ing, if 𝜙 ∶ 𝑈 → 𝑉 is a homeomorphism with 𝑈 ⊂ 𝑋 and 𝑉 ⊂ ℝ𝑛 open and fulfils (iii)
for all 𝜓 ∈ 𝐶 (commutatively), then 𝜙 ∈ 𝐶).

A set of charts satisfying (i) - (iii) is called an atlas. If the map in 𝜓𝑖 ∘ 𝜓−1
𝑗 in (ii) is in 𝒞1,

then 𝑋 is called a differentiable manifold 𝑋.

2.1.2 Differentiable Maps and Diffeomorphisms

The notion of smooth manifolds provides a way to extend Euclidean principles to spaces
that are only locally similar to ℝ𝑛. After defining smooth manifolds, we can now transfer
the idea of differentiable functions to the manifold setting by introducing smooth maps.
An important subclass of smooth maps is the class of diffeomorphisms. Diffeomorphisms
preserve the manifold’s differentiable structure and serve as the mathematical foundation
for describing smooth deformations, coordinate changes, and symmetries. Before defin-
ing diffeomorphisms formally, we first introduce the general notion of differentiable and
smooth maps between manifolds using charts:

Definition 2.12 (Differentiable Map, SmoothMap, [53]). Let 𝑋 and 𝑌 be smooth man-
ifolds. A function 𝑓 ∶ 𝑋 → 𝑌 is said to be 𝑘-times differentiable if for every 𝑥 ∈ 𝑋, there
exist smooth charts (𝑈, 𝜓) containing 𝑥 and (𝑉 , 𝜙) containing 𝑓(𝑥) such that 𝑓(𝑈) ⊂ 𝑉
and the composite map

𝜙 ∘ 𝑓 ∘ 𝜓−1 ∶ 𝜓(𝑈) ⊂ ℝ𝑛 → ℝ𝑚 (2.4)

is 𝑘-times differentiable in the Euclidean sense. If the composite map is infinitely differ-
entiable, the function 𝑓 is called a smooth map.

– 19 –

2 Theoretical Background

Smooth maps generalise differentiable functions to manifolds. To describe reversible
transformations that preserve smooth structure, we now introduce the concept of diffeo-
morphisms. While homeomorphisms (see Definition 2.8) preserve only topological prop-
erties, they do not necessarily preserve smooth structures. This motivates investigating
the set of diffeomorphisms.

Definition 2.13 (Diffeomorphism, 𝒞𝑘-Diffeomorphism, [86]). Let 𝑋 and 𝑌 be two dif-
ferentiable manifolds. The differentiable map 𝑓 ∶ 𝑋 → 𝑌 is a diffeomorphism if it is a
bijection, and its inverse 𝑓−1 ∶ 𝑌 → 𝑋 is differentiable as well. We denote the set of diffeo-
morphisms by 𝒟(𝑋, 𝑌). If 𝑓 and 𝑓−1 are 𝑘 times continuously differentiable, 𝑓 is called a
𝒞𝑘-diffeomorphism.

In our application, diffeomorphisms represent smooth, invertible deformations of im-
ages. In this work, we introduce a neural network that is diffeomorphism-equivariant,
ensuring consistent predictions under smooth, invertible deformations of the input.

Smooth and differentiable maps allow us to describe how one manifold can be smooth-
ly deformed into another. To analyse such deformations quantitatively, however, we need
a way to measure how much one configuration differs from another.

2.1.3 Tangent Space and Geodesic Distance

The notion of distance on smooth manifolds is crucial for our later theoretical investiga-
tions. To define such a distance, we first require a local linear structure that allows us to
measure lengths and angles. To capture the local behaviour of the manifold around each
point, we introduce the tangent space. We can then define an inner product on tangent
spaces, which leads to the concept of a Riemannian metric. This metric induces a natural
notion of distance between points, the geodesic distance.

We begin by introducing tangent vectors and the tangent space at a point 𝑥 in a smooth
manifold 𝑋.

Definition 2.14 (Tangent Vector, Tangent Space, [53]). Let 𝑋 be a smooth manifold. A
tangent vector at 𝑥 ∈ 𝑋 is a linear map

𝑣𝑥 ∶ 𝒞∞(𝑋) → ℝ, (2.5)

satisfying the Leibniz rule

𝑣𝑥(𝑓𝑔) = 𝑓(𝑥) 𝑣𝑥(𝑔) + 𝑔(𝑥) 𝑣𝑥(𝑓), ∀𝑓, 𝑔 ∈ 𝒞∞(𝑋). (2.6)

The set of all tangent vectors at 𝑥 forms a real vector space [53], denoted by 𝑇𝑥𝑋, called
the tangent space of 𝑋 at 𝑥.

One can visualise a tangent vector 𝑣𝑥 to an abstract smooth manifold 𝑋 as an “arrow”
that is tangent to 𝑋 with a “starting point” that is attached to 𝑋 at the given point 𝑥. We
can combine all the tangent spaces to a tangent bundle. The tangent bundle collects all
tangent spaces of the manifold into a single smooth structure.

– 20 –

2 Theoretical Background

Definition 2.15 (Tangent Bundle, [53]). The tangent bundle of a smooth manifold 𝑋 is
the disjoint union

𝑇𝑋 = ⨆
𝑥∈𝑋

𝑇𝑥𝑋, (2.7)

together with the natural projection 𝜋 ∶ 𝑇𝑋 → 𝑋, (𝑥, 𝑣) ↦ 𝑥.

Before we are able to define a distance, we need to introduce a Riemannian metric and a
Riemannian manifold. In those, the Euclidean concept of an inner product is transferred to
manifolds.

Definition 2.16 (Riemannian Metric, Riemannian Manifold, [53]). Let 𝑋 be a smooth
manifold. A Riemannian metric 𝑔 on𝑋 is a smooth family of inner products on the tangent
spaces of 𝑋. Namely, 𝑔 associates to each 𝑥 ∈ 𝑋 a positive definite symmetric bilinear
form on 𝑇𝑥𝑋,

𝑔𝑥 ∶ 𝑇𝑥𝑋 × 𝑇𝑥𝑋 → ℝ, (2.8)

which is smooth in the sense that the function

𝑥 ∈ 𝑋 ↦ 𝑔𝑥(𝑈𝑥, 𝑉𝑥) ∈ ℝ (2.9)

must be smooth for every locally defined smooth vector field 𝑈𝑥, 𝑉𝑥 in 𝑋. A Riemannian
manifold is a pair (𝑋, 𝑔), where 𝑋 is a smooth manifold and 𝑔 is a Riemannian metric
on 𝑋.

A useful fact is that every smooth manifold admits a Riemannian metric [53]. This makes
every smooth manifold a Riemannian manifold. We can define a notion of distance be-
tween points on a Riemannian manifold by using curves:

Definition 2.17 (Geodesic Distance, [53]). Let (𝑋, 𝑔) be a Riemannian manifold. The
length of a smooth curve 𝛾 ∶ [0, 1] → 𝑋 is defined as

𝐿(𝛾) ∶= ∫
1

0
√𝑔𝛾(𝑡)(̇𝛾(𝑡), ̇𝛾(𝑡)) 𝑑𝑡. (2.10)

The geodesic distance between two points 𝑥, 𝑦 ∈ 𝑋 is then given by

𝑑𝑔(𝑥, 𝑦) ∶= inf
𝛾∈Γ(𝑥,𝑦)

𝐿(𝛾), (2.11)

where Γ(𝑥, 𝑦) denotes the set of all smooth curves 𝛾 ∶ [0, 1] → 𝑋 with 𝛾(0) = 𝑥 and
𝛾(1) = 𝑦.

The geodesic distance 𝑑𝑔(𝑥, 𝑦) generalises the Euclidean distance to curved spaces and
measures the length of the shortest smooth path connecting two points on the manifold.
We will use this distance in our theoretical investigations in Chapter 3 to measure how
“close” an image is to an element 𝑥𝑖 in the training dataset 𝑋𝐸.

– 21 –

2 Theoretical Background

2.2 Lie Group Theory

Having defined the underlying theoretical background, we are now able to introduce Lie
groups. This section is based on [43, 53, 2, 3, 82]. Lie groups are a central component
of the introduced canonicalisation method used in [72], whose generalisation behaviour
we will investigate in Chapter 3, and on which our method DiffeoNN is based. These
groups are particularly interesting because they have all the properties of a differentiable
manifold while also having a group structure.

Definition 2.18 (Group, [3]). A group (𝐺, ∗) is a set 𝐺 in combination with a binary
operator ∗ ∶ 𝐺 × 𝐺 → 𝐺, (𝑓, 𝑔) ↦ 𝑓 ∗ 𝑔, such that:

(i) Associativity: For all 𝑓, 𝑔, ℎ ∈ 𝐺 one has (𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ),
(ii) Identity element: There exists a unique element 𝑒 ∈ 𝐺 such that for every 𝑓 ∈ 𝐺 one

has 𝑒 ∗ 𝑓 = 𝑓 ∗ 𝑒 = 𝑓. This element is the so-called identity element (or neutral element)
of the group 𝐺.

(iii) Inverse element: For all 𝑓 ∈ 𝐺, there exists an unique inverse element 𝑔 ∈ 𝐺 such that
𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 = 𝑒.

If the underlying space is compact, 𝐺 is called a compact group.

Compact groups play an important role in analysis and geometry because they admit a
(up to scaling) unique bi-invariant measure, called the Haar measure (see Definition 2.41),
which allows integration of functions over 𝐺 in a group-invariant manner. Typical exam-
ples include the circle group SO(2) and the special orthogonal group SO(𝑛). An example
of locally compact groups are Lie groups:

Definition 2.19 (Lie Group, [43]). A (finite-dimensional) Lie group is a set 𝐺 that is a
group and simultaneously a smooth 𝑛-manifold such that the multiplication map

(𝑓, 𝑔) ↦ 𝑓 ∗ 𝑔 ∶ 𝐺 × 𝐺 → 𝐺 (2.12)

and the inversion map

𝑓 ↦ 𝑓−1 ∶ 𝐺 → 𝐺 (2.13)

are smooth.

Example 2.20. Examples of Lie groups include:

• (ℝ𝑛, +), the additive group of vectors,
• 𝐺𝐿(𝑛,ℝ), the general linear group of invertible 𝑛×𝑛 matrices with the classical matrix

multiplication,
• 𝑆𝑂(𝑛), the special orthogonal group of rotations in ℝ𝑛 with the classical matrix mul-

tiplication.

An example of a group that is not a Lie group, is the group of diffeomorphisms:

Example 2.21. The set of diffeomorphisms that maps a smooth manifold 𝑋 to itself;
so𝑋 = 𝑌 in Definition 2.13, forms an infinite-dimensional group under composition [86].
We denote this group as 𝒟(𝑋). As the group of diffeomorphisms is infinite-dimensional,
it is not a Lie group.

– 22 –

2 Theoretical Background

The concept of Lie groups can be extended to an infinite-dimensional setting. In the fol-
lowing, we will focus on the finite-dimensional Lie groups. For the infinite-dimensional
case, we refer to [65]. Every Lie group 𝐺 defines a Lie algebra:

Definition 2.22 (Lie Algebra, [53]). A Lie algebra is a real vector space ℊ endowed with
a map, the Lie bracket,

[⋅, ⋅] ∶ ℊ × ℊ → ℊ, (2.14)

that satisfies the following properties: For all 𝑢, 𝑣, 𝑤 ∈ ℊ and for all 𝑎, 𝑏 ∈ ℝ holds

(i) [𝑢, 𝑣+𝑤] = [𝑢, 𝑣]+[𝑢, 𝑤], [𝑢, 𝑎𝑣] = 𝑎[𝑢, 𝑣] and [𝑣+𝑤, 𝑢] = [𝑣, 𝑢]+[𝑤, 𝑢], [𝑎𝑢, 𝑣] = 𝑎[𝑢, 𝑣]
(bilinearity),

(ii) [𝑢, 𝑣] = −[𝑣, 𝑢] (antisymmetry),
(iii) [𝑢, [𝑣, 𝑤]] + [𝑣, [𝑤, 𝑢]] + [𝑤, [𝑢, 𝑣]] = 0 (Jacobi Identity).

In the following, we will refer to a Lie algebra with onlyℊ instead of (ℊ, [⋅, ⋅]) for simplicity
reasons.

Example 2.23. The Lie algebra for the example Lie group 𝐺𝐿(𝑛,ℝ) (see Example 2.20) is
𝑀(𝑛,ℝ). The Lie algebra 𝑀(𝑛,ℝ) is the vector space of all 𝑛 × 𝑛 real matrices with the
Lie bracket [𝐴,𝐵] = 𝐴𝐵 −𝐵𝐴. This Lie bracket is also called commutator.

The Lie algebra associated with a Lie group 𝐺 corresponds to the tangent space of 𝐺 at
the identity element, i.e. 𝑇𝑒(𝐺) where 𝑒 ∈ 𝐺 is identity element.

2.2.1 One-Parameter Subgroup and Exponential Map

After introducing the basic concepts of Lie groups and their associated Lie algebras, we
now turn to the connection between the two. While the Lie group captures more global
transformations, its Lie algebra describes the local structure around the identity element.
To move smoothly between these two representations, we introduce the concept of a one-
parameter subgroup and define the exponential map. Intuitively, the exponential map trans-
lates a vector in the Lie algebra to a curve on the Lie group. One can think of this as
starting at the identity and “flowing” through the group according to a constant veloc-
ity given by the Lie algebra element. We also use a similar concept later on, when we
parametrise diffeomorphisms through stationary velocity fields, see Section 4.2.1.

Let us start with the one-parameter subgroup:

Definition 2.24 (One-Parameter Subgroup, [3]). Let (𝐺, ∗) be a Lie group. A one-
parameter subgroup of 𝐺 is a smooth function 𝑓 ∶ ℝ → 𝐺 with a continuous derivative
satisfying

𝑓(𝑥1 + 𝑥2) = 𝑓(𝑥1) ∗ 𝑓(𝑥2) (2.15)

for all 𝑥1, 𝑥2 ∈ ℝ.

The exponential map plays an important role, as it is a smooth map between the linear
structure of the Lie algebra and the non-linear structure of the Lie group. The exponential
map defines a unique one-parameter subgroup for every element 𝑣 in the Lie algebra ℊ
of a Lie group 𝐺.

– 23 –

2 Theoretical Background

Definition 2.25 (Exponential Map, [43]). Let 𝐺 be a Lie group with the Lie algebra ℊ.
For every 𝑣 ∈ ℊ, there exists a unique smooth one-parameter subgroup 𝜙𝑣 ∶ ℝ → 𝐺 such
that

(i) 𝜙𝑣(0) = 𝑒,
(ii) 𝜙′

𝑣(0) = 𝑣,

where 𝑒 is the identity element of 𝐺 and 𝜙′
𝑣 is the derivative of 𝜙𝑣. The exponential map

is defined by exp(𝑣) ∶= 𝜙𝑣(1).

Equivalently, it holds exp(𝑡𝑣) = 𝜙𝑣(𝑡). As an intuition: the exponential map gives the
point reached by “flowing” from the identity along 𝑣 for time 𝑡. Following the Lie group
𝐺𝐿(𝑛,ℝ) from Example 2.20 and Example 2.23, we can define an exponential map:

Example 2.26. For the matrix Lie group𝐺𝐿(𝑛,ℝ), the exponential map is the usual matrix
exponential, so for 𝑡 ∈ ℝ and 𝐴 ∈ ℊ = 𝑀(𝑛,ℝ) ⊂ ℝ𝑛×𝑛 the map exp is defined as

exp(𝐴) =
∞
∑
𝑘=0

1
𝑘!
𝐴𝑘. (2.16)

Having introduced smooth maps between Lie groups and their Lie algebra, we will now
focus on Lie groups acting on another space.

2.2.2 Lie Group Action and Group Orbits

The LieLAC setup [72] relies on a Lie group 𝐺 acting on a compact manifold that repre-
sents the data space on which our network operates. This “action” describes how each
group element transforms points on the manifold, and therefore defines the notion of
equivariance, which is the goal of our network. In the following, we therefore introduce
the formal definition of a Lie group action and the related concepts of group orbits and sta-
bilisers, which provide the foundation for the following sections:

Definition 2.27 (Group Action, Lie Group Action, [43]). Let 𝐺 be a Lie group and 𝑋 be
a smooth manifold. A (left) group action of 𝐺 on 𝑋 is a map

𝛼 ∶ 𝐺 ×𝑋 → 𝑋, (𝑔, 𝑥) ↦ 𝑔 ⋅ 𝑥, (2.17)

such that

1. 𝑒 ⋅ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋 (identity property) and
2. 𝑔1 ⋅ (𝑔2 ⋅ 𝑥) = (𝑔1 ⋅ 𝑔2) ⋅ 𝑥 for all 𝑔1, 𝑔2 ∈ 𝐺 and 𝑥 ∈ 𝑋 (associativity).

If the map 𝛼 is differentiable, it is called Lie group action. We will also say that the Lie
group 𝐺 acts smoothly on the manifold 𝑋.

Group actions partition the space 𝑋 into orbits, which play a crucial role in our theoretical
investigations in Chapter 3.

Definition 2.28 (Group Orbit, Stabiliser, [43]). Let 𝛼 be a group action of the Lie group
𝐺 on the smooth manifold 𝑋. Let 𝑥 ∈ 𝑋.

– 24 –

2 Theoretical Background

• The group orbit of 𝑥 is defined as

𝒪𝑥 = {𝑔 ⋅ 𝑥|𝑔 ∈ 𝐺} ⊆ 𝑋. (2.18)

• The stabiliser of 𝑥 is defined as

𝐺𝑥 = {𝑔 ∈ 𝐺|𝑔 ⋅ 𝑥 = 𝑥}. (2.19)

While an orbit 𝒪𝑥 represents the set of all points that can be reached from 𝑥 ∈ 𝑋 by ap-
plying elements of the group 𝐺, the stabiliser 𝐺𝑥 describes the subgroup that leaves 𝑥 un-
changed. The following theorem shows how these two concepts are intrinsically linked:

Theorem 2.29 (Orbit Stabiliser Theorem, [43]). Let a Lie group 𝐺 act smoothly on a mani-
fold 𝑋. The stabiliser 𝐺𝑥 is a closed Lie subgroup, and the natural map 𝐺/𝐺𝑥 → 𝒪𝑥 is a diffeo-
morphism onto the orbit 𝒪𝑥.

Proof. For a detailed proof, see [43, Theorem 3.29].

Note that the Lie group partitions a manifold into equivalence classes of points, when
we consider two elements 𝑥, 𝑦 ∈ 𝑋 equivalent under the Lie group action if 𝑦 ∈ 𝒪𝑥 [43].
Orbits are especially relevant to understand and investigate canonicalisation, as the idea
is to find for every input 𝑥 a representative within its orbit𝒪𝑥 that is “close” to the training
data. The space containing all group orbits is therefore particularly interesting for us:

Definition 2.30 (Orbit Space, [53]). The set of all orbits is called orbit space,

𝑋/𝐺 ∶= {𝒪𝑥|𝑥 ∈ 𝑋}. (2.20)

The map sending 𝑥 ∈ 𝑋 to its orbit 𝒪𝑥 is called projection map.

Definition 2.31 (Projection Map, [53]). Let the Lie group 𝐺 act smoothly on the mani-
fold 𝑋. The projection map 𝜋 ∶ 𝑋 → 𝑋/𝐺 sends 𝑥 ∈ 𝑋 to its orbit 𝒪𝑥:

𝑥 ↦ 𝒪𝑥 = {𝑔 ⋅ 𝑥|𝑔 ∈ 𝐺}. (2.21)

Let us explain the concept of group orbits and stabilisers on a simple example further:

Example 2.32. Let the manifold 𝒳 be the three-dimensional Euclidean space ℝ3 with the
norm ‖ ⋅ ‖ that is induced by the scalar product of ℝ3. Furthermore, let the Lie group 𝐺
be the rotations in this space, so

𝑆𝑂(3) ∶= {𝑅 ∈ ℝ3×3|𝑅⊤𝑅 = 𝐼,det(𝑅) = 1}. (2.22)

As an example, we choose 𝑥 = (0, 1, 0)⊤ ∈ ℝ3. The group orbit of this 𝑥 is then the 3𝐷
unit sphere:

𝒪𝑥 = {𝑦 ∈ ℝ3| ‖𝑦‖ = 1}, (2.23)

– 25 –

2 Theoretical Background

𝑥2

𝑥3

𝑥1

𝑥 = (0, 1, 0)T

𝑂𝑥

(a) The group orbit 𝒪𝑥 of 𝑥 = (0, 1, 0)⊤ is the 3𝐷 unit sphere.

𝑥2

𝑥3

𝑥1

𝑥 = (0, 1, 0)T
3
4𝜋

(b) The stabilisers 𝐺𝑥 are the group of rotations in the 𝑥1–𝑥3 plane.

Figure 2.2: Example of the group orbit 𝒪𝑥 (a) and the stabilisers 𝐺𝑥 for 𝑥 = (0, 1, 0)⊤.

because precisely for all 𝑦 ∈ ℝ3 with ‖𝑦‖ = 1, there exists a rotation 𝑅 ∈ 𝑆𝑂(3) that maps
𝑥 to 𝑦, i.e., 𝑅𝑥 = 𝑦. The group stabilisers are all the rotations that map 𝑥 back to 𝑥:

𝐺𝑥 = {𝑅𝛼 ∶= ⎛⎜⎜
⎝

cos(𝛼) 0 − sin(𝛼)
0 1 0

sin(𝛼) 0 cos(𝛼)

⎞⎟⎟
⎠

∣ 𝛼 ∈ [0, 2𝜋)}, (2.24)

which is the set of all rotations that rotate within the plane with 𝑥 as normal vector and
the identity matrix. The group orbit and stabiliser of 𝑥 are visualised in Figure 2.2. For
an arbitrary 𝑥 ∈ ℝ3, we can define the group orbit as

𝒪𝑥 = {𝑦 ∈ ℝ3| ‖𝑦‖ = ‖𝑥‖}. (2.25)

Thus, the orbits are all the three-dimensional spheres with varying radii.

The example above shows how the action of a Lie group sections a manifold into group
orbits, where each orbit contains all points that can be reached from one another by a
transformation out of a group, here rotations.

We now want to shift our focus from points on the manifold to distributions defined
over them. Instead of considering the space itself, we are interested in how a probability
mass or a measure is spread across the manifold and its orbits. This step is important
for our later theoretical work, where we analyse how functions, more specifically losses,
behave under transformations of the underlying data distribution.

2.3 Measure Theory

To formalise these ideas, we first recall some basic concepts from measure theory. Those
notions allow us then to define measures on Lie groups and on group orbits, which will
play a central role in the theoretical analysis in Chapter 3. We follow the notation and
conventions of [17, 18, 52].

– 26 –

2 Theoretical Background

Definition 2.33 (𝜎-Algebra, [17]). Let 𝑋 be a set with the power set 2𝑋; the set of all
subsets of 𝑋. A 𝜎-algebra Σ𝑋 is a subset of 2𝑋 such that

(i) 𝑋 ∈ Σ𝑋,
(ii) if 𝐴 ∈ Σ𝑋 then 𝑋/𝐴 ∈ Σ𝑋, and

(iii) for any countable collection (𝐴𝑛)𝑛∈ℕ of sets in Σ𝑋, the union is contained in Σ𝑋, i.e.,
⋃𝑛∈ℕ 𝐴𝑛 ∈ Σ𝑋.

The 𝜎-algebra allows us to define what “measurable” means formally.

Definition 2.34 (Measurable Set/Space, [17]). Let Σ𝑋 be the 𝜎-algebra of the set 𝑋.

• A set 𝐴 ∈ Σ𝑋 is called a measurable set.
• The pair (𝑋,Σ𝑋) is called a measure space.

For any topological space, there exists a standard𝜎-Algebra, the so-called Borel𝜎-Algebra.

Definition 2.35 (Borel 𝜎-Algebra, [17]). Let 𝑋 be a topological space. The Borel 𝜎-
algebra ℬ(𝑋) is the smallest 𝜎-algebra such that all open sets are measurable. The pair
(𝑋,ℬ(𝑋)) is called Borel space. If it is clear from the context, we will simply write 𝑋 to
denote the Borel space (𝑋,ℬ(𝑋)).

So, there exists a measurable structure for any topological space, which allows us to define
measures on it. The concept of “measurability” is also applicable to functions.

Definition 2.36 (Measurable Function, [17]). Let (𝑋,Σ𝑋) and (𝑌 , Σ𝑌) be measure spaces.
A function 𝑓 ∶ 𝑋 → 𝑌 is a measurable function if for all measurable sets 𝐵 ∈ Σ𝑌, the set
𝐴 = 𝑓−1(𝐵) is measurable.

Having specified measurable spaces and functions, we can now introduce the concept of
a measure itself.

Definition 2.37 (Measure, [17]). Given a measure space (𝑋,Σ𝑋), a measure is a function
𝜇 ∶ Σ𝑋 → ℝ≥0 such that

(i) 𝜇(∅) = 0 and
(ii) for all countable collections (𝐴𝑛)𝑛∈ℕ of pairwise disjoint sets in Σ𝑋, it holds that

𝜇(⋃
𝑛∈ℕ

𝐴𝑛) = ∑
𝑛∈ℕ

𝜇(𝐴𝑛). (2.26)

A measure is called finite if 𝜇(𝑋) < ∞. A probability measure is a measure 𝜇 such that
𝜇(𝑋) = 1.

Remark 2.38. Let (𝑋,Σ𝑋) be a measure space and 𝜇 ∶ Σ𝑋 → ℝ≥0 a finite measure such that
there exists a 𝐴 ∈ Σ𝑋 with 𝜇(𝐴) ≠ 0, i.e., 𝜇(𝑋) ≠ 0. One can always define a probability
measure 𝜇′ on (𝑋,Σ𝑋) as

𝜇′(𝐴) ∶= 𝜇(𝐴)
𝜇(𝑋)

(2.27)

for any 𝐴 ∈ Σ𝑋. This probability measure is called the normalised measure associated with 𝜇.

– 27 –

2 Theoretical Background

Measures can also be “moved” between spaces via pushforward construction of measur-
able functions. This is particularly useful for our work, as we want to move between a
manifold 𝑋 and its orbit space 𝑋/𝐺.

Definition 2.39 (Pushforward Measure, [17]). Suppose (𝑋,Σ𝑋) and (𝑌 , Σ𝑌) are mea-
sure spaces. Let 𝑓 ∶ 𝑋 → 𝑌 be a measurable function and 𝜇 a measure on (𝑋,Σ𝑋). The
pushforward measure 𝑓∗𝜇 is defined as follows:

𝑓∗𝜇(𝐵) ∶= 𝜇(𝑓−1(𝐵)) (2.28)

for all 𝐵 ∈ Σ𝑌.

We are particularly interested in measures that are compatible with the underlying topol-
ogy of Lie groups and manifolds. These allow us to integrate functions over such spaces
in a well-defined way and to study how probability mass behaves under smooth trans-
formations. Let us therefore introduce specific types of spaces and measures that are
relevant for our later constructions: The measure on a Radon space helps us to define a
measure on a (locally) compact group, such as a Lie group.

Definition 2.40 (Radon Space, [18]). Let 𝑋 be a topological space. Furthermore, let the
set Π𝐵(𝑋) be the set of all Borel probability measure on 𝑋, meaning all the probability
measures defined on the Borel 𝜎-algebra ℬ(𝑋) of 𝑋. The space 𝑋 is a Radon space if all
the measures 𝜇 ∈ Π𝐵(𝑋) are inner regular, i.e., for all 𝐴 ∈ ℬ(𝑋) holds

𝜇(𝐴) = sup{𝜇(𝐹)|𝐹 ⊆ 𝐴,𝐹 ∈ ℬ(𝑋), 𝐹 compact}. (2.29)

A probability measure on a Radon space is called a Radon measure.

Definition 2.41 (Haar Measure, [18]). Let 𝐺 be a locally compact topological group. A
Haar measure 𝜂 on 𝐺 is a Radon measure on ℬ(𝐺) that is left-invariant under the group
action, i.e.,

𝜂(𝑔𝐴) = 𝜂(𝐴), ∀𝑔 ∈ 𝐺, 𝐴 ∈ ℬ(𝐺). (2.30)

If 𝐺 is compact, the Haar measure can be normalised to satisfy 𝜂(𝐺) = 1, in which case it
is a probability measure.

For Lie groups, Haar measure corresponds to the canonical “volume element” compatible
with the group structure. We furthermore define the Riemannian volume measure that
generalises the Lebesgue measure from ℝ𝑛 to curved manifolds.

Definition 2.42 (RiemannianVolumeMeasure, [52]). Let (𝑋, 𝑔) be an oriented Rieman-
nian manifold of dimension 𝑛. There exists a unique smooth 𝑛-form, called the Rieman-
nian volume form and denoted 𝑑𝜇𝑉, determined by the metric 𝑔 and the chosen orientation.
In local coordinates (𝑥1,… , 𝑥𝑛) around a point 𝑥 ∈ 𝑋, it is given by

𝑑𝜇𝑉(𝑥) = √det(𝑔𝑖𝑗(𝑥)) 𝑑𝑥1 ∧ ⋯ ∧ 𝑑𝑥𝑛, (2.31)

– 28 –

2 Theoretical Background

where (𝑔𝑖𝑗) are the components of the metric tensor in these coordinates. The correspond-
ing measure on the Borel 𝜎-algebra ℬ(𝑋) is called the Riemannian volume measure. If 𝑋 is
compact, its volume is defined by

Vol(𝑋) = ∫
𝑋
1 𝑑𝜇𝑉 = ∫

𝑋
𝑑𝜇𝑉. (2.32)

With these concepts, we can now describe how measures behave on Lie groups and
smooth manifolds. In particular, the Haar measure provides an invariant way to inte-
grate over the group itself, while the Riemannian volume measure extends this idea to
general manifolds. In the following, we combine these notions with the previously intro-
duced concept of group orbits. This allows us to define how a measure on a manifold can
be projected to the orbit space and how it can be decomposed into orbit-wise components.

2.3.1 Pushforward Orbit Measure and Disintegration

When a Lie group 𝐺 acts on a compact manifold 𝑋, one can push forward measures to
the quotient space.

Definition 2.43 (Pushforward Orbit Measure). Let 𝐺 be a compact Lie group acting on
the compact manifold 𝑋. Let 𝜇 be a measure on 𝑋 and let 𝜋 ∶ 𝑋 → 𝑋/𝐺 be the projection
map that sends 𝑥 ∈ 𝑋 to its orbit𝒪𝑥 (Definition 2.31). The orbit measure (or pushforward
measure on the orbit space) is defined as

𝜇𝒪(𝐴) = 𝜋∗𝜇(𝐴) = 𝜇(𝜋−1(𝐴)), (2.33)

where 𝐴 ⊆ 𝑋/𝐺 is a measurable set.

This measure ensures that integration over the quotient space corresponds to integration
over 𝑋:

∫
𝑋/𝐺

𝑓(𝒪𝑥) 𝑑𝜋∗𝜇(𝒪𝑥) = ∫
𝑋
𝑓(𝜋(𝑥)) 𝑑𝜇(𝑥) (2.34)

for every measurable function 𝑓 ∶ 𝑋/𝐺 → ℝ. This follows directly from the definition of
the pushforward measure (Definition 2.39), as it is a simple change of variables.

Using this pushforward measure and the concept of disintegration [18, Section 10.6],
one can also decompose 𝜇 into orbit components:

Theorem 2.44 (Disintegration Theorem for Orbits). Let 𝐺 be a compact Lie group acting
on the compact manifold 𝑋. Let Π𝐵(𝑋) denote the collection of Borel probability measures on
𝑋. Let 𝜇 be a Borel probability measure on 𝑋, i.e., 𝜇 ∈ Π𝐵(𝑋), and let 𝜋 ∶ 𝑋 → 𝑋/𝐺 be the
projection map that sends 𝑥 ∈ 𝑋 to its orbit 𝒪𝑥. If the spaces 𝑋 and 𝑋/𝐺 are Radon spaces, and
the projection map 𝜋 ∈ Π𝐵(𝑋), then there exists a 𝜋∗𝜇-almost everywhere uniquely determined
family of probability measures {𝜇𝒪𝑥

}𝒪𝑥∈𝑋/𝐺 ⊆ Π𝐵(𝑋) such that:

1. The map 𝒪𝑥 ↦ 𝜇𝒪𝑥
is measurable in the sense that 𝒪𝑥 ↦ 𝜇𝒪𝑥

(𝐵) is Borel-measurable for
each 𝐵 ⊆ 𝑋.

– 29 –

2 Theoretical Background

2. For 𝜋∗𝜇-almost all 𝒪𝑥 ∈ 𝑋/𝐺,

𝜇𝒪𝑥
(𝐴) = 𝜇𝒪𝑥

(𝐴 ∩ 𝒪𝑥), ∀𝐴 ∈ ℬ(𝑋), (2.35)

i.e., each conditional measure is supported on its orbit.
3. For every Borel-measurable function 𝑓 ∶ 𝑋 → ℝ≥0, the disintegration formula holds:

∫
𝑋
𝑓(𝑥) 𝑑𝜇(𝑥) = ∫

𝑋/𝐺
∫
𝒪𝑥

𝑓(𝑦) 𝑑𝜇𝒪𝑥
(𝑦) 𝑑𝜋∗𝜇(𝒪𝑥). (2.36)

In particular, choosing 𝑓 = 𝟙𝐴 for 𝐴 ⊆ 𝑋, i.e., as the indicator function of 𝐴, yields

𝜇(𝐴) = ∫
𝑋/𝐺

𝜇𝒪𝑥
(𝐴) 𝑑𝜋∗𝜇(𝒪𝑥). (2.37)

This measure disintegration shows how a measure on 𝑋 can be decomposed into orbit-wise
conditional measures and a pushforward measure on𝑋/𝐺. It provides the foundation for
the theoretical evaluation of the generalisation properties of the canonicalisation frame-
work in Chapter 3. For further notions on disintegration and measures, see also [18, 27].

After introducing the theoretical background, we can now focus on the generalisation
properties of canonicalisation models, which we investigate in the next chapter.

– 30 –

3
On Generalisation of Canonicalisation

Canonicalisation has been proposed as a general strategy for handling symmetries in
learning problems, especially with respect to high-dimensional groups. Despite its practi-
cal importance, the theoretical foundations of canonicalisation remain poorly understood.
Current methods, while empirically successful, lack generalisation guarantees. One rea-
son for this is that canonicalisation is a relatively new concept. In this chapter, we analyse
canonicalisation models following the LieLAC approach [72], where canonical represen-
tatives are selected by minimising an energy that is chosen task-specific and learned from
training data. The energy-based approach allows us to give theoretical guarantees that
were not possible with other setups. The main goal is to formalise the generalisation be-
haviour and determine the conditions under which a canonicalisation rule learned from
a finite dataset can be expected to generalise to unseen samples from the set of training
data that was transformed by a group 𝐺, i.e., group-equivariance is actually achieved by
the investigated network.

Since canonicalisation was introduced, there have been several attempts at theoretical
analysis. While some works have evaluated its generalisation properties and sample com-
plexity under restrictive assumptions, such as finite orthogonal groups and polynomial
function classes [79], others have focused on the regularity and stability of canonicalised
models [80]. Even though setting a good foundation, they have strong constraints, for
example, they require large training datasets. Here, we continue this line of work in the
context of energy-based canonicalisation, rather than polynomial approximation or conti-
nuity constraints: In the following, we give an informal proof that illustrates the expected
generalisation error in our setup: For energy-based canonicalisation following LieLAC,
we prove that the generalisation error is bounded as follows:

generalisation error < training error+mass of poorly-sampled orbits
⋅ (maximal loss − training error).

Note that this is the generalisation error before we apply the reverse canonicalisation. We
also show that, under additional assumptions, this bound can provide a bound for the
loss of the overall network. To our knowledge, this is the first time a generalisation bound
for energy-based canonicalisation has been proposed in a theoretical manner. We intend
to extend this informal proof to a formal one in future works, but a proper formalisation
exceeded this work’s frame.

– 31 –

3 On Generalisation of Canonicalisation

In the following section (Section 3.1), we describe the general setup. That section
mainly focuses on the used measures, the formalisation of the canonicalisation and well-
sampled orbits. We then introduce the needed assumptions (Section 3.2.1), and the pa-
rameter selection (Section 3.2.2). In Section 3.2.3, we prove the main theorem of this
chapter. In the end, we investigate under which conditions the bounded expectation can
give us a bound for the expectation after the application of the reverse canonicalisation.

3.1 Setup of the Learning Scenario

We follow the setup from [72] and formalise the necessary measures, orbits, and canoni-
calising elements. For more details on the theoretical background of group and measure
theory, see Chapter 2. Let 𝒳 ⊆ ℝ𝑑 be a compact 𝑑-dimensional manifold (e.g., the space
of discretised images) and let 𝐺 be a compact Lie group that acts smoothly on 𝒳. For
each 𝑥 ∈ 𝒳, the orbit under the group action is defined as

𝒪𝑥 = {𝑔 ⋅ 𝑥|𝑔 ∈ 𝐺}. (3.1)

The corresponding orbit space is denoted as 𝒳/𝐺. Based on the disintegration theorem
(Theorem 2.44 and [27]), we can assume that there exists an (orbit) measure 𝜔𝒪𝑥

on each
orbit. We also have a 𝐺-invariant measure 𝜇𝑇 on 𝒳. As a model can only be trained on
finite samples, we furthermore consider the finite training set

𝑋𝐸 = 𝑋𝑁
𝐸 = {𝑥1, ..., 𝑥𝑁} ⊆ 𝒳, (3.2)

where 𝑥𝑖 ∼ Law(𝜇𝑇) for 𝑖 = 1, ...𝑁, meaning every 𝑥𝑖 is drawn independently under the
distribution 𝜇𝑇.

3.1.1 Model Architecture

Let us now define the set 𝑋 as

𝑋 ∶= {𝑔 ⋅ 𝑥|𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋𝐸} ⊆ 𝒳, (3.3)

which contains all the orbits of the training samples. The goal is to find a model 𝑓𝜃 that
fulfils a specific task for all 𝑥 ∈ 𝑋, e.g., a segmentation, while only training on the empiri-
cal dataset 𝑋𝐸. The model 𝑓𝜃 maps the input space 𝒳 to an output space 𝒴 that depends
on the specific task.

Example 3.1. Let us simplify the setup with an example. This example is technically
an infinite-dimensional manifold 𝒳. The overall goal of our theoretical investigation is
to provide a bound for an infinite-dimensional data manifold, but this goes beyond the
scope of this thesis. Ergo, we focus only on compact 𝑑-dimensional manifolds. Still, we
give the intuition following the overall goal of an infinite-dimensional setting for a specific
example:

• Let 𝒳 be the space of all images, modelled as functions that map an image domain,
say, Ω = [−1, 1] × [−1, 1] ⊂ ℝ2 to [0, 1], i.e.,

𝒳 = {𝑥|𝑥 ∶ Ω → [0, 1]}. (3.4)

– 32 –

3 On Generalisation of Canonicalisation

model 𝑓𝜃
(trained on 𝑋𝐸)

𝑔−1
𝑥𝑔𝑥 ∈ argmax

𝑔∈𝐺
𝜌𝐸(𝑔 ⋅ 𝑥)

𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥 𝑦𝑥𝑐
∈ 𝒴

𝑥 ∈ 𝒳 𝑦𝑥 = 𝑔−1
𝑥 ⋅ 𝑦𝑥𝑐

Figure 3.1: Setup of the learning scenario. An input 𝑥 ∈ 𝒳 is canonicalised to 𝑥𝑐 = 𝑔𝑥 ⋅𝑥, where 𝑔𝑥 is a canonicalis-
ing element that is determined by solving an optimisation problem, which depends on the task and on the training
data 𝑋𝐸. Then the model 𝑓𝜃 is applied to 𝑥𝑐. Afterwards, the output from the central model 𝑓𝜃(𝑥𝑐) = 𝑦𝑥𝑐

is
transformed by the reverse canonicalisation 𝑔−1

𝑥 . The overall output for 𝑥 is then 𝑦𝑥 = 𝑔−1
𝑥 ⋅ 𝑦𝑥𝑐

.

• Let 𝐺 be the group of rotations in the 2D-plane:

𝐺 = 𝑆𝑂(2) ∶= {𝑅(𝜃)|𝜃 ∈ [0, 2𝜋)}, with 𝑅(𝜃) ∶= (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃) . (3.5)

• The empirical dataset 𝑋𝐸 is a randomly but well sampled, finite subset of all the
images of two nested squares of varying sizes and colours, where the squares’ edges
are parallel to the image edges.

• The set 𝑋 is defined as

𝑋 = {𝑅(𝜃) ⋅ 𝑥|𝑥 ∈ 𝑋𝐸, 𝜃 ∈ [0, 2𝜋)}. (3.6)

The overall task is, for example, finding a segmentation for the inner square. In this ex-
ample, the output space 𝒴 can be defined as binary images, where 1 indicates the fore-
ground, and the background is 0:

𝒴 = {𝑦 | 𝑦 ∶ [−1, 1] × [−1, 1] → {0, 1}} ⊂ 𝒳. (3.7)

For the segmentation, a model 𝑓𝜃 is trained on the set 𝑋𝐸, where the ground truth for the
elements of the training set 𝑋𝐸 is either known or created. The model is then extended
to the model 𝑓𝜃 that works well on the whole 𝑋 and not only on training data 𝑋𝐸.

In general, the extended model 𝑓𝜃 consists of three parts: a canonicalisation step, a
classical neural network that is trained on the training data 𝑋𝐸, and a reverse canonical-
isation step.

1. First, we perform a canonicalisation step to find a representation 𝑥𝑐 ∈ 𝒪𝑥 for every
input 𝑥 ∈ 𝒳 in such a way that 𝑥𝑐 is “close” to the training data 𝑋𝐸. We find a
canonicalising element 𝑔𝑥 ∈ 𝐺 by solving a task-specific chosen optimisation problem
that also depends on the training data 𝑋𝐸. The canonicalised input is then 𝑥𝑐 = 𝑔𝑥 ⋅𝑥.

2. At the core is a model 𝑓𝜃 ∶ 𝒳 → 𝒴, 𝑥 ↦ 𝑓𝜃(𝑥) =∶ 𝑦𝑥 ∈ 𝒴 that is trained on the
set 𝑋𝐸. We apply the model 𝑓𝜃 to the canonicalised input 𝑥𝑐 and yield the output
𝑦𝑥𝑐

= 𝑓𝜃(𝑥𝑐) ∈ 𝒴.

– 33 –

3 On Generalisation of Canonicalisation

3. Afterwards, the output from the central model 𝑓𝜃(𝑥𝑐) = 𝑦𝑥𝑐
is transformed by the

reverse canonicalisation. The reverse canonicalisation 𝑔−1
𝑥 ∈ 𝐺 depends on how 𝐺

acts on the output space 𝒴, the output space itself, and the performed task of 𝑓𝜃. It is
typically a version of the classical inverse of 𝑔𝑥 that acts similar on 𝒴 to the classical
inverse on 𝒳.

Combining the three steps, the overall network 𝑓𝜃 ∶ 𝒳 → 𝒴 is

𝑓𝜃(𝑥) ∶= 𝑔−1
𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥) with 𝑔𝑥 ∈ argmax

𝑔∈𝐺
𝜌𝐸(𝑔 ⋅ 𝑥). (3.8)

An explanatory diagram of the network can be found in Figure 3.1.
As a rule, we do not explicitly know the measure𝜇𝑇 under which the training data𝑋𝐸

is drawn. Therefore, our setup needs more measures to approximate 𝜇𝑇. Let us introduce
these measures further:

3.1.2 Measures

1. The measure 𝜇𝑇 describes the “true” distribution on the data manifold 𝒳. The distri-
bution is “true” in the sense that it is the distribution from which the data is drawn
independently. We would like to estimate 𝜇𝑇, as the measure is crucial for bound-
ing the generalisation error in our setup. This “true” distribution is assumed to be
invariant under the group 𝐺, so that for all 𝑔 ∈ 𝐺 and all measurable 𝐴 ⊆ 𝒳,

𝜇𝑇(𝑔 ⋅ 𝐴) = 𝜇𝑇(𝐴) (3.9)

holds.
2. The finite training set 𝑋𝐸 induces a discrete empirical measure 𝜇𝐸, which is again

a distribution over 𝒳. To model this, the measure 𝜇𝐸 places equal weights on all
training samples 𝑋𝐸. It is defined as

𝜇𝐸(𝐴) ∶= 1
𝑁

𝑁
∑
𝑖=1

𝛿𝑥𝑖
(𝐴), (3.10)

where 𝛿𝑥𝑖
is the Dirac measure of 𝑥𝑖 and 𝐴 ⊆ 𝒳 is a measurable set.

3. We also define a smooth estimation of the empirical measure 𝜇𝐸 called 𝜇̂𝐸. This mea-
sure has the density 𝜌𝐸(𝑥) ∶=

𝑑𝜇̂𝐸
𝑑𝜇𝑉

(𝑥), where 𝜇𝑉 is the Riemannian volume measure
(Definition 2.42) on 𝒳. It is smooth in the sense that 𝜌𝐸 is absolutely continuous
with respect to 𝜇𝑉. This density can be chosen freely and plays a crucial part for the
generalisation. A smooth estimation of the empirical measure 𝜇𝐸 is necessary, as the
empirical measure 𝜇𝐸 does not have a density.

The density 𝜌𝐸 can also be used to induce the empirical orbit mass

𝑚𝐸(𝒪𝑥) ∶= ∫
𝒪𝑥

𝜌𝐸(𝑦)𝑑𝜇𝒪𝑥
(𝑦), (3.11)

where 𝜇𝒪𝑥
is the orbit measure that we assume exists, see also Theorem 2.44 and [27].

– 34 –

3 On Generalisation of Canonicalisation

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

0.2

0.4

0.6

𝒳

𝜇𝑇
𝜇̂𝐸
𝜇𝐸

Figure 3.2: Sketch of 𝜇𝐸, 𝜇̂𝐸 and 𝜇𝑇. The red points represent 𝜇𝐸, which is a discrete model on the finite training
data set 𝑋𝐸 = {𝑥1, ..., 𝑥7} ⊆ 𝒳. The blue curve 𝜇̂𝐸 is constructed by convolving 𝜇𝐸 with Gaussian kernels.
This smooth approximation spreads the discrete mass of each sample over a local neighbourhood, producing a
continuous density that can be used to estimate orbit masses or integrate over regions of the data space 𝒳. The
green curve 𝜇𝑇 is the true distribution of the data.

Let us propose the following definition for the smooth approximation of 𝜇̂𝐸. We
define 𝜇̂𝐸 by combining 𝜇𝐸 with a Gaussian kernel:

𝜌𝐸(𝑥) =
𝐾
𝑁

𝑁
∑
𝑖=1

exp(−|𝑥 − 𝑥𝑖|2

2𝜎2) , (3.12)

where 𝐾 is a normalisation factor. It follows the idea of a Gaussian mixture. The parameter
𝑑 = dim(𝒳) is the dimension of the manifold 𝒳, and | ⋅ | is the geodesic distance on 𝒳
(see Definition 2.17). In Section 3.2.2, we describe our choice of the variance 𝜎. The above
defined density 𝜌𝐸 is continuous (even 𝐶∞) and positive for all 𝑥 ∈ 𝒳. The measure 𝜇̂𝐸
is then defined as

𝜇̂𝐸(𝐴) ∶= ∫
𝐴
𝜌𝐸(𝑥)𝑑𝜆(𝑥), (3.13)

where 𝐴 ⊆ 𝒳 is any measurable subset. This applies especially to 𝐴 = 𝒪𝑥. The construc-
tion of 𝜇̂𝐸 is visualised in Figure 3.2.

3.1.3 Canonicalisation

The chosen canonicalisation strategy is particularly crucial for the model’s performance.
In the canonicalisation step, a representation 𝑥𝑐 ∈ 𝒪𝑥 for every input 𝑥 ∈ 𝒳 is found
in such a way that 𝑥𝑐 is “close” to the training data 𝑋𝐸. The canonicalised input 𝑥𝑐 is
constructed by applying a canonicalising element 𝑔𝑥 ∈ 𝐺 to the input 𝑥:

𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥. (3.14)

– 35 –

3 On Generalisation of Canonicalisation

In practice, a canonicalising element 𝑔𝑥 is found by minimising an energy 𝐸can that de-
pends on the task and the training data 𝑋𝐸:

𝑔𝑥 ∈ arg min
𝑔∈𝐺

𝐸can(𝑔 ⋅ 𝑥). (3.15)

One way to choose the canonicalisation energy is through the density 𝜌𝐸: For all 𝑥 ∈ 𝒳
define

𝐸can(𝑥) ∶= − log 𝜌𝐸(𝑥) (3.16)

up to a scaling factor. This relation between the energy and density allows us to select 𝑔𝑥
by maximising the following problem:

𝑔𝑥 ∈ argmax
𝑔∈𝐺

𝜌𝐸(𝑔 ⋅ 𝑥). (3.17)

The maximisers of 𝜌𝐸 are the minimisers of 𝐸can. This connection between the density-
based formulation and the energy-based implementation allows us to realise the canon-
icalisation step in praxis by minimising over the energy 𝐸can, but make theoretical guar-
antees based on the density-based canonicalisation. This energy 𝐸can(𝑔 ⋅ 𝑥) or density
𝜌𝐸(𝑔 ⋅ 𝑥) must not be strictly convex or concave, and can be very similar for several 𝑔 ∈ 𝐺,
therefore the canonicalising element 𝑔𝑥 is not necessarily unique. Intuitively, the non-
uniqueness is not problematic because as long as the energy 𝐸can(𝑔𝑥 ⋅ 𝑥) is low enough or
the density 𝜌𝐸(𝑔 ⋅ 𝑥) is high enough, the canonicalised input 𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥 is close enough
to the training data 𝑋𝐸.

Note that the canonicalisation is 𝐺-invariant, in the sense that for all 𝑥 ∈ 𝒳 and any
transformation 𝑔′ ∈ 𝐺,

argmax
𝑔∈𝐺

𝜌𝐸(𝑔 ⋅ 𝑥) = argmax
𝑔∈𝐺

𝜌𝐸(𝑔 ⋅ (𝑔′ ⋅ 𝑥)) (3.18)

holds. This means that for 𝑥 ∈ 𝒳 and an arbitrary 𝑥̃ = 𝑔′ ⋅ 𝑥:

𝐸can(𝑥𝑐) = 𝐸can(𝑥̃𝑐) (3.19)

and

𝜌𝐸(𝑥𝑐) = 𝜌𝐸(𝑥̃𝑐). (3.20)

Lemma 3.2 (Existence of the Canonicalising Element). Let 𝐺 be a compact Lie group that
acts smoothly on the compact manifold 𝒳. Let the density 𝜌𝐸 be continuous. For each 𝑥 ∈ 𝒳,
assume also that 𝜌𝐸(∘ ⋅ 𝑥) ∶ 𝐺 → ℝ is continuous. Then

argmax
𝑔∈𝐺

𝜌𝐸(𝑔 ⋅ 𝑥) (3.21)

is non-empty. Henceforth, there exists at least one canonicalising element 𝑔𝑥 ∈ argmax
𝑔∈𝐺

𝜌𝐸(𝑔 ⋅ 𝑥)

for all 𝑥 ∈ 𝒳.

– 36 –

3 On Generalisation of Canonicalisation

Proof. Let 𝑥 ∈ 𝒳 be arbitrary. 𝜌𝐸(∘ ⋅ 𝑥) ∶ 𝐺 → ℝ is continuous and 𝐺 is compact. The gen-
eralisation of the extreme value theorem (Th. 2.7) says that continuous functions assume
their maximum on compact topological space. A compact Lie group is a compact topo-
logical space by definition. Therefore, for each 𝑥 ∈ 𝒳, the maximum in (3.17) is assumed
and the set of maximisers argmax

𝑔∈𝐺
𝜌𝐸(𝑔 ⋅ 𝑥) is non-empty.

After introducing the setup and the necessary measures, let us look back at the overall
network

𝑓𝜃(𝑥) = 𝑔−1
𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥) with 𝑔𝑥 ∈ argmax

𝑔∈𝐺
𝜌𝐸(𝑔 ⋅ 𝑥). (3.22)

The goal of this section is to bound

𝔼𝜇𝑇
[𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)], (3.23)

where 𝑦𝑔𝑡𝑥 ∈ 𝒴 is the ground-truth output of 𝑥 ∈ 𝒳, 𝑔𝑥 the canonicalising element, and 𝐿
is the loss function for the inner network 𝑓𝜃, introduced in Section 3.1.

3.1.4 Well-Sampled Orbits

Since we only observe a finite training set 𝑋𝐸, we cannot guarantee that the empirical
distribution 𝜇𝐸 covers the entire space 𝒳. In particular, some orbits may be represented
by many training samples, while others are covered only sparsely or not at all. To for-
malise this distinction, we introduce the notion of well-sampled and poorly-sampled orbits.
We define the set of elements with well-sampled orbits as

𝐴𝛿 ∶= {𝑥 ∈ 𝒳 ∣ 𝑚𝐸(𝒪𝑥) > 𝛿}, (3.24)

and the complementary set of elements with poorly-sampled orbits as

𝐴𝑐
𝛿 ∶= 𝒳 ∖ 𝐴𝛿 = {𝑥 ∈ 𝒳 ∣ 𝑚𝐸(𝒪𝑥) ≤ 𝛿}. (3.25)

We use 𝑚𝐸(𝒪𝑥), the mass of the smoothed density in the orbit of 𝑥, as a measurement
of the orbit coverage. The parameter 𝛿 > 0 serves as a threshold that distinguishes be-
tween sufficient and insufficient orbit coverage. Its choice is discussed in Section 3.2.2.
Equivalently, 𝐴𝛿 can be written as a union of orbits whose empirical orbit mass is larger
than 𝛿:

𝐴𝛿 = {𝑥 ∈ 𝒳 ∣ 𝑚𝐸(𝒪𝑥) > 𝛿} (3.26)
= ⋃

𝒪𝑥∈𝒳/𝐺, 𝑚𝐸(𝒪𝑥)>𝛿
𝒪𝑥. (3.27)

We therefore refer to 𝐴𝛿 as the set of well-sampled orbits, and to 𝐴𝑐
𝛿 as the set of poorly-

sampled orbits.

Lemma 3.3. The set of well-sampled orbits 𝐴𝛿 and the set of poorly-sampled orbits 𝐴𝑐
𝛿 are Borel

measurable subsets of 𝒳, i.e., 𝐴𝛿, 𝐴𝑐
𝛿 ∈ ℬ(𝒳).

– 37 –

3 On Generalisation of Canonicalisation

Proof. The projection map 𝜋 and the empirical orbit mass 𝑚𝐸 are measurable. Therefore,
their composition 𝑚𝐸 ∘𝜋 is measurable as well. Furthermore, the set {𝑥 > 𝛿} ⊆ ℝ is Borel
measurable, i.e., {𝑥 > 𝛿} ∈ ℬ(ℝ). The preimage of measurable function (Definition 2.36)
of a measurable set is also measurable, therefore

𝐴𝛿 = (𝑚𝐸 ∘ 𝜋)−1({𝑥 > 𝛿}) (3.28)

is also Borel measurable.

The property of Borel measurability of the set of well-sampled and poorly-sampled
orbits is crucial to ensure that we can integrate over those sets and that the measures on
those sets are defined.

3.2 Bounding the Expected Generalisation Loss

Having established the learning setting in Section 3.1, we now turn to the central question
of this chapter: Under what conditions does energy-based canonicalisation generalise
from finite training data to the set 𝒳.

3.2.1 Assumptions

To bound the generalisation loss, a few assumptions need to be made: As mentioned in
the introduction of the true distribution 𝜇𝑇, one assumption is that 𝜇𝑇 is invariant under
the group 𝐺.

Assumption 3.4 (G-Invariance of 𝜇𝑇). Let 𝐴 ⊆ 𝒳 be measurable. Then, for all 𝑔 ∈ 𝐺,
we assume that

𝜇𝑇(𝑔 ⋅ 𝐴) = 𝜇𝑇(𝐴) (3.29)

holds.

Assumption 3.5 (𝐺-Equivariance of Ground Truth). We assume that the ground-truth
mapping 𝑥 ↦ 𝑦𝑔𝑡𝑥 is 𝐺-equivariant, i.e., that for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝒳

𝑦𝑔𝑡𝑔⋅𝑥 = 𝑔 ⋅ 𝑦𝑔𝑡𝑥 (3.30)

holds.

This assumption is very important, as it sets the ground for our approach and describes
the way we want our overall network 𝑓𝜃 to behave.

Assumption 3.6 (Improbable Poorly-SampledOrbits). There exists an 𝛼 ∈ [0, 1), 𝛼 ≪ 1,
such that the probability with respect to the “true” distribution of the poorly sampled
orbits is bounded by 𝛼, i.e.,

𝜇𝑇(𝐴𝑐
𝛿) ≤ 𝛼 ≪ 1. (3.31)

– 38 –

3 On Generalisation of Canonicalisation

Intuitively, this means that we sampled well enough such that we covered nearly all the
orbits and we only did not look at very few, improbable orbits. Furthermore, assume that
the orbit volume is bounded:

Assumption 3.7 (Bounded Orbit Volume). For all 𝑥 ∈ 𝒳, the volume of the orbit 𝒪𝑥 is
bounded: There exists an 𝑉max ∈ ℝ such that, for all 𝑥 ∈ 𝒳,

0 < vol𝒪(𝒪𝑥) ∶= 𝜇𝒪𝑥
(𝒪𝑥) ∶= ∫

𝒪𝑥

𝑑𝜇𝒪𝑥
(𝑦) ≤ 𝑉max (3.32)

holds.

For the loss function 𝐿 assume the following:

Assumption 3.8 (Bounded Loss Function). The loss function 𝐿 ∶ 𝒴 × 𝒴 → ℝ≥0 is
bounded. There exists an 𝐿max ∈ ℝ, such that, for all 𝑦, 𝑦′ ∈ 𝒴,

0 ≤ 𝐿(𝑦, 𝑦′) ≤ 𝐿max (3.33)

holds.

Assumption 3.9 (Lipschitz Continuity). Assume 𝑓𝜃 is Lipschitz continuous with the
Lipschitzconstant 𝐶𝑓 and 𝐿 is Lipschitz continuous in its first argument with the Lips-
chitzconstant 𝐶𝐿. Therefore, 𝐿(⋅, 𝑦) is 𝐶𝐿-Lipschitz for any fixed 𝑦 ∈ 𝒴 (independent of
𝑦). Then 𝑥 ↦ 𝐿(𝑓𝜃(𝑥), 𝑦) (with 𝑥 ∈ 𝒳) is Lipschitz with Lipschitzconstant𝐶Lip ∶= 𝐶𝐿 ⋅𝐶𝑓.

We further assume that the model 𝑓𝜃 is well-trained on the training data 𝑋𝐸, achieving
low loss on all samples:

Assumption 3.10 (Bounded Training Error). For the model 𝑓𝜃, trained on 𝑋𝐸, exists a
small 𝜖 > 0, such that

sup
𝑥∈𝑋𝐸

𝐿(𝑓𝜃(𝑥), 𝑦
𝑔𝑡
𝑥) ≤ 𝜖

2 , (3.34)

holds, where 𝑦𝑔𝑡𝑥 ∈ 𝒴 is the ground truth for 𝑥 ∈ 𝑋𝐸.

3.2.2 Parameter Selection

In this section and the preceding section, several thresholds and parameters were intro-
duced. The only one that can be properly controlled and distinguished in practice is the
bound for the training error 𝜖

2 . In the following, we assume that we have a fixed 𝜖 > 0
(following Ass. 3.10). Furthermore, assume the Lipschitzconstant 𝐶Lip is known. The
other parameters are chosen depending on 𝜖 and 𝐶Lip.

First, we choose the variance 𝜎 of 𝜌𝐸 as

𝜎 ∶= 𝜎(𝜖, 𝐶Lip) ∶=
𝜖

2𝐶Lip
. (3.35)

– 39 –

3 On Generalisation of Canonicalisation

This ensures that for any 𝑥 ∈ 𝒳 within distance 𝜎 of a training data point 𝑥𝑖 ∈ 𝑋𝐸, the
loss is bounded by 𝜖. Because, under Assumption 3.9, for all 𝑥 ∈ 𝒳 (with corresponding
ground truth 𝑦𝑥 ∈ 𝒴) with an 𝑥𝑖 ∈ 𝑋𝐸 such that |𝑥 − 𝑥𝑖| ≤ 𝜎, holds

𝐿(𝑓𝜃(𝑥), 𝑦𝑥)
Ass. 3.9
≤ 𝐿(𝑓𝜃(𝑥𝑖), 𝑦𝑥) + 𝐶Lip𝜎 ≤ 𝜖

2
+ 𝜖

2
= 𝜖, (3.36)

where 𝐿 is the loss from (3.33) and (3.34). Using this 𝜎, we define a region, where a small
loss can be ensured: The set, where the loss is bounded by 𝜖 is

𝑆𝜎 ∶=
𝑁
⋃
𝑖=1

𝐵𝜎(𝑥𝑖) (3.37)

with

𝐵𝜎(𝑥𝑖) ∶= {𝑥 ∈ 𝒳 ∣ ‖𝑥 − 𝑥𝑖‖ ≤ 𝜎}, (3.38)

which denotes a ball around 𝑥𝑖 with radius 𝜎. The parameter 𝜎 in combination with the
maximal orbit volume 𝑉max and the normalisation factor of 𝜌𝐸 can be used to define the
threshold that distinguishes between well-sampled and poorly-sampled orbits:

Definition 3.11 (Well-Sampled and Poorly-Sampled Orbits). Set the threshold 𝛿 > 0 as

𝛿 ∶= 𝛿(𝜎, 𝑉max) ∶= 𝛿(𝜖, 𝐶Lip,𝐾, 𝑉max) ∶= 𝐾𝑉maxe
−1
2 (3.39)

and define 𝜌𝐸 as in the preceding section.

This threshold ensures that orbits with 𝑚𝐸(𝒪𝑥) > 𝛿 have sufficient empirical mass with
high probability. Furthermore, the following Lemma about the relation between the well-
sampled orbits 𝐴𝛿 and set with bounded loss 𝑆𝜎 holds:

Lemma 3.12. Set 𝛿 = 𝐾𝑉maxe
−1
2 and 𝜎 = 𝜖

2𝐶Lip
. For any 𝑥 ∈ 𝐴𝛿, a canonicalised representation

of 𝑥, 𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥 with 𝑔𝑥 ∈ argmax
𝑔∈𝐺

𝜌𝐸(𝑔 ⋅ 𝑥), lies in 𝑆𝜎.

The main idea of this lemma is visualised in Figure 3.3.

Proof. Assume 𝑥 ∈ 𝐴𝛿, i.e., 𝑚𝐸(𝒪𝑥) > 𝛿, where 𝑚𝐸(𝒪𝑥) is defined as

𝑚𝐸(𝒪𝑥) = ∫
𝒪𝑥

𝜌𝐸(𝑦)𝑑𝜇𝒪𝑥
(𝑦) (3.40)

= ∫
𝒪𝑥

𝐾
𝑁

𝑁
∑
𝑖=1

exp(−|𝑦 − 𝑥𝑖|2

2𝜎2)𝑑𝜇𝒪𝑥
(𝑦). (3.41)

We claim that there exists a 𝑥′ ∈ 𝒪𝑥 with

𝜌𝐸(𝑥′) = 𝐾
𝑁

𝑁
∑
𝑖=1

exp(−|𝑥′ − 𝑥𝑖|2

2𝜎2) > 𝛿
vol𝒪(𝒪𝑥)

. (3.42)

– 40 –

3 On Generalisation of Canonicalisation

𝐴𝛿
𝐴𝑐

𝛿

𝑆𝜎

𝑥
𝑥𝑐 canonicalisation

Figure 3.3: Intuition of Lemma 3.12. The set of well-sampled orbits 𝐴𝛿 is shown in green; the set of poorly-sampled
orbits 𝐴𝑐

𝛿 in light green. The region 𝑆𝜎 around 𝑋𝐸, where we know that the model 𝑓𝜃 performs well, is shown in
red. The red crosses indicate the locations of the samples in the training dataset 𝑋𝐸. Lemma 3.12 states that any
input 𝑥 ∈ 𝐴𝛿 is canonicalised to a 𝑥𝑐 that lies in 𝑆𝜎.

Indeed if not, then 𝜌𝐸(𝑦) ≤ 𝛿
vol𝒪(𝒪𝑥)

for all 𝑦 ∈ 𝒪𝑥, thus

𝑚𝐸(𝒪𝑥) = ∫
𝒪𝑥

𝜌𝐸(𝑦)⏟
≤ 𝛿

vol𝒪(𝒪𝑥)

𝑑𝜇𝒪𝑥
(𝑦) (3.43)

≤ ∫
𝒪𝑥

𝛿
vol𝒪(𝒪𝑥)

𝑑𝜇𝒪𝑥
(𝑦) (3.44)

= 𝛿
vol𝒪(𝒪𝑥)

∫
𝒪𝑥

𝑑𝜇𝒪𝑥
(𝑦) (3.45)

= 𝛿
vol𝒪(𝒪𝑥)

vol𝒪(𝒪𝑥) = 𝛿. (3.46)

This would contradict 𝑚𝐸(𝒪𝑥) > 𝛿, which ensures that there must be at least one 𝑥′ ∈ 𝒪𝑥
with 𝜌𝐸(𝑥′) > 𝛿

vol𝒪(𝒪𝑥)
. Consequently, by a similar argument applied to (3.42), there must

also exist some 𝑥𝑖 ∈ 𝑋𝐸, such that

𝐾 exp(−|𝑥′ − 𝑥𝑖|2

2𝜎2) > 𝛿
vol𝒪(𝒪𝑥)

(3.47)

holds. Including the bound from Assumption 3.7 and dividing by normalisation factor𝐾,
the following inequality holds:

exp(−|𝑥′ − 𝑥𝑖|2

2𝜎2) > 𝛿
𝐾vol𝒪(𝒪𝑥)

≥ 𝛿
𝐾𝑉max

. (3.48)

– 41 –

3 On Generalisation of Canonicalisation

And by the definition of 𝛿

𝛿
𝐾𝑉max

= e−
1
2 , (3.49)

so

exp(−|𝑥′ − 𝑥𝑖|2

2𝜎2) > e−
1
2 . (3.50)

Reducing this further, we get

−|𝑥′ − 𝑥𝑖|2

2𝜎2 > −1
2 (3.51)

⇔ |𝑥′ − 𝑥𝑖|2

𝜎2 < 1. (3.52)

Thus, if 𝑚𝐸(𝒪𝑥) > 𝛿, there exists 𝑥′ ∈ 𝒪𝑥 and 𝑥𝑖 ∈ 𝑋𝐸, such that |𝑥′ − 𝑥𝑖| ≤ 𝜎. We will
now show that 𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥 with 𝑔𝑥 ∈ argmax

𝑔∈𝐺
𝜌𝐸(𝑔 ⋅ 𝑥) lies in 𝑆𝜎 by contradiction. We

know that 𝑔𝑥 maximises the density, thus:

𝜌𝐸(𝑥𝑐) ≥ 𝜌𝐸(𝑥′) > 𝛿
𝐾𝑉𝑚𝑎𝑥

. (3.53)

Assume 𝑥𝑐 does not lie in 𝑆𝜎, then |𝑥𝑐 − 𝑥𝑖| ≥ 𝜎 for all 𝑥𝑖 ∈ 𝑋𝐸. Then

𝜌𝐸(𝑥𝑐) =
𝐾
𝑁

𝑁
∑
𝑖=1

exp(−|𝑥𝑥 − 𝑥𝑖|2
2𝜎2)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤exp(−1

2)

(3.54)

and so

𝜌𝐸(𝑥𝑐) ≤
𝐾
𝑁

𝑁
∑
𝑖=1

e−
1
2 = 𝐾e−

1
2 = 𝛿

𝑉𝑚𝑎𝑥
. (3.55)

This contradicts (3.53) and it follows that 𝑥𝑐 ∈ 𝑆𝜎.

The previous Lemma 3.12 ensures that the canonicalisation step acts as intended: For
all 𝑥 lying on well-sampled orbits, the canonicalised version 𝑥𝑐 = 𝑔𝑥 ⋅𝑥 is guaranteed to be
sufficiently “close” to the training data 𝑋𝐸. This means that, after our canonicalisation
step, the input is effectively transformed to a region, where the model 𝑓𝜃 is known to
perform well, which is the main mechanism that our approach is based on, and it is crucial
for generalisation in our setting.

3.2.3 Main Theorem: Generalisation Bound

Theorem 3.13. Let the setup be as described in Section 3.1. Assume the following:

1. G-invariance of 𝜇𝑇 (Assumption 3.4),
2. G-equivariance of the ground truth (Assumption 3.5),

– 42 –

3 On Generalisation of Canonicalisation

3. The poorly-sampled orbits are improbable under the true distribution (Assumption 3.6),
4. Bounded orbit volume (Assumption 3.7),
5. Bounded loss function (Assumption 3.8),
6. Lipschitz continuity of 𝐿(𝑓𝜃(𝑥), 𝑦) (Assumption 3.9) and
7. Bounded training error (Assumption 3.10).

We define the density explicitly as in (3.12). Furthermore, we set the parameters

𝜎 ∶= 𝜖
2𝐶Lip

(3.56)

with 𝐶Lip from Assumption 3.9 and 𝜖 from Assumption 3.10 and

𝛿 ∶= 𝐾𝑉maxe
−1
2 . (3.57)

Then the expected generalisation loss is bounded by:

𝔼𝜇𝑇
[𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)] < 𝜖 + (𝐿max − 𝜖)𝛼, (3.58)

where 𝑦𝑔𝑡𝑥 ∈ 𝒴 denotes the ground truth corresponding to 𝑥 ∈ 𝒳 and

𝑔𝑥 ∈ argmax
𝑔∈𝐺

𝜌𝐸(𝑔 ⋅ 𝑥) = argmax
𝑦∈𝒪𝑥

𝜌𝐸(𝑦) (3.59)

is a canonicalising element.

Proof. By definition of the expectation:

𝔼𝜇𝑇
[𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)] = ∫

𝒳
𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)𝑑𝜇𝑇(𝑥) (3.60)

With Assumption 3.5, it follows:

∫
𝒳
𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)𝑑𝜇𝑇(𝑥) = ∫

𝒳
𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)𝑑𝜇𝑇(𝑥) (3.61)

Splitting the expectation over well-sampled and poorly-sampled orbits (defined as in Def-
inition 3.11)

∫
𝒳
𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)𝑑𝜇𝑇(𝑥) =∫

𝐴𝛿

𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)𝑑𝜇𝑇(𝑥) (3.62)

+∫
𝐴𝑐

𝛿

𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)𝑑𝜇𝑇(𝑥).

Those integrals are well-defined as 𝜇𝑇 is a probability measure, the loss function 𝐿 has
an upper and lower bound (Assumption 3.8), and 𝐴𝛿 and 𝐴𝑐

𝛿 are Borel measurable sets
(Lemma 3.3), which makes them integrable sets in this setup.

Well-SampledOrbits. Let us first look at the integral over the well-sampled orbits: Let
𝑥 ∈ 𝐴𝛿 with 𝛿 = 𝐾𝑉maxe

−1
2 . Using Lemma 3.12, we know have 𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥 ∈ 𝑆𝜎 with

𝑔𝑥 ∈ argmax
𝑔∈𝐺

𝜌𝐸(𝑔 ⋅ 𝑥) and so there exists some 𝑥𝑖 ∈ 𝑋𝐸 such that |𝑥𝑐 − 𝑥𝑖| ≤ 𝜎 and so

𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥) ≤ 𝜖. (3.63)

– 43 –

3 On Generalisation of Canonicalisation

Therefore,

∫
𝐴𝛿

𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)𝑑𝜇𝑇(𝑥) ≤ 𝜖∫
𝐴𝛿

𝑑𝜇𝑇(𝑥) = 𝜖 𝜇𝑇(𝐴𝛿). (3.64)

Poorly-Sampled Orbits. On the poorly-sampled orbits, there is no information about
the loss function, therefore the upper bound 𝐿max (see Assumption 3.8) has to be used:

∫
𝐴𝑐

𝛿

𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)𝑑𝜇𝑇(𝑥) ≤ 𝐿max ∫
𝐴𝑐

𝛿

𝑑𝜇𝑇(𝑥) = 𝐿max𝜇𝑇(𝐴𝑐
𝛿), (3.65)

with 𝑔𝑥 ∈ argmax
𝑔∈𝐺

𝜌𝐸(𝑔 ⋅ 𝑥).

Combining the results on the well- and poorly-sampled orbits (3.64), (3.65) the full
expectation is bounded by

𝔼𝜇𝑇
[𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)]

(3.61)
= 𝔼𝜇𝑇

[𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)] (3.66)

= ∫
𝒳
𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)𝑑𝜇𝑇(𝑥) (3.67)

(3.62)
= ∫

𝐴𝛿

𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)𝑑𝜇𝑇(𝑥) (3.68)

+∫
𝐴𝑐

𝛿

𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑔𝑥⋅𝑥)𝑑𝜇𝑇(𝑥)

(3.64),(3.65)
≤ 𝜖𝜇𝑇(𝐴𝛿) + 𝐿max𝜇𝑇(𝐴𝑐

𝛿). (3.69)

Using 𝜇𝑇(𝐴𝛿) = 1 − 𝜇𝑇(𝐴𝑐
𝛿) we get

𝜖 𝜇𝑇(𝐴𝛿) + 𝐿max𝜇𝑇(𝐴𝑐
𝛿) = 𝜖 (1 − 𝜇𝑇(𝐴𝑐

𝛿)) + 𝐿max𝜇𝑇(𝐴𝑐
𝛿) (3.70)

= 𝜖 + (𝐿max − 𝜖)𝜇𝑇(𝐴𝑐
𝛿). (3.71)

Assumption 3.6 gives us

𝜇𝑇(𝐴𝑐
𝛿) < 𝛼, (3.72)

henceforth

𝜖 + (𝐿max − 𝜖)𝜇𝑇(𝐴𝑐
𝛿) < 𝜖 + (𝐿max − 𝜖)𝛼, (3.73)

and so

𝔼𝜇𝑇
[𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)] < 𝜖 + (𝐿max − 𝜖)𝛼. (3.74)

This result is the central theoretical contribution of this chapter. We showed that the
expected loss after the canonicalisation step and applying the inner network is bounded
under mild assumptions. To our knowledge, this is the first generalisation bound derived
for canonicalisation. This provides a theoretical foundation for why such models work in
practice.

– 44 –

3 On Generalisation of Canonicalisation

Canonicalised Input 𝑥𝑐 Segmentation of 𝑥𝑐

𝑔𝑥

Input 𝑥

𝑔−1
𝑥

Segmentation of 𝑥

Segmentation 𝑓𝜃

Figure 3.4: Example illustrating the difficulties of bounding the error after applying the reverse canonicalisation 𝑔−1
𝑥 .

The goal is to segment an ellipse. For this, the input image 𝑥 is canonicalised to 𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥, where the ellipse looks
now like a circle. This canonicalised input 𝑥𝑐 is then segmented with 𝑓𝜃. The segmentation output 𝑓𝜃(𝑥𝑐) is shown
as purple. There is a relatively small error on the upper right of the circle. When this segmentation output is then
transformed through the reverse canonicalisation to determine a segmentation for the input 𝑥, this small error can
be greatly amplified as the circle is deformed to the ellipsoid shape.

3.2.4 Expected Loss after Reverse Canonicalisation

We successfully bounded

𝔼𝜇𝑇
[𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)], (3.75)

in the last section. But, the expectation of the overall loss of the whole network 𝑓𝜃 is

𝔼𝜇𝑇
[𝐿(𝑔−1

𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑥)]. (3.76)

The latter term is more difficult to bound, as applying the reverse canonicalisation 𝑔−1
𝑥 to

the prediction can greatly amplify errors. A visual example is given in Figure 3.4.
However, there are a few conditions under which we can deduce a bound for (3.76)

through a bound for (3.75). In addition to the assumptions in Section 3.2.1, we assume
that the loss function 𝐿 is bounded by the geodesic distance, and the canonicalising ele-
ment 𝑔𝑥 is Lipschitz continuous:

Assumption 3.14. Let 𝐿 ∶ 𝒴×𝒴 → ℝ be the loss function defined above, and the norm ‖ ⋅ ‖
is the geodesic distance (Definition 2.17) on 𝒴. We assume the following:

• For the loss 𝐿 ∶ 𝒴 × 𝒴 → ℝ, assume that there exist two constants 𝐶𝐿1
, 𝐶𝐿2

∈ ℝ>0,
such that for all 𝑦1, 𝑦2 ∈ 𝒴,

𝐶𝐿1
⋅ ‖𝑦1 − 𝑦2‖ ≤ 𝐿(𝑦1, 𝑦2) (3.77)

and

𝐿(𝑦1, 𝑦2) ≤ 𝐶𝐿2
⋅ ‖𝑦1 − 𝑦2‖ (3.78)

– 45 –

3 On Generalisation of Canonicalisation

hold.
• Furthermore, assume that the canonicalising element 𝑔𝑥 and the reverse canonicali-

sation 𝑔−1
𝑥 on 𝒴 are jointly 𝐶𝑔-Lipschitz, i.e., there exists 𝐶𝑔 > 0 such that

‖𝑔𝑥 ⋅ 𝑦1 − 𝑔𝑥 ⋅ 𝑦2‖ ≤ 𝐶𝑔 ⋅ ‖𝑦1 − 𝑦2‖, (3.79)
‖𝑔−1

𝑥 ⋅ 𝑦1 − 𝑔−1
𝑥 ⋅ 𝑦2‖ ≤ 𝐶𝑔 ⋅ ‖𝑦1 − 𝑦2‖. (3.80)

Following the assumptions, we can now use these properties of 𝐿 and 𝑔−1
𝑥 to bound the

expected generalisation loss after applying the reverse canonicalisation 𝑔−1
𝑥 . First, we use

that 𝑦𝑔𝑡𝑥 = 𝑔−1
𝑥 ⋅ (𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥) and get

𝐿(𝑔−1
𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑥) = 𝐿(𝑔−1

𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔−1
𝑥 ⋅ (𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)). (3.81)

We can then apply the upper bound for our loss function 𝐿:

𝐿(𝑔−1
𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔−1

𝑥 ⋅ (𝑔𝑥 ⋅ 𝑦
𝑔𝑡
𝑥))

(3.78)
≤ 𝐶𝐿2

⋅ ‖𝑔−1
𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥)−𝑔−1

𝑥 ⋅ (𝑔𝑥 ⋅ 𝑦
𝑔𝑡
𝑥)‖. (3.82)

Using the Lipschitz continuity of 𝑔−1
𝑥 , it follows that

𝐶𝐿2
⋅ ‖𝑔−1

𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥) − 𝑔−1
𝑥 ⋅ (𝑔𝑥 ⋅ 𝑦

𝑔𝑡
𝑥)‖

(3.80)
≤ 𝐶𝐿2

⋅ 𝐶𝑔 ⋅ ‖𝑓𝜃(𝑔𝑥 ⋅ 𝑥) − 𝑔𝑥 ⋅ 𝑦
𝑔𝑡
𝑥 ‖. (3.83)

When applying the lower bound of 𝐿, we furthermore derive

‖𝑓𝜃(𝑔𝑥 ⋅ 𝑥) − 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥 ‖
(3.77)
≤ 1

𝐶𝐿1

⋅ 𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥). (3.84)

Therefore, there exists a constant 𝐶 ∶= 𝐶𝐿2
𝐶𝐿1

⋅ 𝐶𝑔 such that

𝐿(𝑔−1
𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑥) ≤ 𝐶 ⋅ 𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥). (3.85)

Using this for the expectations, we get

𝔼𝜇𝑇
[𝐿(𝑔−1

𝑥 ⋅ 𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑦𝑔𝑡𝑥)] ≤ 𝐶 ⋅ 𝔼𝜇𝑇
[𝐿(𝑓𝜃(𝑔𝑥 ⋅ 𝑥), 𝑔𝑥 ⋅ 𝑦𝑔𝑡𝑥)]. (3.86)

Under specific conditions, we can therefore also bound the expected loss after the reverse
canonicalisation.

In this chapter, we have defined our theoretical learning setup in detail and then pro-
vided an upper bound for the expected loss after canonicalisation and inner segmentation
under mild assumptions. This guarantees generalisation but is restricted to settings fol-
lowing the assumptions and general setup. We furthermore investigated under what con-
ditions the derived bound can also provide a bound for the expected loss after applying
the reverse canonicalisation. All our theoretical statements rely on a finite-dimensional
setup.

– 46 –

4
Diffeomorphism-Equivariant Neural Network

In Chapter 3, we proved that a canonicalisation approach inspired by LieLAC [72] gen-
eralises under mild assumptions. In addition, this canonicalisation strategy ensures ap-
proximate group-equivariance by construction and requires only a small training dataset.
However, LieLAC has only been applied to compact manifolds under the action of finite-
or low-dimensional Lie groups. In contrast, an important group of transformations in the
field of image computing is the infinite-dimensional group of diffeomorphisms.

In this chapter, we therefore propose an approximately diffeomorphism-equivariant
neural network. We introduce DiffeoNN, a method that adapts the LieLAC framework to
the infinite-dimensional group of diffeomorphisms acting on image domains. While we
focus on image segmentation as an example, the framework naturally extends to other
tasks such as object detection. The proposed method falls outside the scope of the the-
oretical guarantees from Chapter 3, as the setup is not compact and finite-dimensional.
Nevertheless, the framework is still similar to the LieLAC framework:

1. We canonicalise an input by minimising a smooth energy function over a group orbit,
2. we perform a segmentation on the canonicalised input,
3. we finally map the segmentation result back by using the inverse canonicalising el-

ement.

The overall setup of DiffeoNN is illustrated in Figure 4.1. With DiffeoNN, we adapt the
LieLAC framework to the diffeomorphic setting as follows.

1. We focus on the group of diffeomorphisms instead of an arbitrary Lie group.
2. We define a canonicalisation energy that combines learned density modelling (VAE),

adversarial discriminators, and deformation regularisation following [19].
3. Instead of using a Lie algebra optimisation strategy, we use a gradient-based optimi-

sation strategy [19].
4. We apply our method to a segmentation task based on the LieLAC approach, which

has not been done by Shumaylov et al. [72] or anyone else to our knowledge.

In the following, we describe DiffeoNN in detail. We split the chapter along the steps
of the framework: First, we explain the problem setup in Section 4.1. After that, in Sec-
tion 4.2, the canonicalisation strategy is introduced. This section includes the choice of
energy and its training method, the parametrisation of the diffeomorphisms by SVFs,

– 47 –

4 Diffeomorphism-Equivariant Neural Network

segmentation 𝑓𝜃
(trained on training data)

canonical-
isation

reverse
canonical-
isation

𝑥 ∈ 𝑋 𝑔−1
𝑥 ⋅ 𝑦𝑥𝑐

𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥 𝑦𝑥𝑐
= 𝑓𝜃(𝑥𝑐)

Figure 4.1: Setup of DiffeoNN. An input image 𝑥 ∈ 𝑋 is canonicalised to 𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥. Then, a segmentation model
𝑓𝜃 is applied to 𝑥𝑐, resulting in the segmentation 𝑦𝑥𝑐

= 𝑓𝜃(𝑥𝑐). Afterwards, the segmentation 𝑦𝑥𝑐
is transformed

by the inverse of the canonicalisation 𝑔−1
𝑥 . The transformed segmentation 𝑦𝑥 = 𝑔−1

𝑥 ⋅ 𝑦𝑥𝑐
is a segmentation of the

input image 𝑥 ∈ 𝑋.

and the optimisation strategy, which we use to find a canonicalising element 𝑔𝑥. The seg-
mentation model used is further explained in Section 4.3. In Section 4.4, we describe the
reverse canonicalisation step. In the last section (Section 4.5), we connect our method to
the theoretical investigations of the previous chapter and give a brief summary.

4.1 Problem Setup

Similar to Example 3.1, let manifold 𝒳 denote the space of greyscale images defined on
the image domain Ω ⊆ ℝ2 with pixel intensities in [0, 1], modelled as functions that map
from Ω to [0, 1],

𝒳 = {𝑥 | 𝑥 ∶ Ω → [0, 1]}. (4.1)

We choose the group 𝐺, for which we seek the equivariance, as the set of SVF-based
diffeomorphisms 𝒟SVF(Ω), which act on the image domain Ω. A more detailed definition
of SVF-based diffeomorphisms 𝒟SVF(Ω) is provided in Section 4.2.1. We define the group
action of 𝐺 on 𝒳 as

(𝑔 ⋅ 𝑥)(𝑝) ∶= (𝑥 ∘ 𝑔)(𝑝) = 𝑥(𝑔(𝑝)) (4.2)

for all 𝑝 ∈ Ω, 𝑥 ∈ 𝒳 and 𝑔 ∈ 𝒟SVF(Ω).
The goal of our proposed method DiffeoNN is to yield a segmentation map for an

input 𝑥 ∈ 𝒳. Image segmentation is a task in computer vision that is performed pixel-
wise, meaning that a class label is assigned to every point in an image. This work focuses
on binary segmentation, i.e., two classes: foreground/background.

Definition 4.1 (Binary Segmentation). Binary segmentation is the process of creating a
binary “image” 𝑦𝑥 ∶ Ω → {0, 1} for a given input image 𝑥 ∈ 𝒳. We say a point 𝑝 ∈ Ω is:

• segmented as part of the foreground if 𝑦𝑥(𝑝) = 1.
• segmented as part of the background if 𝑦𝑥(𝑝) = 0.

– 48 –

4 Diffeomorphism-Equivariant Neural Network

For our method, we require a finite training dataset of images 𝑋𝐸 consisting of 𝑁 ∈ ℕ
samples:

𝑋𝐸 ∶= 𝑋𝑁
𝐸 ∶= {𝑥𝑖 | 𝑥𝑖 ∶ Ω → ℝ, 𝑖 = 1, ..., 𝑁} ⊆ 𝒳. (4.3)

Let the dataset𝑋 be the set of all images that can be generated by transforming an element
of 𝑋𝐸 with a diffeomorphism in 𝒟SVF(Ω):

𝑋 ∶= {𝑔 ⋅ 𝑥 | 𝑥 ∈ 𝑋𝐸, 𝑔 ∈ 𝒟SVF(Ω)} ⊆ 𝒳. (4.4)

The idea is to find a segmentation for an element 𝑥 ∈ 𝑋 without training a segmentation
on the whole dataset (or a finite subset of 𝑋). Instead, the whole network is only trained
on the dataset 𝑋𝐸. This setting also allows us to use a pretrained model and extend it to
be diffeomorphism-equivariant, as the setup is identical and 𝑓𝜃 can just be replaced by
the pretrained model. We define the output space 𝒴 as the set of binary images, where 1
represents the foreground and the background is represented by 0:

𝒴 = {𝑦 | 𝑦 ∶ Ω → {0, 1}} ⊆ 𝒳. (4.5)

With this problem setup, we can now focus on the three steps of our method. We start
with the first step, the canonicalisation.

4.2 Canonicalisation

The canonicalisation approach that we use is very similar to the one introduced by Shu-
maylov et al. [72]. Given the image space 𝑋 and a transformation group 𝐺, the goal is
to find a canonicalising element 𝑔𝑥 ∈ 𝒟SVF(Ω) for each 𝑥 ∈ 𝑋 such that 𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥 is a
good representation of 𝑥 and “close” to the training set 𝑋𝐸, on which the network 𝑓𝜃 was
trained. How “close” 𝑥𝑐 is to the training dataset is modelled by an energy 𝐸𝑋𝐸

∶ 𝒳 → ℝ.
Furthermore, we want to prefer physically plausible diffeomorphisms, e.g., orientation-
preserving ones, as the canonicalising element. We therefore combine the image similar-
ity energy 𝐸𝑋𝐸

with a regularisation energy 𝐸reg ∶ 𝒟SVF(Ω) → ℝ into a canonicalisation
energy:

𝐸can ∶ 𝒳 ×𝒟SVF(Ω) → ℝ, (4.6)
𝐸can(𝑥, 𝑔) ∶= 𝐸𝑋𝐸

(𝑔 ⋅ 𝑥) + 𝐸reg(𝑔). (4.7)

Intuitively, the energy 𝐸can should satisfy the following properties:
• 𝐸can(𝑥, 𝑔) is small, whenever 𝑔 ⋅ 𝑥 is “close” to the training data 𝑋𝐸 and the transfor-

mation 𝑔 is physically plausible.
• 𝐸can(𝑥, 𝑔) is large, when 𝑔 ⋅ 𝑥 is very different from the training data or the transfor-

mation 𝑔 is not physically plausible.
In Section 4.2.2, we propose a specific choice for 𝐸can. An “ideal” canonicalising ele-
ment 𝑔𝑥 for an image 𝑥 ∈ 𝑋 is then defined as a minimiser:

𝑔𝑥 ∈ argmin
𝑔∈𝒟SVF(Ω)

𝐸can(𝑥, 𝑔). (4.8)

For solving (4.8), we use a modified version of the algorithm introduced in [19], which
is described in detail in Section 4.2.3.

– 49 –

4 Diffeomorphism-Equivariant Neural Network

4.2.1 SVF-based Diffeomorphisms

As a parametrisation of the group of diffeomorphisms 𝐺 = 𝒟(Ω) we consider the set
of SVF-based diffeomorphisms 𝒟SVF(Ω) that is a structured and computationally effi-
cient subset of the full group of diffeomorphic transformations. The transformations of
𝒟SVF(Ω) are widely used in deformable image registration due to their smoothness, eas-
ily approximated inverses, and well-defined theoretical structure [12, 8, 28, 86]. Even
though the set of SVF-based diffeomorphisms does not include all possible diffeomor-
phisms mapping from Ω to itself, it is sufficiently expressive for our purposes.

Definition 4.2 (Stationary Velocity Field (SVF)). A velocity field is defined as a vector
field 𝑣 ∶ Ω × [0, 1] → ℝ𝑑, where 𝑣(𝑝, 𝑡) gives the velocity of a fluid at position 𝑝 and time 𝑡.
If the velocity is constant over time, i.e., 𝑣(𝑝, 𝑡) = 𝑣(𝑝) for all 𝑡, we call 𝑣 a stationary velocity
field (SVF).

A velocity field 𝑣 can be used to define a flow 𝑔:

Definition 4.3 (Flow). Given a velocity field 𝑣, the associated flow 𝜑𝑡(𝑝) ∶ Ω → Ω is
defined as the solution to the ordinary differential equation (ODE)

d𝜑𝑡(𝑝)
d𝑡 = 𝑣(𝜑𝑡(𝑝)), 𝜑0(𝑝) = 𝑝 (4.9)

with 𝑡 ∈ [0, 1].

For a 𝑣 ∈ 𝒞1
0(Ω,ℝ𝑑), the solution of the ODE (4.9) at time 𝑡 = 1 yields a diffeomorphism

𝜑1 = exp(𝑣) [5], where the exponential map exp ∶ SVF → 𝒟SVF(Ω) associates to a station-
ary velocity field (SVF) a flow. Applied to a point 𝑝 ∈ Ω, this gives

𝑝 ↦ 𝜑1(𝑝) = (exp(𝑣))(𝑝). (4.10)

This exponential map connects the set of smooth vector fields to the group of diffeomor-
phisms [86, 81] similarly to the exponential map that connects a Lie algebra to its Lie
group. SVFs are time-invariant; therefore, the diffeomorphisms defined through them
are inherently smooth and invertible. The inverse transformations can be determined by
negating the velocity field, i.e., 𝜑−1

1 = exp(𝑣)−1 = exp(−𝑣). Note that the set of SVF-
based diffeomorphisms is not a group: even though there exists the identity element
𝑖𝑑 ∶= exp(0), and for all transformations in 𝒟SVF(Ω), there exists an inverse transforma-
tion in 𝒟SVF(Ω), the closure condition is not fulfilled. Still, SVF-based diffeomorphisms
are particularly attractive in large-scale or learning-based settings, as they provide an ef-
ficient way for parametrising.

4.2.2 Energy Function for Canonicalisation

The canonicalisation energy 𝐸can measures the similarity of a transformed image with
the training data and encourages more “realistic” transformations within the allowed set
of transformations 𝒟SVF(Ω). In this work, the energy function 𝐸can ∶ 𝑋 × 𝒟SVF(Ω) → ℝ
consists of a weighted sum of different loss terms:

𝐸can(𝑥, 𝑔) ∶= 𝐸𝑋𝐸
(𝑔 ⋅ 𝑥)⏟⏟⏟⏟⏟

image similarity

+ 𝐸reg(𝑔)⏟
regularisation

, (4.11)

– 50 –

4 Diffeomorphism-Equivariant Neural Network

Encoder

𝜇

𝜎

𝑧 Decoder

𝑥 𝑥̃
Latent Space

Sample

Latent Space

Figure 4.2: VAE architecture. The encoder maps each input to a distribution within the latent probability space,
which is a multivariate Gaussian defined by a mean 𝜇 and a variance vector 𝜎. A random latent representation is
sampled from the latent probability space and passed to the decoder that then reconstructs the initial input from
the lower-dimensional representation. We use a VAE to derive the energy function 𝐸VAE that is defined as the VAE
loss (Definition 4.14).

where the image similarity energy is defined as

𝐸𝑋𝐸
(𝑔 ⋅ 𝑥) ∶= 𝜆VAE𝐸VAE(𝑔 ⋅ 𝑥) + 𝜆adv𝐸adv(𝑔 ⋅ 𝑥) (4.12)

and the regularising energy (following [19]) as

𝐸reg(𝑔) ∶= 𝜆grad ∑
𝑝∈Ω

𝑑
∑
𝑖=1

(∇𝑣𝑖(𝑝))2
⏟⏟⏟⏟⏟⏟⏟⏟⏟

gradient loss

+𝜆jac ∑
𝑝∈Ω

max(0,−det(𝒥𝑔(𝑝)))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Jacobian determinant loss

. (4.13)

Here, 𝜆VAE, 𝜆adv, 𝜆grad, and 𝜆jac are positive scalar weights. The energy functions 𝐸VAE
(VAE-based energy) and 𝐸adv (adversarial energy) evaluate the similarity of an input to
the training dataset 𝑋𝐸. The regularising energy 𝐸reg penalises implausible or undesired
transformations. This choice of energy is merely an example and can be exchanged com-
pletely. Nevertheless, our proposed energy is widely usable, especially as it is not spe-
cialised for the segmentation task and only depends on the training data and the group of
diffeomorphisms. In the following, we discuss the individual parts of our energy choice
in more detail.

VAE-based Energy 𝐸VAE. One of the central parts of 𝐸can is the energy function 𝐸VAE
derived from a variational autoencoder (VAE) [42] trained on the training images.

A VAE is a generative model that contains two parts: an encoder and a decoder [42].
The encoder maps the input into a (usually) lower-dimensional latent space, and the
decoder approximately reconstructs the initial input from the lower-dimensional repre-
sentation of the input in the latent space.

The special feature of a VAE compared to other autoencoders is that the latent space
has a probabilistic structure. The latent space is typically a multivariate Gaussian defined
by a mean and variance vector. The encoder maps each input (e.g., an image) out of
a large dataset into a distribution within the latent space, rather than a single element.
Instead of passing the distribution directly to the decoder, a random latent representation
is sampled from the latent probability space. This sample is then fed to the decoder to

– 51 –

4 Diffeomorphism-Equivariant Neural Network

reconstruct the original input. An illustration of the VAE architecture can be found in
Figure 4.2. The input images are passed through the network. Then, the VAE loss is
computed and backpropagation is used to update the model weights.

Definition 4.4 (VAE Loss/ELBO). We consider a VAE with a latent space of dimen-
sion 𝑑 < 𝑛. For each input 𝑥 ∈ [0, 1]𝑛, we assume a Gaussian latent space distribution
𝑞(⋅|𝑥) ∼ 𝒩(𝜇,diag(𝜎2)), parametrised by 𝜇 ∶= (𝜇𝑗)𝑑𝑗=1 ∈ ℝ𝑑 and 𝜎2 ∶= (𝜎𝑗)𝑑𝑗=1 ∈ ℝ𝑑. We
define the VAE loss as a combination of binary cross entropy (BCE) and Kullback–Leibler
divergence (𝐷KL, also called KL divergence) between the encoder distribution and the
standard normal distribution:

ℒVAE(𝑥) ∶= BCE(𝑥, 𝑥)⏟⏟⏟⏟⏟
reconstruction loss

+𝐷KL (𝑞(⋅|𝑥) || 𝒩(0, 𝐼))⏟⏟⏟⏟⏟⏟⏟⏟⏟
KL divergence

, (4.14)

where 𝑥 ∈ [0, 1]𝑛 is the output of the VAE. Here, the binary cross entropy is defined as

BCE(𝑥, 𝑥) ∶= −
𝑛
∑
𝑖=1

[𝑥𝑖 ln𝑥𝑖 + (1 − 𝑥𝑖) ln(1 − 𝑥𝑖)] (4.15)

with 0 ln(0) ∶= 0, and the KL divergence is

𝐷KL (𝑞(⋅|𝑥) || 𝒩(0, 𝐼)) ∶= −1
2

𝑑
∑
𝑗=1

(1 + ln𝜎2
𝑗 − 𝜇2

𝑗 − 𝜎2
𝑗) . (4.16)

The latter helps to bring the approximate posterior close to a standard normal distribu-
tion, while the binary cross entropy helps to minimise the difference between the input
𝑥 and the reconstructed input 𝑥. The VAE loss is also called evidence lower bound (ELBO).
Classically, the first term is more complicated than the BCE. However, as our inputs are
normalised to [0, 1]𝑛 we can use the BCE.

We use the trained VAE to compute a scalar energy value for new inputs. The energy𝐸VAE
corresponds to the VAE loss and indicates the distance from an input to the training
dataset 𝑋𝐸, on which we train the VAE. Hence, we define VAE energy 𝐸VAE ∶ ℝ𝑛 → [0,∞)
as

𝐸VAE(𝑥) ∶= ℒVAE(𝑥). (4.17)

A low energy means that the input can be reconstructed well by the VAE.

Adversarial Energy 𝐸adv. To further increase the similarity between a transformed
image and the training data, we additionally use an adversarial energy function. The
energy function is based on the adversarial discriminator that is learned by a discriminator
network, trained to distinguish between the training images 𝑋𝐸 and the transformed ones.

The adversarial discriminator is determined by a Wasserstein generative adversarial net-
work (WGAN) with a gradient penalty (WGAN-GP) framework [6]. The idea of a WGAN
is that it measures how well a transformed image aligns with the distribution of the train-
ing data by approximating the Wasserstein distance between them. The gradient penalty
ensures smooth and stable training. We base our implementation on adversarial regular-
isation [57, 63] similarly to the implementation in [72]. A discriminator 𝐷 ∶ 𝑋 → ℝ, is
trained in a way that

– 52 –

4 Diffeomorphism-Equivariant Neural Network

• 𝐷(𝑥) is small if 𝑥 is “close” to the training data 𝑋𝐸 (“real” images), and
• 𝐷(𝑥) is large when 𝑥 is different from the training data 𝑋𝐸 (“fake” images).

We generate the “fake” images by applying random SVF-based diffeomorphisms to “real”
images. This setup defines two implicit data distributions, 𝑝real and 𝑝fake. Those corre-
spond to the dataset 𝑋𝐸 and to the distribution of randomly transformed images, and
are accessed only via sampling rather than by explicit probability densities.

Let 𝑥 be an image of the training data 𝑋𝐸 and 𝑥 = 𝑔 ⋅ 𝑥 a generated “fake” image.
Furthermore, let the image

𝑥̃ = 𝛼𝑥 + (1 − 𝛼)𝑥, 𝛼 ∼ Uniform(0, 1) (4.18)

be a linear interpolation between 𝑥 and 𝑥, where 𝑝 denotes the implicit distribution of
interpolated samples 𝑥̃ between real and fake images. The WGAN-GP loss for training
the discriminator 𝐷 is defined as

ℒD(𝑥, 𝑥) ∶= 𝔼𝑥̂∼𝑝fake
[𝐷(𝑥)] − 𝔼𝑥∼𝑝real

[𝐷(𝑥)] + 𝜇 ⋅ 𝔼𝑥̃∼𝑝̃ [(|∇𝑥̃𝐷(𝑥̃)|2 − 1)2] , (4.19)

where 𝜇 ∈ ℝ is the gradient penalty weight. The term 𝔼𝑥∼𝑝real
[𝐷(𝑥)] denotes the expecta-

tion of the discriminator output over data samples,

𝔼𝑥∼𝑝real
[𝐷(𝑥)] = ∫𝐷(𝑥) 𝑑𝑝real(𝑥). (4.20)

In practice, we approximate the expectation through averaging over the batch size 𝐵,

𝔼𝑥∼𝑝real
[𝐷(𝑥)] ≈ 1

𝐵

𝐵
∑
𝑖=1

𝐷(𝑥𝑖), 𝑥𝑖 ∼ 𝑝real(𝑥). (4.21)

We define the expectation analogously for 𝑥 and 𝑥̃ with their respective distributions 𝑝fake
and 𝑝. The trained discriminator can be used directly to define the adversarial loss:

𝐸adv(𝑥) ∶= 𝐷(𝑥). (4.22)

The “closer” the input 𝑥 to the training dataset 𝑋𝐸, the smaller the energy 𝐸adv(𝑥). For
more details, see [57, 63, 72].

Regularising Energy 𝐸reg. Following [19], we use a regularising energy 𝐸reg to en-
courage physically plausible transformations. As in (4.13), we define the regularising
energy 𝐸reg as

𝐸reg(𝑔) ∶= 𝜆grad ∑
𝑝∈Ω

𝑑
∑
𝑖=1

(∇𝑣𝑖(𝑝))2
⏟⏟⏟⏟⏟⏟⏟⏟⏟

gradient loss

+𝜆jac ∑
𝑝∈Ω

max(0,−det(𝒥𝑔(𝑝)))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Jacobian determinant loss

, (4.23)

where 𝑣𝑖 is the 𝑖-th component of the SVF 𝑣 that induces 𝑔, and det(𝒥𝑔) the Jacobian de-
terminant of 𝑔. The gradient loss is large for deformations with high spatial variation
in their flow field. Therefore, it is small when the deformation is smooth. The Jaco-
bian determinant loss penalises mappings with at least one 𝑝 ∈ Ω with negative Jacobian

– 53 –

4 Diffeomorphism-Equivariant Neural Network

determinant. We require det(𝒥𝑔(𝑝)) > 0 for all 𝑝 ∈ Ω, as such diffeomorphisms are
orientation-preserving, which ensures physical plausibility. A negative determinant in-
dicates local reversal of orientation, such as folding or tearing, which does not make sense
in most image processing tasks. Therefore, restricting to diffeomorphisms with a posi-
tive Jacobian determinant is a common practice in image processing and has been widely
researched [55, 47].

The regularising energy 𝐸reg is based on the regularisation used in [19]. This energy
is only one option to regularise, and it should be adjusted task specific. One could, for in-
stance, leave out the Jacobian determinant loss if an orientation-reversing transformation
is a possible and desirable solution of the minimisation problem.

In summary, we propose the canonicalisation energy

𝐸can(𝑥, 𝑔) = 𝜆VAE𝐸VAE(𝑔 ⋅ 𝑥) + 𝜆adv𝐸adv(𝑔 ⋅ 𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
image similarity 𝐸𝑋𝐸

(4.24)

+ 𝜆grad ∑
𝑝∈Ω

𝑑
∑
𝑖=1

(∇𝑣𝑖(𝑝))2
⏟⏟⏟⏟⏟⏟⏟⏟⏟

gradient loss

+𝜆jac ∑
𝑝∈Ω

max(0,−det(𝒥𝑔(𝑝)))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Jacobian determinant loss

,

that we can now use to find a suitable canonicalising element 𝑔𝑥.

4.2.3 Canonicalisation via Gradient-based Optimisation

In contrast to the approach of LieLAC [72], we estimate the image-specific canonicalising
element by using a gradient-based optimisation method similar to [19, 28, 10] to minimise
the canonicalisation energy 𝐸can. We use the framework of Bostelmann et al. [19], which
was developed for image registration, and adjust the energy term to make it suitable for
our purposes. We replace the classical registration term of a data term and a regulariser by
our canonicalisation energy 𝐸can, making it only dependent on one input image and the
transformation. We find that the approach by Bostelmann et al. is fitting for our setup, as
it allows us to find SVF-based diffeomorphisms, but, in general, any optimisation method
that is able to solve (4.8) could be used for the canonicalisation step.

In the following, we give a short overview of the used optimisation strategy. For a
more detailed description, see [19].

SIREN Network. Following Bostelmann et al. [19], we use a Sinusoidal Representation
Network (SIREN) network [74] to parametrise the SVFs, which underlie our diffeomor-
phisms. Rather than using traditional activation functions, periodic (sinusoidal) acti-
vation functions (see Definition A.7) are used. This makes those networks particularly
suitable for modelling complex continuous signals.

A SIREN network consists of several fully-connected layers. At each layer, a sinu-
soidal activation function is applied. Typically, a large frequency (e.g., 𝜔0 = 30) is chosen
for the first layer, which is then followed by smaller frequencies for the remaining layers
(e.g., 𝜔0 = 1) [74]. With this setting, high-frequency components are detected while still
encouraging smoothness of the output. Like in [19], the final layer outputs the velocity
field 𝑣𝜃(𝑝) for each position 𝑝 ∈ Ω, a coordinate-based representation of the SVF.

– 54 –

4 Diffeomorphism-Equivariant Neural Network

Scaling andSquaring. Bostelmann et al. calculate the flow 𝑔𝜃 = exp(𝑣𝜃)using a Scaling
and Squaring approach [7], which we also employ. Starting with a small deformation
𝑔1/2𝑛(𝑝) ≈ 𝑝 + 𝑣(𝑝)

2𝑛 , the complete transformation is recovered by recursively composing
this map with itself. Specifically, for 𝑘 = 𝑛 − 1, ..., 0, we define

𝑔1/2𝑘(𝑝) = 𝑔1/2𝑘+1(𝑔1/2𝑘+1(𝑝)), (4.25)

such that after 𝑛 recursive steps, the deformation 𝑔𝜃 is obtained. In this manner, we ap-
proximate the solution of the ODE (4.9) at 𝑡 = 1.

After an initialisation, the network from [19] updates the flow 𝑔𝜃 𝑁 times. Each time,
the flow is first calculated using the SIREN network and Scaling and Squaring. The flow
𝑔𝜃 and the input 𝑥 are then used to compute a loss, in our case the canonicalising en-
ergy 𝐸can by which 𝜃 and therefore 𝑔𝜃 are updated in a backpropagation step. We can
backpropagate even though our energy function contains the “max” operator, by “differ-
entiating” this operator, following the concept of subgradients like in [19]. Similar to the
ReLU function (Definition A.4), we set the gradient at the critical point 𝑥 = 0 to a specific
value (here, in PyTorch, set to 0). After 𝑁 update steps, the transformation 𝑔𝜃 is returned.

We use the diffeomorphic transformation 𝑔𝑥 ∶= 𝑔𝜃 that we obtain by applying the
algorithm of Bostelmann et al. [19] to transform the input image 𝑥 into a canonical rep-
resentation

𝑥𝑐 = 𝑔𝑥 ⋅ 𝑥 = 𝑥 ∘ 𝑔𝑥. (4.26)

In the second step, we then apply the segmentation model 𝑓𝜃 to this canonical represen-
tation 𝑥𝑐. In the following section, we describe the training of the model 𝑓𝜃. Note that
segmentation is just an exemplary application of our network. DiffeoNN can be used for
arbitrary other tasks where diffeomorphism-equivariance is desired. One only needs to
replace the inner model 𝑓𝜃 accordingly. We can even use a pretrained model for 𝑓𝜃 and
make it diffeomorphism-equivariant.

4.3 Segmentation

For the inner segmentation model 𝑓𝜃, we use a U-Net [67] that is trained only on the
training data 𝑋𝐸. A U-Net is a supervised machine learning method for image segmen-
tation, which needs annotated (i.e., labelled) data for training. The name stems from the
characteristic (symmetric) “U”-shape of the network architecture that is a modification
of a fully convolutional network [56] (FCN), i.e., a convolutional neural network without
fully connected layers that operates directly on image grids. The network’s architecture
consists mainly of two parts: a contracting path and an expanding path.

The contracting path reduces the resolution by repeated application of convolutions,
ReLU activation functions, and max pooling (Section A.1). This successively increases
the feature information while decreasing the spatial information. At the bottleneck (the
lowest resolution), the feature maps represent a compact semantic encoding of the input
image.

The expanding path mirrors the contracting path. It increases the spatial resolu-
tion. The features and spatial information are combined using an upsampling operation

– 55 –

4 Diffeomorphism-Equivariant Neural Network

Figure 4.3: Example of a U-Net architecture from [67]. The contracting path and expanding path form the classical
“U”-shape. The contracting path reduces the resolution by repeated sequences of convolutions, ReLU activation
functions, and max pooling. At the lowest level (the bottleneck), the feature maps contain a compact semantic rep-
resentation of the input image, which is then expanded again as the resolution increases along the expanding path
that mirrors the contracting path. The features and spatial information are combined by an upsampling operation
and concatenations with high-dimensional features from the contracting path through skip connections.

(e.g., transposed convolutions) and concatenated with high-dimensional features from
the contracting path trough skip connections. The latter helps to preserve fine spatial infor-
mation that might have been lost during downsampling. This improves the localisation
accuracy. After a final 1×1 convolution, a softmax or sigmoid activation function is applied,
depending on the segmentation task (multi-class or binary). To supervise the training, a
pixel-wise cross-entropy loss is classically used [67]:

Definition 4.5 (Pixel-Wise Cross-Entropy). Let 𝑘 be the number of pixels in an image 𝑥,
let 𝑦𝑔𝑡𝑖 ∈ {0, 1} be the ground-truth class label at pixel 𝑖, and let 𝑓𝜃(𝑥)𝑖,𝑐 ∈ ℝ be the
predicted output of the network for class 𝑐 ∈ {0, 1} at pixel 𝑖. Then, the pixel-wise cross-
entropy is defined as

ℒ𝐶𝐸(𝑥) ∶= − 1
𝑘

𝑘
∑
𝑖=1

ln(
exp(𝑓𝜃(𝑥)𝑖,𝑦𝑔𝑡

𝑖
)

exp(𝑓𝜃(𝑥)𝑖,0) + exp(𝑓𝜃(𝑥)𝑖,1)
). (4.27)

This formulation corresponds to the categorical (softmax-based) cross-entropy for two
classes. It treats the segmentation task as a two-class classification problem, and is there-
fore equivalent to the binary cross-entropy when 𝑐 ∈ {0, 1}. The categorical version is
used here for consistency with the multi-class case, where the denominator generalises

– 56 –

4 Diffeomorphism-Equivariant Neural Network

naturally to ∑𝐶
𝑐=1 exp(𝑓𝜃(𝑥)𝑖,𝑐). An example of a U-Net architecture can be found in Fig-

ure 4.3.
Ronneberger et al. [67] demonstrated that due to its architectural design and data

augmentation, a U-Net performs well even when trained on very few annotated images.
Since its first introduction, U-Nets have been widely used and modified [9, 24], and
still remain the go-to method for various segmentation tasks [9]. Another advantage is
that Convolutional Neural Networks (CNNs), and therefore also U-Nets, are translation-
equivariant by design [34, 51].

4.4 Reverse Canonicalisation

In the third and last step of DiffeoNN, we reverse the canonicalisation. In this step, the
segmentation output for 𝑥𝑐,

𝑦𝑥𝑐
= 𝑓𝜃(𝑥𝑐) = 𝑓𝜃(𝑔𝑥 ⋅ 𝑥), (4.28)

is transformed into a segmentation of 𝑥 by applying the inverse of the canonicalising
element 𝑔𝑥 to 𝑦𝑥𝑐

. The segmentation of 𝑥, and therefore the final output of DiffeoNN, is

𝑦𝑥 = 𝑔−1
𝑥 ⋅ 𝑦𝑥𝑐

, (4.29)

where 𝑔−1
𝑥 is the inverse of the canonicalising element 𝑔𝑥, computed in the canonicalisa-

tion step (Section 4.2). This inverse exists and can, up to discretisation, easily be deter-
mined from the negative velocity field, as 𝑔𝑥 is an SVF-based diffeomorphism.

4.5 Theoretical Connection and Summary

Our formal proof of generalisation in Chapter 3 only holds for Lie groups acting on com-
pact manifolds and does therefore not apply to the group of diffeomorphisms. However,
the structural parallels and practical regularisation of diffeomorphisms suggest that the
same principles transfer effectively to the image domain:

• The data manifold of images 𝒳 is not finite-dimensional and compact, but as we dis-
cretise the image domain and pixel intensities in practice, the realisation of 𝒳 is in
fact finite-dimensional and compact.

• Diffeomorphisms are not a compact Lie group. However, they have similar structural
properties that allow us to use the canonicalisation strategy: Diffeomorphisms act
smoothly on the image domain Ω and preserve topological properties. We parame-
trise the diffeomorphisms by stationary velocity fields (SVFs), which connects them
even closer to Lie group theory. As the image domain is discretised in practice, the
velocity field is represented on a discrete grid with finitely many points. Therefore,
optimisation over the set of SVF-based diffeomorphisms 𝒟SVF(Ω) is effectively over
a finite-dimensional vector space, which makes it more similar to the optimisation
over a finite-dimensional Lie group.

– 57 –

4 Diffeomorphism-Equivariant Neural Network

• We add a regularising energy 𝐸reg to our image similarity energy 𝐸𝑋𝐸
to create the

canonicalisation energy 𝐸can. By adding the regularising energy, we can technically
no longer guarantee exact equivariance. Nevertheless, we achieve approximate equiv-
ariance, which is reflected in our empirical results in the following chapter, see Sec-
tion 5.3 and Section 5.5. We also verified the approximate diffeomorphism-invariance
of the canonicalisation step in DiffeoNN empirically, see Section 5.4.

All in all, in this chapter, we introduced a diffeomorphism-equivariant segmentation
method, called DiffeoNN. DiffeoNN contains a canonicalisation, a classical neural seg-
mentation network (U-Net), and a reverse canonicalisation. While it is only trained on
a comparatively small training dataset 𝑋𝐸, DiffeoNN finds segmentations on the whole
set 𝑋 that covers the images that can be obtained by transforming the images of 𝑋𝐸 dif-
feomorphically. DiffeoNN serves as an example and can easily be adapted for other tasks
than image segmentation, as only the inner task-specific network needs to be exchanged.
It is therefore also possible to use DiffeoNN to turn a pretrained model diffeomorphism-
equivariant without retraining.

The optimal choice of parameters of DiffeoNN and its performance are examined in
the next chapter. We furthermore give an example of an explicit implementation.

– 58 –

5
Experiments and Results

In this chapter, we evaluate the performance of DiffeoNN. For this, we create a synthetic
dataset (see Section 5.1). The training of the segmentation U-Net as well as the training
of the canonicalising energy, their hyperparameter tuning, and the general implemen-
tation of DiffeoNN, are described in Section 5.2. For the implementation of DiffeoNN,
we use code from [19, 67, 42, 57, 63]. In Section 5.3, we benchmark the performance
of DiffeoNN against a data-augmented U-Net and the inner U-Net in DiffeoNN with-
out canonicalisation (naïve approach). Furthermore, we evaluate if the canonicalisation
is in fact diffeomorphism invariant in Section 5.4. In Section 5.5, we additionally apply
DiffeoNN to real-world chest X-ray images to segment lungs.

5.1 Synthetic Datasets

To train and evaluate DiffeoNN, we create synthetic datasets. In general, we need data
for two different tasks:

1. “canonical” training data 𝑋𝐸 to pretrain the segmentation model and canonicalisa-
tion energy for the network,

2. diffeomorphically transformed data to evaluate the performance of the overall ap-
proach.

In the following two sections, the generation of both datasets is described in detail.

5.1.1 Training Dataset 𝑋𝐸

For training and evaluation of the different models contained in DiffeoNN (segmenta-
tion, VAE, adversarial), we generate a synthetic dataset of labelled “canonical” images.
The dataset is specifically created for pixel-wise segmentation and contains an image of
two squares nested within each other and a corresponding binary ground-truth segmen-
tation, denoting the inner square.

Generating Images. We choose the images in a similar way to in Example 3.1. All
images are of size 128 × 128. Each image contains two nested squares of varying size
and colour with the squares’ edges parallel to the image edges. We draw the squares’

– 59 –

5 Experiments and Results

generated
images 𝑋𝐸

Ground-Truth
segmentation 𝑌𝐸

transformed
images 𝑋𝑇𝐸

Ground-Truth
segmentation 𝑌𝑇𝐸

Figure 5.1: Examples from the synthetic dataset that contains the “canonical” images 𝑋𝐸 (left) and their binary
segmentation 𝑌𝐸 (second column), as well as diffeomorphically transformed versions of them, 𝑋𝑇𝐸 (third col-
umn), and of the corresponding segmentation 𝑌𝑇𝐸 (right). The images in 𝑋𝐸 contain two nested squares of
varying size with added Gaussian noise and axis-aligned edges. The binary segmentation 𝑌𝐸 indicates the inner
square.

sizes independently from a uniform range, such that the smaller square is always strictly
smaller than the larger. This ensures variability in scale of the generated data. We set the
centre of both squares to the same location, which we select randomly from a uniform
range. The uniform range depends on the larger square’s size, to ensure that both squares
remain within the image domain. We assign each square a different random greyscale
intensity in the range [1, 255] with a minimum distance of 10. The background intensity
is set to 0. For this dataset, we create 12 000 images.

To loop back to the theoretical setup: The training dataset is the set that is generated
above. In the following, we therefore refer to this dataset as 𝑋𝐸. The change from [0, 1]
to [0, 255] is only a scaling issue that does not affect the network structure significantly.

Noise Augmentation. To create less homogeneous surfaces, we add Gaussian noise
to the images. We layer the noise only over the squares, leaving the image background
constant 0. In many imaging techniques, Gaussian noise is a common occurrence due to
sensor sensitivity and other visual effects. So, the data is more realistic and suitable for
evaluating the robustness of DiffeoNN.

– 60 –

5 Experiments and Results

Corresponding Segmentations. For each image, we create a binary ground-truth seg-
mentation. It serves as the segmentation target for the central model of DiffeoNN. To
generate a suitable target for training binary U-Net models, we render the smaller, in-
ner square in the segmentation with a constant value of 1, while the rest of the image
remains 0. No noise is added to the segmentation.

The set of 12 000 segmentations will be called 𝑌𝐸 from now on. Examples of 𝑋𝐸
and 𝑌𝐸 are shown in Figure 5.1. We split the dataset 𝑋𝐸 and its corresponding segmen-
tations 𝑌𝐸 into

• a training subset (𝑋train
𝐸 , 𝑌 train

𝐸) (contains 8 000 images/segmentations each),
• a validation subset(𝑋val

𝐸 , 𝑌 val
𝐸) (contains 2 000 images/segmentations each), and

• a test subset (𝑋test
𝐸 , 𝑌 test

𝐸) (contains 2 000 images/segmentations each).

5.1.2 Dataset for Testing DiffeoNN

To evaluate our DiffeoNN approach and the invariance of the canonicalisation, we gen-
erate diffeomorphically transformed data by randomly transforming image and segmen-
tation pairs from 𝑋𝐸 and 𝑌𝐸. The implementation of these transformations relies on the
code of [19].

TransformedData. To mimic realistic transformations, we transform each image of 𝑋𝐸
with a random SVF-based diffeomorphism. To avoid an “inverse crime” [85], we do not
use the same technique as in our canonicalisation step to parametrise diffeomorphisms
for the creation of our diffeomorphically transformed synthetic data: We generate the
transformed synthetic data through a concatenation of transformations. First, we apply
a scaling matrix and a random rotation. In addition, we sample a deformation field that
is created by interpolating 12 randomly displaced control points using radial basis func-
tions (RBFs). The control points are uniformly placed across the image domain, and for
each control point, we construct its displacement with a random two-dimensional vector
within a maximum displacement norm of 0.12.

Even though the use of RBFs does not guarantee that the transformation is an SVF-
based diffeomorphism, we make it “smooth enough” through a smart choice of parame-
ters, which makes extreme transformations highly unlikely. This suggests that there exists
a matching SVF-based diffeomorphism to canonicalise all of the transformed images. This
assumption is supported by our experiments in Section 5.3, which show that, with the
right hyperparameters, the canonicalisation step finds a suitable canonicalising element
in the set of SVF-based diffeomorphisms for all considered synthetically transformed in-
put images. Furthermore, to ensure that the transformation is orientation-preserving,
only deformations with a positive Jacobian determinant are applied.

We do not apply a translation, as translation-equivariance is relatively straightfor-
ward to achieve by using suitable convolutional layers [34, 51], and without translation
it is less likely that the transformation moves the squares outside the image frame.

We apply the same transformation to the images of 𝑋𝐸 and the corresponding binary
segmentation 𝑌𝐸, to ensure the existence of a correct ground-truth segmentation for test-
ing. The images in 𝑋𝐸 are transformed by using a spatial warping function with bilinear

– 61 –

5 Experiments and Results

interpolation, and the segmentation using nearest-neighbour interpolation. This ensures
that the values stay 0 or 1, as we want to create a binary segmentation as ground-truth.

Ensuring Objects Stay in Domain. To guarantee that we do not move the squares out-
side the image domain by the transformation, we verify that no non-background point
touches the image border after the transformation. Otherwise, the transformation is dis-
carded, and a new one is randomly created. If, after 200 attempts, no suitable transforma-
tion is found, the image in 𝑋𝐸 and its transformed version are discarded. This happens
very rarely, and does not occur in the data used in the subsequent performance evalua-
tion.

In the following, we split the transformed data analogously to the data 𝑋𝐸 and refer
to the sets of transformed images and their segmentations as (𝑋train

𝑇𝐸 , 𝑌 train
𝑇𝐸) (contains

8 000 images/segmentations each), (𝑋val
𝑇𝐸, 𝑌 val

𝑇𝐸) (contains 2 000 images/segmentations
each), and (𝑋test

𝑇𝐸, 𝑌 test
𝑇𝐸) (contains 2 000 images/segmentations each). A few examples

of the datasets are given in Figure 5.1. More examples of the datasets can be found in
Appendix A.2.

5.2 Hyperparameter Tuning and Implementation of DiffeoNN

DiffeoNN has several free variables. In this section, we evaluate their influence on the
different models that we use in DiffeoNN. We address implementation details and the
hyperparameter choices.

5.2.1 Segmentation

Crucial to the performance of DiffeoNN is the performance of the inner network 𝑓𝜃, as
it determines the upper bound. If the inner network 𝑓𝜃 performs poorly on the train-
ing data (𝑋𝐸, 𝑌𝐸), the whole network 𝑓𝜃 can not perform well on the transformed data-
set (𝑋𝑇𝐸, 𝑌𝑇𝐸) by construction of 𝑓𝜃. It is therefore useful to optimise the performance
of the inner model 𝑓𝜃, which is a segmentation U-Net. In this section, the training setup
is further described. Moreover, we investigate the effect of the hyperparameters on the
segmentation quality to improve the segmentation model. We conduct hyperparameter
tuning to determine the optimal batch size and learning rate.

Training. For each combination of hyperparameters, we fully train a U-Net by using
the training (𝑋train

𝐸 , 𝑌 train
𝐸) and validation datasets (𝑋val

𝐸 , 𝑌 val
𝐸) from Section 5.1 without

augmentation. We use the Adam optimiser [41] and train for 10 epochs. To supervise the
training, we use a pixel-wise cross-entropy loss (see Definition 4.5). The implementation
of the U-Net is a lightly modified version of the original U-Net implementation [67].

Evaluation. We conduct a total of 12 experiments, varying the learning rate between
{5 ⋅ 10−4, 1 ⋅ 10−4, 5 ⋅ 10−5, 1 ⋅ 10−5}, and the batch size between {2, 4, 8}. Furthermore,
we evaluate the performance of the models on the test datasets (𝑋test

𝐸 , 𝑌 test
𝐸) using the

Intersection-over-Union (IoU), Dice coefficient, and pixel-wise accuracy:

– 62 –

5 Experiments and Results

Figure 5.2: Hyperparameter tuning of the U-Net is conducted, varying the batch size between {2, 4, 8} and the
learning rate between {5⋅10−4, 1⋅10−4, 5⋅10−5, 1⋅10−5}. We evaluate the performance on the testing dataset 𝑋test

𝐸
using the Intersection-over-Union (IoU), Dice coefficient, and pixel-wise accuracy. The model trained with a learn-
ing rate of 5⋅10−5 and a batch size of 2 has the maximal average IoU, average Dice coefficient, and average accuracy.

Definition 5.1 (Intersection-over-Union (IoU)). Let Ωℎ ∶= {1, ..., 128} × {1, ..., 128} the
discrete image domain. Let 𝑦𝑥 ∈ {0, 1}128×128 be the predicted segmentation of an input
𝑥 and 𝑦𝑔𝑡𝑥 ∈ {0, 1}128×128 be the binary ground-truth segmentation of 𝑥. The Intersection-
over-Union (IoU) measures the agreement of the two segmentations:

IoU(𝑦𝑥, 𝑦
𝑔𝑡
𝑥) ∶=

∑(𝑖,𝑗)∈Ωℎ
min{(𝑦𝑥)𝑖,𝑗, (𝑦

𝑔𝑡
𝑥)𝑖,𝑗}

∑(𝑖,𝑗)∈Ωℎ
max{(𝑦𝑥)𝑖,𝑗, (𝑦

𝑔𝑡
𝑥)𝑖,𝑗}

, (5.1)

where (𝑦𝑥)𝑖,𝑗 is the value of 𝑦𝑥 at (𝑖, 𝑗) ∈ Ωℎ and (𝑦𝑔𝑡𝑥)𝑖,𝑗 is defined analogously.

Definition 5.2 (Dice Coefficient). We are using the setup from Definition 5.1. The Dice
coefficient measures the similarity of two segmentations:

Dice(𝑦𝑥, 𝑦
𝑔𝑡
𝑥) ∶=

2∑(𝑖,𝑗)∈Ωℎ
min{(𝑦𝑥)𝑖,𝑗, (𝑦

𝑔𝑡
𝑥)𝑖,𝑗}

∑(𝑖,𝑗)∈Ωℎ
(𝑦𝑥)𝑖,𝑗 +∑(𝑖,𝑗)∈Ωℎ

(𝑦𝑔𝑡𝑥)𝑖,𝑗
, (5.2)

Definition 5.3 (Pixel-wise Accuracy). We are using the setup from Definition 5.1. The
pixel-wise accuracy Acc measures the correctly predicted pixels (foreground/background)

Acc(𝑦𝑥, 𝑦
𝑔𝑡
𝑥) ∶=

∑(𝑖,𝑗)∈Ωℎ
𝟙{(𝑦𝑥)𝑖,𝑗=(𝑦𝑔𝑡

𝑥)𝑖,𝑗}

|Ωℎ|
. (5.3)

All these scores have values in [0, 1], where a maximal value is more desirable and the
optimal value is 1. We visualise the results in Figure 5.2, where the average metric value
across all test samples (𝑋test

𝐸 , 𝑌 test
𝐸) is shown for varying batch sizes and learning rates.

We choose a model trained with a learning rate of 5 ⋅ 10−5 and a batch size of 2 for further
experiments, as the average IoU, average Dice coefficient, and average accuracy are best
for this choice of parameters.

5.2.2 Canonicalisation Step

Following Section 4.2, we compute a canonicalising element 𝑔𝑥 via gradient-based opti-
misation, where we minimise the canonicalisation energy 𝐸can.

– 63 –

5 Experiments and Results

Figure 5.3: Hyperparameter tuning of the VAE on the testing dataset 𝑋test
𝐸 . We vary the batch size between {1, 2, 4}

and the learning rate between {1 ⋅ 10−3, 5 ⋅ 10−4, 1 ⋅ 10−4, 5 ⋅ 10−5, 1 ⋅ 10−5}. As the ELBO and 𝐿2 reconstruction
loss are minimal with a batch size of 1 and a learning rate of 1 ⋅ 10−4, we choose those training parameters for
further experiments.

Gradient-based Optimisation. The implementation of the gradient-based optimisa-
tion is based on [19, 28, 10]. We parametrise the transformation through a stationary
velocity field (SVF) over the image domain, and calculate the transformation using Scal-
ing and Squaring [7]. We mainly use the code from [19] and adjust the energy that is
minimised. Following Bostelmann et al., we initialise transformation randomly, optimise
using Adam [41], and perform 5000 update steps. For more detailed explanations on the
used networks, and the optimisation process, see Section 4.2.3 and [19].

Canonicalisation Energy. As described in Section 4.2.2, the energy function𝐸can (4.24)
consists of a weighted sum of different loss terms with scalar weights. In conducted ex-
periments, described in the following, we choose the scalar weights as 𝜆VAE = 1 ⋅ 10−5,
𝜆grad = 1, and 𝜆jac = 10.

As especially the adversarial energy term 𝐸adv plays a crucial role for the closeness of
the canonicalised inputs to the training dataset 𝑋𝐸, the value of 𝜆adv has a large influence
on the performance of the whole network. Therefore, we determine 𝜆adv by comparing
different values, described in Section 5.2.4. More details on the training of the models
and hyperparameter tuning of the VAE energies and adversarial energy can be found in
the following two sections.

5.2.3 VAE Energy

To get a suitable energy 𝐸VAE for the canonicalisation step, we conduct hyperparameter
tuning of the convolutional variational autoencoder (VAE-CNN). For this, we investigate
the influence of the batch size and learning rate on the performance of the VAE-CNN.
Our implementation is based on code from [42, 72].

Training. We fully train a VAE-CNN for each combination of hyperparameters using
the training dataset 𝑋train

𝐸 from Section 5.1 without augmentation. The architecture of
the VAE-CNN consists of an encoder with six convolutional layers, a decoder with six
transposed, fully connected, convolutional layers, and a 10-dimensional latent space. As
explained in Section 4.2, we use the ELBO (see Definition 4.4) as loss for training the VAE.

– 64 –

5 Experiments and Results

We optimise the model via the Adam optimiser [41] and set the number of epochs to 50.
The performance is monitored on the validation dataset 𝑋val

𝐸 .

Evaluation. We evaluate all combinations of varying the batch size between {1, 2, 4}
and the learning rate between {1 ⋅ 10−3, 5 ⋅ 10−4, 1 ⋅ 10−4, 5 ⋅ 10−5, 1 ⋅ 10−5}. We analyse
the performance of the models on the test dataset (𝑋test

𝐸 , 𝑌 test
𝐸) by examining the ELBO

(Definition 4.4) and the 𝐿2 reconstruction loss:

Definition 5.4 (𝐿2 Reconstruction Loss). Let 𝑥 ∈ ℝ𝑛 be the input and 𝑥 ∈ ℝ𝑛 its recon-
struction (the final output). The 𝐿2 loss is defined as

𝐿2(𝑥, 𝑥) = ‖𝑥 − 𝑥‖2𝐹 =
128
∑
𝑖,𝑗=1

((𝑥)𝑖,𝑗 − (𝑥)𝑖,𝑗)2, (5.4)

where (𝑥)𝑖,𝑗 and (𝑥)𝑖,𝑗 denote the value at the position (𝑖, 𝑗) ∈ {1, ..., 128} × {1, ..., 128}.
It measures the pixel-wise squared error between the input and its reconstruction.

Both metrics map to ℝ≥0, and are optimal when their value is 0. The results are visualised
in Figure 5.3, where the average metric values across all test samples 𝑋test

𝐸 are shown
depending on the batch size and learning rate. The models trained with a learning rate
below 5 ⋅ 10−3 all perform in the same magnitude, while a learning rate of 1 ⋅ 10−3 with
a batch size of 2 produces particularly high losses. The ELBO and 𝐿2 reconstruction loss
is minimal when we choose a batch size of 1 and a learning rate of 5 ⋅ 10−5. We therefore
select those parameters for further experiments.

5.2.4 Adversarial Energy

The adversarial energy term 𝐸adv plays an important role in the canonicalisation en-
ergy 𝐸can to ensure the canonicalised input is “close” to the training dataset 𝑋𝐸. As de-
scribed in Section 4.2.2, we use the discriminator of a Wasserstein GAN to determine the
adversarial energy term 𝐸adv. The implementation closely follows [57, 63, 72]. Further-
more, we conduct hyperparameter tuning to find the optimal weight 𝜆adv for 𝐸adv in the
canonicalisation energy 𝐸can.

Training. We train the adversarial discriminator to distinguish between the original
square images 𝑋𝐸 (see Section 5.1.1) and their diffeomorphically transformed counter-
parts, which are generated during each training iteration (on-the-fly). This avoids storing
or precomputing transformed images. Furthermore, it makes sure that the model does
not memorise a static transformation set. We generate the diffeomorphic transformations
as described in Section 5.1.2.

We train the adversarial discriminator (see Section 4.2.2) on the dataset 𝑋train
𝐸 , us-

ing the Adam optimiser [41], and validate the training on 𝑋val
𝐸 . We choose the gradient

penalty weight 𝜇 = 10 and set the learning rate to 1 ⋅ 10−4, the batch size to 16, and the
number of epochs to 50.

Adversarial Weight. To ensure that the canonicalised input is “close” to the training

– 65 –

5 Experiments and Results

Figure 5.4: Comparison of different values for the adversarial weight 𝜆adv in the canonicalisation energy of Dif-
feoNN. We evaluate the performance of DiffeoNN using the Intersection-over-Union (IoU), Dice coefficient, and
pixel-wise accuracy and compare it with applying only the inner U-Net without canonicalisation. With adversarial
weights 𝜆adv in [0.003, 0.02], the performance with canonicalisation is better than that without canonicalisation.
The results for 𝜆adv between 0.005 and 0.01 are very similar. Only the accuracy is noticeably better for 𝜆adv = 0.01.
Therefore, we use 𝜆adv = 0.01 for further experiments.

dataset 𝑋𝐸, while still maintaining a good regularisation of the transformation, we con-
duct hyperparameter tuning of the adversarial weight 𝜆adv for the energy term 𝐸adv. We
test values in the range [0.001, 0.05] for the adversarial weight 𝜆adv.

We apply DiffeoNN to 20 images of 𝑋test
𝑇𝐸, and use the mean Dice coefficient (Defini-

tion 5.2), Intersection-over-Union (IoU) (Definition 5.1), and pixel-wise accuracy (Def-
inition 5.3) for evaluation. In an ablation experiment, the same segmentation U-Net is
also applied directly to the input images without any canonicalisation (naïve approach).
The results are visualised in Figure 5.4. One can see that the value of 𝜆adv had a large
influence on the performance of DiffeoNN. The performance of the segmentation with
canonicalisation is approximately better than without canonicalisation for adversarial
weights in [0.003, 0.02]. To achieve an optimal segmentation, we choose the adversarial
weight 𝜆adv as 0.01 for further experiments.

– 66 –

5 Experiments and Results

Model IoU Dice Coefficient Accuracy
U-Net with Augmentation 0.9770 0.9878 0.9989
U-Net without Augmentation 0.9276 0.9582 0.9962
DiffeoNN 0.9571 0.9777 0.9981

(a) Mean Intersection-over-Union (IoU), Dice coefficient, and pixel-wise accuracy.

(b) Intersection-over-Union (IoU), Dice coefficient, and pixel-wise accuracy for DiffeoNN, an augmented U-Net, and the inner U-Net of
DiffeoNN in the form of box plots.

Figure 5.5: Performance of DiffeoNN, an augmented U-Net, and the inner U-Net of DiffeoNN without augmenta-
tion (naïve approach) in comparison. We apply the methods to 100 images from the dataset 𝑋test

𝑇𝐸. Subfigure 5.5a
summarises the performances to the mean Dice coefficient (Definition 5.2), Intersection-over-Union (IoU) (Defini-
tion 5.1), and pixel-wise accuracy (Definition 5.3), while Subfigure 5.5b shows the scores in the form of box plots.
DiffeoNN outperforms the segmentation of the naïve approach. When looking at the average, the augmented U-
Net still performs best, but DiffeoNN has the least extreme outliers.

5.3 Benchmarking

To evaluate the performance of DiffeoNN, we conduct several experiments. In the pre-
vious section, we compared the results of DiffeoNN and the inner U-Net of DiffeoNN.
We call the latter method the naïve approach, as it does not use any method to achieve
diffeomorphism-equivariance.

To provide a comparison, we include an augmented U-Net, trained with standard
data augmentation techniques to approximate deformation invariance. Data augmenta-
tion is another approach to achieve approximate diffeomorphism-equivariance (see Sec-
tion 1.5). We train the augmented U-Net in the same way as the inner U-Net of DiffeoNN,
setting the learning rate to 5⋅10−5, the batch size to 2, and the number of epochs to 10. The
dataset used to train the augmented U-Net is a combination of our synthetic datasets 𝑋𝐸
and 𝑋𝑇𝐸:

• training data: 𝑋train
aug = 𝑋train

𝑇𝐸 ∪ 𝑋train
𝐸 and 𝑌 train

aug = 𝑌 train
𝑇𝐸 ∪ 𝑌 train

𝐸 (contains 16 000
images/segmentations each),

• validation data: 𝑋val
aug = 𝑋val

𝑇𝐸∪𝑋val
𝐸 and 𝑌 val

aug = 𝑌 val
𝑇𝐸∪𝑌 val

𝐸 (contains 4 000 images/seg-
mentations each).

After training the augmented U-Net, we evaluate and compare the performance of Dif-
feoNN, the augmented U-Net, and the inner U-Net of DiffeoNN (naïve approach): We

– 67 –

5 Experiments and Results

apply the three methods to 100 images from the dataset 𝑋test
𝑇𝐸, and compute the Dice co-

efficient (Definition 5.2), Intersection-over-Union (IoU) (Definition 5.1), and pixel-wise
accuracy (Definition 5.3). Figure 5.5 shows the results in the form of box plots (b) and
the mean scores (a). DiffeoNN outperforms the naïve approach significantly, but, on
average, its performance is still slightly lower than that of the augmented U-Net. Nev-
ertheless, the box plots show that although DiffeoNN has slightly lower mean values, it
also has less extreme outliers. This suggests that our approach is actually more robust
than the augmented U-Net.

We assume that the nearly perfect performance of the augmented U-Net in the mean
is based on the fact that our segmentation problem is relatively simple, and we are there-
fore able to cover its complexity by data augmentation. However, the data augmented U-
Net needs large amounts of training data, whereas the other two methods can be trained
on the smaller training dataset 𝑋𝐸. In our experiment, for example, the dataset for train-
ing the augmented U-Net is twice the size of the training set 𝑋𝐸, which is used for train-
ing our method. In addition, the data augmentation requires a much longer training time
and much higher computational costs than the simple U-Net that we use in the other two
methods. Furthermore, the results show that DiffeoNN improves the performance of
the naïve U-Net, which indicates the effectiveness of our method. In Appendix A.3, we
present some visual examples of DiffeoNN applied to images from 𝑋test

𝑇𝐸 and compare the
results of DiffeoNN, the naïve U-Net, and the augmented U-Net visually.

5.4 Invariance of the Canonicalisation

A central assumption of the canonicalisation strategy is that the canonicalisation is ap-
proximately diffeomorphism-invariant, e.g., for an input 𝑥 ∈ 𝑋𝐸 and a transformed in-
put 𝑔′ ⋅ 𝑥 with an arbitrary diffeomorphism 𝑔 it holds

argmin
𝑔∈𝒟SVF(Ω)

𝐸can(𝑥, 𝑔) ≈ argmin
𝑔∈𝒟SVF(Ω)

𝐸can(𝑔′ ⋅ 𝑥, 𝑔). (5.5)

To verify this property, we combine the canonical representations of images in 𝑋test
𝐸 and

their transformed counterpart in 𝑋test
𝑇𝐸. Since the solution of the canonicalisation optimi-

sation problem is not unique, we compare the results visually and by energy level.
We conduct the experiment on 20 image pairs (𝑥, 𝑔 ⋅ 𝑥) ∈ 𝑋test

𝐸 × 𝑋test
𝑇𝐸, where 𝑔 is a

randomly chosen transformation, as described in Section 5.1. We perform the canonical-
isation step on both images. In addition, we compare the canonicalisation energies be-
fore performing the canonicalisation with the final canonicalisation energies. We present
a few exemplary results in Figure 5.6. Additional visual results can be found in Ap-
pendix A.4. The canonicalised images look very similar to the training dataset 𝑋𝐸. This is
also reflected in the energy levels. The energies of an input pair (𝑥, 𝑔 ⋅𝑥) ∈ 𝑋test

𝐸 ×𝑋test
𝑇𝐸 are

very different, whereas the canonicalised pair (𝑥𝑐, (𝑔⋅𝑥)𝑐) has approximately the same en-
ergy. The average difference between the energies of the 20 canonicalised pairs (𝑥𝑐, (𝑔⋅𝑥)𝑐)
is approximately 0.0197, which shows that the canonicalisation step is approximately in-
variant.

– 68 –

5 Experiments and Results

𝑥 ∈ 𝑋test
𝐸 𝑥𝑐 𝑔 ⋅ 𝑥 ∈ 𝑋test

𝑇𝐸 (𝑔 ⋅ 𝑥)𝑐

Figure 5.6: Pairs of (𝑥, 𝑔⋅𝑥) ∈ 𝑋test
𝐸 ×𝑋test

𝑇𝐸 and their canonicalisation with corresponding canonicalisation energies.
Column one shows an input 𝑥 ∈ 𝑋test

𝐸 and column three the randomly transformed input 𝑔 ⋅ 𝑥 ∈ 𝑋test
𝑇𝐸 (see

Section 5.1). The columns two and four contain the canonicalised pair. The energy is shown above each image.
While the energies of the input pairs are very different, the energies of the canonicalised pairs (𝑥𝑐, (𝑔 ⋅ 𝑥)𝑐) are
similar.

5.5 DiffeoNN for Lung Segmentation

To evaluate the performance of DiffeoNN beyond a synthetic dataset, we conduct an ex-
periment on real-world data. For this, we use a dataset with chest X-ray images and their
ground-truth lung segmentation from [68].

Dataset. The original dataset contains images and corresponding ground-truth seg-
mentations into three different classes (“Non-Covid”, “Covid”, and “Non-Covid-Pneu-
monia”). We combine the images and corresponding ground-truth segmentations of the
initial three classes into one dataset, which is then split into a training dataset (contain-
ing 234 images and corresponding segmentations), a validation dataset (containing 60
images and corresponding segmentations), and a test dataset (containing 60 images and
corresponding segmentations). We then proceed as in Section 5.1.2 to create a dataset of
diffeomorphically transformed images. To ensure that the transformation does not move
the lungs out of the image domain, we check whether the ground-truth segmentation of
the lung is within the image domain, and we randomly draw new transformations until
this condition is fulfilled.

Network. We train the inner U-Net of DiffeoNN as well as the adversarial network and
VAE with the same parameters as in Section 5.3. We set the weights in the canonicalisation
energy 𝐸can in (4.24) to

• 𝜆VAE = 1 ⋅ 10−4,

– 69 –

5 Experiments and Results

Input 𝑥 Canonicalised
Input 𝑥𝑐

Segmentation
of 𝑥𝑐

DiffeoNN
Output

U-Net
Output

Ground-Truth
Segmentation

Figure 5.7: Lung segmentation of diffeomorphically transformed chest X-ray images from [68]. Column one shows
the diffeomorphically transformed input images. In columns two to four, we show the results in the different steps
of DiffeoNN (our approach): First, the canonicalised input images (column two), followed by their segmentation
(column three), and the final output of DiffeoNN (column four). The output segmentation of the inner U-Net
(naïve approach) is shown in column five and the ground-truth segmentation in column six. The canonicalisation
step tends to align the shoulders to the horizontal axis of the images, while also shrinking the image slightly. The
DiffeoNN segmentation results match or outperform the segmentation results of the inner U-Net.

• 𝜆grad = 1,
• 𝜆jac = 10,
• and 𝜆adv = 1 ⋅ 10−6.

The parameters were selected manually. Furthermore, we change the number of update
steps in the gradient-based optimisation method for finding a canonicalising element to
1 000 steps.

Results. We apply DiffeoNN and the inner U-Net (naïve approach) to the 60 diffeo-
morphically transformed images from the test dataset (Figure 5.7). More examples can
be found in Appendix A.5. In the canonicalised images, the shoulders tend to be more
aligned to the horizontal axis. Furthermore, the canonicalisation step seems to shrink the
images slightly. In most images, DiffeoNN outputs a segmentation that is comparable to
or better than the naïve approach. This happens in approximately 80% of the evaluated
images.

– 70 –

5 Experiments and Results

Input 𝑥 Canonicalised
Input 𝑥𝑐

Segmentation
of 𝑥𝑐

DiffeoNN
Output

U-Net
Output

Ground-Truth
Segmentation

Figure 5.8: Examples of lung segmentation of diffeomorphically transformed chest X-ray images from [68], where
the canonicalisation did not work well. The canonicalisation step tends to move the chest partly out of the image
domain (row one and three) or shrink the image incoherently (row two). The former leads to incomplete segmen-
tations, while the latter results in artifacts in the segmentation.

Model IoU Dice Coefficient Accuracy
inner U-Net (naïve) 0.8293 0.8961 0.9638
DiffeoNN 0.7874 0.8668 0.9540

Figure 5.9: Performance of DiffeoNN (our approach) and the inner U-Net (naïve approach) on real-world data.
We give the Intersection-over-Union (IoU), Dice coefficient, and pixel-wise accuracy, averaged over 60 images from
the test dataset.

However, in some cases, the canonicalisation does not work properly, as visualised
in Figure 5.8. In the examples in row one and three, the lung scan is partly moved out
of the image domain in the canonicalisation step, resulting in incomplete segmentations.
Another way for the canonicalisation to fail is that the image is shrunk incoherently, which
creates artifacts in the following segmentation. The bad performance of DiffeoNN on
some images is also reflected in the Intersection-over-Union (IoU) (Definition 5.1), Dice
coefficient (Definition 5.2), and pixel-wise accuracy (Definition 5.3), which are lower for
the DiffeoNN output than the U-Net output in most cases. The results are summarised
in Figure 5.9.

We suspect that the canonicalisation did not work every time due to the manually
chosen weights in the canonicalisation energy, which might be resolved by systematic
hyperparameter tuning. In addition, we work on a relatively small dataset of 234 images.
This might be the reason why the inner U-Net could not learn the full complexity of the
lung segmentation in the first place. Examples in which the U-Net already struggles with
segmentation on untransformed images are shown in Figure 5.10.

– 71 –

5 Experiments and Results

Transformed Untransformed

Input 𝑥 U-Net
Output

DiffeoNN
Output

Ground
Truth Input 𝑥 U-Net

Output
Ground

Truth

Figure 5.10: Examples of lung segmentation of diffeomorphically transformed chest X-ray images from [68], where
the segmentation on the untransformed images is lacking. We present the results on the transformed image (left)
and the results on the untransformed image (right). Column one shows the transformed image and column four
their ground-truth segmentation. In the example in row one, none of the methods are able to segment the extension
on the right side of the lung that can be seen in both ground-truth segmentations. The right side is also problematic
in the example in row two. Here, the segmentation output of the U-Net is already imperfect for the untransformed
image. The results on the transformed image are worse; however, DiffeoNN performs better than the inner U-Net
without canonicalisation there. We suspect that the already imperfect segmentation on the untransformed images
is the reason for the imperfect segmentation on the transformed image.

– 72 –

6
Conclusion and Discussion

In this work, we have developed and analysed a strategy for constructing diffeomorphism-
equivariant neural networks, using an energy-based canonicalisation strategy inspired by
the LieLAC framework [72]. We combined ideas from Lie group theory, differentiable
image registration, and energy-based modelling. Our diffeomorphism-equivariant net-
work needs to be trained only on a simple and relatively small dataset 𝑋𝑇𝐸 (without
augmentation), while still achieving approximate equivariance. Furthermore, the pro-
posed setup allows us to turn pretrained networks diffeomorphism-equivariant, as the
inner task-performing network remains unchanged.

To underline the advantages of energy-based canonicalisation, in Chapter 3, we pro-
vided a theoretical analysis of its generalisation and derived a bound on the expected loss
under mild assumptions (Theorem 3.2.3). A crucial assumption for this analysis is the
existence of an orbit measure on the underlying data manifold. In future work, a natural
next step would be to relax this assumption.

We translated the theoretical insights into a practical neural network architecture de-
signed to achieve diffeomorphism-equivariance for an exemplary segmentation task. In
the experimental evaluation, we verified the effectiveness of the proposed approach on a
synthetic dataset containing nested squares. We created a synthetic training dataset and a
diffeomorphically transformed test dataset. After hyperparameter tuning, we compared
our method DiffeoNN to an augmented U-Net and the inner U-Net of DiffeoNN (the
naïve approach) on the test dataset (Section 5.3). Our method achieved a significantly
better segmentation than the naïve approach and a nearly comparable segmentation to
the augmented U-Net. In addition, DiffeoNN showed fewer drastic outliers than the other
two methods, indicating higher robustness. We also verified the approximate invariance
of the canonicalisation step (Section 5.4).

Furthermore, we applied DiffeoNN to the task of lung segmentation on real-world
chest X-ray images (Section 5.5). In many cases, our network matched or outperformed
the naïve U-Net approach, demonstrating good generalisation beyond synthetic data.

While the proposed approach already achieves promising results, several open chal-
lenges remain and offer interesting opportunities for future research. Firstly, the canoni-
calisation step is still relatively computationally expensive, and future work could focus
on making this process more efficient, either by adjusting the canonicalisation energy
or by improving the optimisation strategy. Secondly, our current formulation focuses on

– 73 –

6 Conclusion and Discussion

SVF-based diffeomorphisms, which do not include discrete transformations such as flips.
Moreover, in the implementation, we focused solely on segmentation as an example ap-
plication, and our real-world training dataset for lung segmentation was relatively small,
leading to a suboptimal inner U-Net performance. We also assume that the weighting in
the canonicalisation energy could be further optimised for the real-world setting.

A natural next step is to conduct systematic hyperparameter tuning and to explore
alternative weighting strategies in the canonicalisation energy. Repeating the lung seg-
mentation experiment with a larger training dataset could provide further insights. In
addition, investigating alternative parametrisations of diffeomorphisms that include dis-
crete transformations could make the canonicalisation more expressive. Finally, future
work could explore more complex segmentation tasks, stronger transformations, or other
real-world datasets, and extend the approach to a broader range of computer vision ap-
plications: A core strength of the proposed approach is that such extensions can be imple-
mented in a flexible and straightforward way by simply replacing the inner task-specific
network with an off-the-shelf component.

– 74 –

Bibliography

[1] Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger,
O., Willmore, L., Ballard, A., Bambrick, J., et al. Accurate structure prediction of
biomolecular interactions with AlphaFold 3. In: Nature 630:493–500, May 2024. doi:
10.1038/s41586-024-07487-w.

[2] Adhikari, A. and Adhikari, M. Basic Topology 1: Metric Spaces and General Topology.
Jan. 2022. isbn: 978-981-16-6508-0. doi: 10.1007/978-981-16-6509-7.

[3] Adhikari, A. and Adhikari, M. Basic Topology 2, Topological Groups, Topology of
Manifolds and Lie Groups. In: Jan. 2022. doi: 10.1007/978-981-16-6577-6.

[4] Aggarwal, C. C. Neural Networks and Deep Learning: A Textbook. Cham, Switzerland:
Springer, 2018. isbn: 978-3-319-94463-0. doi: 10.1007/978-3-319-94463-0.

[5] Arguillere, S., Trélat, E., Trouvé, A., and Younes, L. Shape deformation analysis from
the optimal control viewpoint. 2014. arXiv: 1401.0661 [math.OC]. url: https://arxiv.
org/abs/1401.0661.

[6] Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein Generative Adversarial Net-
works. In: Proceedings of the 34th International Conference on Machine Learning. Ed.
by D. Precup and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research.
PMLR, 2017, pp. 214–223. url: https://proceedings.mlr.press/v70/arjovsky17a.
html.

[7] Arsigny, V., Commowick, O., Pennec, X., and Ayache, N. A Log-Euclidean Frame-
work for Statistics on Diffeomorphisms. In: vol. 9. Feb. 2006, pp. 924–31. isbn: 978-
3-540-44707-8. doi: 10.1007/11866565_113.

[8] Ashburner, J. A fast diffeomorphic image registration algorithm. In: NeuroImage
38(1):95–113, 2007. issn: 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.
2007 . 07 . 007. url: https : / / www . sciencedirect . com / science / article / pii /
S1053811907005848.

[9] Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimi-
jafarbigloo, S., Cohen, J. P., Adeli, E., and Merhof, D. Medical Image Segmentation
Review: The Success of U-Net. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 46(12):10076–10095, 2024. doi: 10.1109/TPAMI.2024.3435571.

[10] Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J., and Dalca, A. V. Voxel-
Morph: A Learning Framework for Deformable Medical Image Registration. In:
IEEE Transactions on Medical Imaging 38(8):1788–1800, 2019. doi: 10 .1109/TMI.
2019.2897538.

[11] Beekman, C., Beek, S. van, Stam, J., Sonke, J., and Remeijer, P. Improving predictive
CTV segmentation on CT and CBCT for cervical cancer by diffeomorphic registra-
tion of a prior. In: Medical Physics 49, Feb. 2022. doi: 10.1002/mp.15421.

– 75 –

https://doi.org/10.1038/s41586-024-07487-w
https://doi.org/10.1007/978-981-16-6509-7
https://doi.org/10.1007/978-981-16-6577-6
https://doi.org/10.1007/978-3-319-94463-0
https://arxiv.org/abs/1401.0661
https://arxiv.org/abs/1401.0661
https://arxiv.org/abs/1401.0661
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1007/11866565_113
https://doi.org/https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/https://doi.org/10.1016/j.neuroimage.2007.07.007
https://www.sciencedirect.com/science/article/pii/S1053811907005848
https://www.sciencedirect.com/science/article/pii/S1053811907005848
https://doi.org/10.1109/TPAMI.2024.3435571
https://doi.org/10.1109/TMI.2019.2897538
https://doi.org/10.1109/TMI.2019.2897538
https://doi.org/10.1002/mp.15421

Bibliography

[12] Beg, M. F., Miller, M., Trouvé, A., and Younes, L. Computing Large Deformation
Metric Mappings via Geodesic Flows of Diffeomorphisms. In: International Journal
of Computer Vision 61:139–157, Feb. 2005. doi: 10.1023/B:VISI.0000043755.93987.
aa.

[13] Bekkers, E. J. B-Spline CNNs on Lie Groups. 2021. arXiv: 1909.12057 [cs.LG]. url:
https://arxiv.org/abs/1909.12057.

[14] Bekkers, E. J., Lafarge, M. W., Veta, M., Eppenhof, K. A., Pluim, J. P., and Duits, R.
Roto-Translation Covariant Convolutional Networks for Medical Image Analysis. 2018.
arXiv: 1804.03393 [cs.CV]. url: https://arxiv.org/abs/1804.03393.

[15] Bietti, A., Venturi, L., and Bruna, J. On the Sample Complexity of Learning under In-
variance and Geometric Stability. 2021. arXiv: 2106 . 07148 [stat.ML]. url: https :
//arxiv.org/abs/2106.07148.

[16] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford, UK: Oxford Univer-
sity Press, 1995. isbn: 978-0198538646.

[17] Bogachev, V. Measure Theory. Vol. 1. Jan. 2007, pp. 1–575. isbn: 978-3-540-34513-8.
doi: 10.1007/978-3-540-34514-5.

[18] Bogachev, V. I. Measure Theory, Volume II. Springer Monographs in Mathematics.
See Theorem 10.4.3 (Disintegration Theorem). Berlin, Heidelberg: Springer, 2007.
isbn: 978-3-540-34515-9.

[19] Bostelmann, J., Gildemeister, O., and Lellmann, J. Stationary Velocity Fields on Ma-
trix Groups for Deformable Image Registration. 2024. arXiv: 2410.10997 [cs.CV]. url:
https://arxiv.org/abs/2410.10997.

[20] Brehmer, J., Behrends, S., Haan, P. de, and Cohen, T. Does equivariance matter at
scale? 2025. arXiv: 2410.23179 [cs.LG]. url: https://arxiv.org/abs/2410.23179.

[21] Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges. 2021. arXiv: 2104.13478 [cs.LG]. url:
https://arxiv.org/abs/2104.13478.

[22] Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., and
Kalinin, A. A. Albumentations: Fast and Flexible Image Augmentations. In: In-
formation 11(2):125, Feb. 2020. issn: 2078-2489. doi: 10 . 3390 / info11020125. url:
http://dx.doi.org/10.3390/info11020125.

[23] Chen, X., Wang, X., Zhang, K., Fung, K.-M., Thai, T. C., Moore, K., Mannel, R. S.,
Liu, H., Zheng, B., and Qiu, Y. Recent advances and clinical applications of deep
learning in medical image analysis. In: Medical Image Analysis 79, 2022. issn: 1361-
8415. doi: 10.1016/j.media.2022.102444. url: http://dx.doi.org/10.1016/j.media.
2022.102444.

[24] Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O. 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: International
conference on medical image computing and computer-assisted intervention. Springer.
2016, pp. 424–432.

[25] Cohen, T., Geiger, M., Koehler, J., and Welling, M. Spherical CNNs. In: Jan. 2018.
doi: 10.48550/arXiv.1801.10130.

[26] Cohen, T. S. and Welling, M. Group Equivariant Convolutional Networks. 2016. arXiv:
1602.07576 [cs.LG]. url: https://arxiv.org/abs/1602.07576.

– 76 –

https://doi.org/10.1023/B:VISI.0000043755.93987.aa
https://doi.org/10.1023/B:VISI.0000043755.93987.aa
https://arxiv.org/abs/1909.12057
https://arxiv.org/abs/1909.12057
https://arxiv.org/abs/1804.03393
https://arxiv.org/abs/1804.03393
https://arxiv.org/abs/2106.07148
https://arxiv.org/abs/2106.07148
https://arxiv.org/abs/2106.07148
https://doi.org/10.1007/978-3-540-34514-5
https://arxiv.org/abs/2410.10997
https://arxiv.org/abs/2410.10997
https://arxiv.org/abs/2410.23179
https://arxiv.org/abs/2410.23179
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://doi.org/10.3390/info11020125
http://dx.doi.org/10.3390/info11020125
https://doi.org/10.1016/j.media.2022.102444
http://dx.doi.org/10.1016/j.media.2022.102444
http://dx.doi.org/10.1016/j.media.2022.102444
https://doi.org/10.48550/arXiv.1801.10130
https://arxiv.org/abs/1602.07576
https://arxiv.org/abs/1602.07576

Bibliography

[27] Costa, N. D., Pförtner, M., and Cockayne, J. Constructive Disintegration and Condi-
tional Modes. 2025. arXiv: 2508.00617 [math.ST]. url: https://arxiv.org/abs/
2508.00617.

[28] Dalca, A. V., Balakrishnan, G., Guttag, J., and Sabuncu, M. R. Unsupervised learn-
ing of probabilistic diffeomorphic registration for images and surfaces. In: Medical
image analysis 57:226–236, 2019.

[29] Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T.,
Hafner, R., Abdolmaleki, A., Casas, D., et al. Magnetic control of tokamak plasmas
through deep reinforcement learning. In: Nature 602:414–419, Feb. 2022. doi: 10.
1038/s41586-021-04301-9.

[30] DeVries, T. and Taylor, G. W. Improved Regularization of Convolutional Neural Net-
works with Cutout. 2017. arXiv: 1708.04552 [cs.CV]. url: https://arxiv.org/abs/
1708.04552.

[31] Dieleman, S., Willett, K. W., and Dambre, J. Rotation-invariant convolutional neu-
ral networks for galaxy morphology prediction. In: Monthly Notices of the Royal
Astronomical Society 450(2):1441–1459, Apr. 2015. issn: 0035-8711. doi: 10 . 1093 /
mnras/stv632. url: http://dx.doi.org/10.1093/mnras/stv632.

[32] Dym, N., Lawrence, H., and Siegel, J. W. Equivariant Frames and the Impossibility of
Continuous Canonicalization. 2024. arXiv: 2402.16077 [cs.LG]. url: https://arxiv.
org/abs/2402.16077.

[33] Finzi, M., Stanton, S., Izmailov, P., and Wilson, A. G. Generalizing Convolutional
Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data. 2020.
arXiv: 2002.12880 [stat.ML]. url: https://arxiv.org/abs/2002.12880.

[34] Fukushima, K. and Miyake, S. Neocognitron: A new algorithm for pattern recog-
nition tolerant of deformations and shifts in position. In: Pattern Recognit. 15:455–
469, 1982. url: https://api.semanticscholar.org/CorpusID:2357880.

[35] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. Book in preparation for
MIT Press. MIT Press, 2016. url: http://www.deeplearningbook.org.

[36] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. Cambridge, MA: MIT
Press, 2016. isbn: 978-0262035613. url: https://www.deeplearningbook.org/.

[37] Hauberg, S., Freifeld, O., Larsen, A. B. L., III, J. W. F., and Hansen, L. K. Dreaming
More Data: Class-dependent Distributions over Diffeomorphisms for Learned Data Aug-
mentation. 2016. arXiv: 1510.02795 [cs.CV]. url: https://arxiv.org/abs/1510.
02795.

[38] Haykin, S. Neural Networks: A Comprehensive Foundation. 2nd. Upper Saddle River,
NJ: Prentice Hall, 1998. isbn: 978-0132733502.

[39] He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image Recog-
nition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[40] Kaba, S.-O., Mondal, A. K., Zhang, Y., Bengio, Y., and Ravanbakhsh, S. Equivari-
ance with Learned Canonicalization Functions. 2023. arXiv: 2211.06489 [cs.LG]. url:
https://arxiv.org/abs/2211.06489.

[41] Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG]. url: https://arxiv.org/abs/1412.6980.

– 77 –

https://arxiv.org/abs/2508.00617
https://arxiv.org/abs/2508.00617
https://arxiv.org/abs/2508.00617
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1708.04552
https://doi.org/10.1093/mnras/stv632
https://doi.org/10.1093/mnras/stv632
http://dx.doi.org/10.1093/mnras/stv632
https://arxiv.org/abs/2402.16077
https://arxiv.org/abs/2402.16077
https://arxiv.org/abs/2402.16077
https://arxiv.org/abs/2002.12880
https://arxiv.org/abs/2002.12880
https://api.semanticscholar.org/CorpusID:2357880
http://www.deeplearningbook.org
https://www.deeplearningbook.org/
https://arxiv.org/abs/1510.02795
https://arxiv.org/abs/1510.02795
https://arxiv.org/abs/1510.02795
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/2211.06489
https://arxiv.org/abs/2211.06489
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Bibliography

[42] Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes. 2022. arXiv: 1312.
6114 [stat.ML]. url: https://arxiv.org/abs/1312.6114.

[43] Kirillov Jr, A. Bibliography. In: An Introduction to Lie Groups and Lie Algebras.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2008,
pp. 216–219.

[44] Kondor, R. and Trivedi, S. On the Generalization of Equivariance and Convolution in
Neural Networks to the Action of Compact Groups. 2018. arXiv: 1802.03690 [stat.ML].
url: https://arxiv.org/abs/1802.03690.

[45] Krizhevsky, A., Sutskever, I., and Hinton, G. ImageNet Classification with Deep
Convolutional Neural Networks. In: Neural Information Processing Systems 25, Jan.
2012. doi: 10.1145/3065386.

[46] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. In: Advances in Neural Information Processing Sys-
tems. Ed. by F. Pereira, C. Burges, L. Bottou, and K. Weinberger. Vol. 25. Curran
Associates, Inc., 2012. url: https://proceedings.neurips.cc/paper_files/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[47] Kuang, D. On Reducing Negative Jacobian Determinant of the Deformation Predicted by
Deep Registration Networks. 2019. arXiv: 1907.00068 [cs.CV]. url: https://arxiv.
org/abs/1907.00068.

[48] Kumar, H., Parada-Mayorga, A., and Ribeiro, A. Lie Group Algebra Convolutional
Filters. 2024. arXiv: 2305.04431 [eess.SP]. url: https ://arxiv .org/abs/2305.
04431.

[49] Lang, S. Manifolds. In: Differential Manifolds. New York, NY: Springer US, 1985,
pp. 21–40. isbn: 978-1-4684-0265-0. doi: 10 . 1007 / 978 - 1 - 4684 - 0265 - 0 _ 2. url:
https://doi.org/10.1007/978-1-4684-0265-0_2.

[50] Lawrence, H., Portilheiro, V., Zhang, Y., and Kaba, S.-O. Improving Equivariant Net-
works with Probabilistic Symmetry Breaking. 2025. arXiv: 2503.21985 [cs.LG]. url:
https://arxiv.org/abs/2503.21985.

[51] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. Backpropagation Applied to Handwritten Zip Code Recognition. In:
Neural Computation 1(4):541–551, 1989. doi: 10.1162/neco.1989.1.4.541.

[52] Lee, J. M. Riemannian Manifolds: An Introduction to Curvature. In: 1997. url:
https://api.semanticscholar.org/CorpusID:119659969.

[53] Lee, J. M. Smooth Manifolds. In: Introduction to Smooth Manifolds. New York, NY:
Springer New York, 2003, pp. 1–29. isbn: 978-0-387-21752-9. doi: 10.1007/978-0-
387-21752-9_1. url: https://doi.org/10.1007/978-0-387-21752-9_1.

[54] Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., and Benediktsson, J. A. Deep Learn-
ing for Hyperspectral Image Classification: An Overview. In: IEEE Transactions on
Geoscience and Remote Sensing 57(9):6690–6709, 2019. doi: 10.1109/TGRS.2019.
2907932.

[55] Liu, Y., Chen, J., Wei, S., Carass, A., and Prince, J. On Finite Difference Jacobian Com-
putation in Deformable Image Registration. 2023. arXiv: 2212.06060 [eess.IV]. url:
https://arxiv.org/abs/2212.06060.

– 78 –

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1802.03690
https://arxiv.org/abs/1802.03690
https://doi.org/10.1145/3065386
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1907.00068
https://arxiv.org/abs/1907.00068
https://arxiv.org/abs/1907.00068
https://arxiv.org/abs/2305.04431
https://arxiv.org/abs/2305.04431
https://arxiv.org/abs/2305.04431
https://doi.org/10.1007/978-1-4684-0265-0_2
https://doi.org/10.1007/978-1-4684-0265-0_2
https://arxiv.org/abs/2503.21985
https://arxiv.org/abs/2503.21985
https://doi.org/10.1162/neco.1989.1.4.541
https://api.semanticscholar.org/CorpusID:119659969
https://doi.org/10.1007/978-0-387-21752-9_1
https://doi.org/10.1007/978-0-387-21752-9_1
https://doi.org/10.1007/978-0-387-21752-9_1
https://doi.org/10.1109/TGRS.2019.2907932
https://doi.org/10.1109/TGRS.2019.2907932
https://arxiv.org/abs/2212.06060
https://arxiv.org/abs/2212.06060

Bibliography

[56] Long, J., Shelhamer, E., and Darrell, T. Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 3431–3440.

[57] Lunz, S., Öktem, O., and Schönlieb, C.-B. Adversarial Regularizers in Inverse Prob-
lems. 2019. arXiv: 1805.11572 [cs.CV]. url: https://arxiv.org/abs/1805.11572.

[58] Marcus, G. Deep Learning: A Critical Appraisal. 2018. arXiv: 1801.00631 [cs.AI].
url: https://arxiv.org/abs/1801.00631.

[59] Merchant, A., Batzner, S., Schoenholz, S., Aykol, M., Cheon, G., and Cubuk, E.
Scaling deep learning for materials discovery. In: Nature 624:1–6, Nov. 2023. doi:
10.1038/s41586-023-06735-9.

[60] Miller, M. Computational anatomy: Shape, growth, and atrophy comparison via
diffeomorphisms. In: NeuroImage 23 Suppl 1:S19–33, Feb. 2004. doi: 10 . 1016 / j .
neuroimage.2004.07.021.

[61] Milnor, J. W. Remarks on infinite dimensional Lie groups. In: Relativity, Groups and
Topology II., 1984.

[62] Moreno-Barea, F., Strazzera, F., Jerez, J., Urda, D., and Franco, L. Forward Noise
Adjustment Scheme for Data Augmentation. In: Nov. 2018. doi: 10.1109/SSCI .
2018.8628917.

[63] Mukherjee, S., Dittmer, S., Shumaylov, Z., Lunz, S., Öktem, O., and Schönlieb, C.-B
Data-Driven Convex Regularizers for Inverse Problems. In: Apr. 2024, pp. 13386–
13390. doi: 10.1109/ICASSP48485.2024.10447719.

[64] Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro, B. Relational Pooling for Graph
Representations. 2019. arXiv: 1903.02541 [cs.LG]. url: https://arxiv.org/abs/
1903.02541.

[65] Omori, H. Infinite-Dimensional Lie Groups. Vol. 158. Translations of Mathematical
Monographs. Providence, RI: American Mathematical Society, 1997. isbn: 978-0-
8218-0289-9. doi: 10 . 1090 / mmono / 158. url: https : / / www . ams . org / books /
mmono/158/.

[66] Puny, O., Atzmon, M., Ben-Hamu, H., Misra, I., Grover, A., Smith, E. J., and Lipman,
Y. Frame Averaging for Invariant and Equivariant Network Design. 2022. arXiv: 2110.
03336 [cs.LG]. url: https://arxiv.org/abs/2110.03336.

[67] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical image com-
puting and computer-assisted intervention. Springer. 2015, pp. 234–241.

[68] RSUA, R. RSUAChest X-RayDataset. Version V1. 2023. doi: 10.17632/2jg8vfdmpm.
1. url: https://doi.org/10.17632/2jg8vfdmpm.1.

[69] Rudin, W. Principles of mathematical analysis. In: 3rd ed., 1976.
[70] Sheikhjafari, A., Krishnaswamy, D., Noga, M., Ray, N., and Punithakumar, K. Deep

Learning Based Parametrization of Diffeomorphic Image Registration for the Ap-
plication of Cardiac Image Segmentation. In: 2022 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM). 2022, pp. 1164–1169. doi: 10 . 1109 /
BIBM55620.2022.9994849.

[71] Shorten, C. and Khoshgoftaar, T. A survey on Image Data Augmentation for Deep
Learning. In: Journal of Big Data 6, July 2019. doi: 10.1186/s40537-019-0197-0.

– 79 –

https://arxiv.org/abs/1805.11572
https://arxiv.org/abs/1805.11572
https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/1801.00631
https://doi.org/10.1038/s41586-023-06735-9
https://doi.org/10.1016/j.neuroimage.2004.07.021
https://doi.org/10.1016/j.neuroimage.2004.07.021
https://doi.org/10.1109/SSCI.2018.8628917
https://doi.org/10.1109/SSCI.2018.8628917
https://doi.org/10.1109/ICASSP48485.2024.10447719
https://arxiv.org/abs/1903.02541
https://arxiv.org/abs/1903.02541
https://arxiv.org/abs/1903.02541
https://doi.org/10.1090/mmono/158
https://www.ams.org/books/mmono/158/
https://www.ams.org/books/mmono/158/
https://arxiv.org/abs/2110.03336
https://arxiv.org/abs/2110.03336
https://arxiv.org/abs/2110.03336
https://doi.org/10.17632/2jg8vfdmpm.1
https://doi.org/10.17632/2jg8vfdmpm.1
https://doi.org/10.17632/2jg8vfdmpm.1
https://doi.org/10.1109/BIBM55620.2022.9994849
https://doi.org/10.1109/BIBM55620.2022.9994849
https://doi.org/10.1186/s40537-019-0197-0

Bibliography

[72] Shumaylov, Z., Zaika, P., Rowbottom, J., Sherry, F., Weber, M., and Schönlieb, C.-B.
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups.
Oct. 2024. doi: 10.48550/arXiv.2410.02698.

[73] Simard, P., Steinkraus, D., and Platt, J. Best Practices for Convolutional Neural
Networks Applied to Visual Document Analysis. In: Jan. 2003, pp. 958–962. doi:
10.1109/ICDAR.2003.1227801.

[74] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetzstein, G. Implicit neural
representations with periodic activation functions. In: Advances in neural informa-
tion processing systems 33:7462–7473, 2020.

[75] Sotiras, A., Davatzikos, C., and Paragios, N. Deformable Medical Image Registra-
tion: A Survey. In: IEEE Transactions on Medical Imaging 32(7):1153–1190, 2013. doi:
10.1109/TMI.2013.2265603.

[76] Souza, J. C., Bandeira Diniz, J. O., Ferreira, J. L., França da Silva, G. L., Corrêa Silva,
A., and de Paiva, A. C. An automatic method for lung segmentation and recon-
struction in chest X-ray using deep neural networks. In: Computer Methods and Pro-
grams in Biomedicine 177:285–296, 2019. issn: 0169-2607. doi: https://doi.org/10.
1016/j.cmpb.2019.06.005. url: https://www.sciencedirect.com/science/article/
pii/S0169260719303517.

[77] Sun, C., Shrivastava, A., Singh, S., and Gupta, A. Revisiting Unreasonable Effective-
ness of Data in Deep Learning Era. 2017. arXiv: 1707 . 02968 [cs.CV]. url: https :
//arxiv.org/abs/1707.02968.

[78] Tahmasebi, B. and Jegelka, S. Generalization Bounds for Canonicalization: A Com-
parative Study with Group Averaging. In: The Thirteenth International Conference
on Learning Representations. 2025. url: https : / / openreview . net / forum ? id =
n0lXaskyk5.

[79] Tahmasebi, B. and Jegelka, S. Generalization Bounds for Canonicalization: A Com-
parative Study with Group Averaging. In: The Thirteenth International Conference
on Learning Representations. 2025. url: https : / / openreview . net / forum ? id =
n0lXaskyk5.

[80] Tahmasebi, B. and Jegelka, S. Regularity in Canonicalized Models: A Theoretical
Perspective. In: Proceedings of The 28th International Conference on Artificial Intelli-
gence and Statistics. Ed. by Y. Li, S. Mandt, S. Agrawal, and E. Khan. Vol. 258. Pro-
ceedings of Machine Learning Research. PMLR, 2025, pp. 4789–4797. url: https:
//proceedings.mlr.press/v258/tahmasebi25a.html.

[81] Trouvé, A. Diffeomorphisms groups and pattern matching in image analysis. In:
International journal of computer vision 28(3):213–221, 1998.

[82] Varadarajan, V. S. Lie Groups and Lie Algebras. In: Lie Groups, Lie Algebras, and
Their Representations. New York, NY: Springer New York, 1984, pp. 41–148. isbn:
978-1-4612-1126-6. doi: 10.1007/978-1-4612-1126-6_2. url: https://doi.org/10.
1007/978-1-4612-1126-6_2.

[83] Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. Deep Learn-
ing for Computer Vision: A Brief Review. In: Computational Intelligence and Neuro-
science 2018:1–13, Feb. 2018. doi: 10.1155/2018/7068349.

– 80 –

https://doi.org/10.48550/arXiv.2410.02698
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1109/TMI.2013.2265603
https://doi.org/https://doi.org/10.1016/j.cmpb.2019.06.005
https://doi.org/https://doi.org/10.1016/j.cmpb.2019.06.005
https://www.sciencedirect.com/science/article/pii/S0169260719303517
https://www.sciencedirect.com/science/article/pii/S0169260719303517
https://arxiv.org/abs/1707.02968
https://arxiv.org/abs/1707.02968
https://arxiv.org/abs/1707.02968
https://openreview.net/forum?id=n0lXaskyk5
https://openreview.net/forum?id=n0lXaskyk5
https://openreview.net/forum?id=n0lXaskyk5
https://openreview.net/forum?id=n0lXaskyk5
https://proceedings.mlr.press/v258/tahmasebi25a.html
https://proceedings.mlr.press/v258/tahmasebi25a.html
https://doi.org/10.1007/978-1-4612-1126-6_2
https://doi.org/10.1007/978-1-4612-1126-6_2
https://doi.org/10.1007/978-1-4612-1126-6_2
https://doi.org/10.1155/2018/7068349

Bibliography

[84] Wang, T., Lei, Y., Fu, Y., Curran, W. J., Liu, T., and Yang, X. Medical Imaging Synthesis
using Deep Learning and its Clinical Applications: A Review. 2020. arXiv: 2004.10322
[physics.med-ph]. url: https://arxiv.org/abs/2004.10322.

[85] Wirgin, A. The inverse crime. 2004. arXiv: math-ph/0401050 [math-ph]. url: https:
//arxiv.org/abs/math-ph/0401050.

[86] Younes, L. Shapes and Diffeomorphisms. Vol. 171. Jan. 2010. isbn: 978-3-642-12054-1.
doi: 10.1007/978-3-642-12055-8.

[87] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learn-
ing requires rethinking generalization. 2017. arXiv: 1611.03530 [cs.LG]. url: https:
//arxiv.org/abs/1611.03530.

[88] Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. Object detection with deep learning:
A review. In: IEEE transactions on neural networks and learning systems 30(11):3212–
3232, 2019.

[89] Zimmer, V. Bildregistrierung unter Verwendung von Lie-Gruppen. In: 2011.
url: https : / / www . mic . uni - luebeck . de / fileadmin / mic / publications /
StudentProjects/MasterTheses/2011-Zimmer-Masterarbeit.pdf.

– 81 –

https://arxiv.org/abs/2004.10322
https://arxiv.org/abs/2004.10322
https://arxiv.org/abs/2004.10322
https://arxiv.org/abs/math-ph/0401050
https://arxiv.org/abs/math-ph/0401050
https://arxiv.org/abs/math-ph/0401050
https://doi.org/10.1007/978-3-642-12055-8
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://www.mic.uni-luebeck.de/fileadmin/mic/publications/StudentProjects/MasterTheses/2011-Zimmer-Masterarbeit.pdf
https://www.mic.uni-luebeck.de/fileadmin/mic/publications/StudentProjects/MasterTheses/2011-Zimmer-Masterarbeit.pdf

A
Appendix

A.1 Artificial Neural Networks

An artificial neural network (ANN), also known as a neural network (NN), is a machine
learning method that is inspired by the structure and function of the human brain. Its
architecture is based on interconnected nodes called (artificial) neurons, which are or-
ganised into layers. A signal 𝑥 propagates from the input layer through hidden layers to
the final output layer. Typically, each neuron from one layer is connected to all neurons
in the following layer. Such an ANN is called fully connected. The connections have asso-
ciated weights, which are optimised during training. In this section, we introduce some
of the main principles and components of ANNs following [36, 16, 38, 4]. We focus on
convolutional neural networks (CNNs; Section A.1.1), typical layers (Section A.1.2), and
activation functions (Section A.1.3).

A basic type of ANN is a feedforward neural network (FNN). The information flows only
in one direction – forward from input to output – and the connections between nodes do
not form cycles.

Example A.1. Let 𝑥 ∈ ℝ𝑑 be an input vector, 𝑦 ∈ ℝ𝑚 the corresponding network out-
put, 𝐴𝜃1 ∈ ℝ𝑘×𝑑 and 𝐴𝜃2 ∈ ℝ𝑚×𝑘 the weight matrices of the first and second layer, and
𝑏𝜃1 ∈ ℝ𝑘, 𝑏𝜃2 ∈ ℝ𝑚 the corresponding bias vectors. Let 𝑓1 ∶ ℝ𝑘 → ℝ𝑘 and 𝑓2 ∶ ℝ𝑚 → ℝ𝑚

denote activation functions (for a detailed introduction, see Section A.1.3). A feedfor-
ward neural network with one hidden layer can then be written as

𝑦 = 𝑓2(𝐴𝜃2(𝑓1(𝐴𝜃1𝑥 + 𝑏𝜃1)) + 𝑏𝜃2). (A.1)

As a concrete example, we consider an input 𝑥 = (𝑥(1), 𝑥(2), 𝑥(3))⊤ ∈ ℝ3 and a network
with two weight matrices 𝐴𝜃1 = (𝑎(1)𝑖𝑗)

𝑖=1,2;𝑗=1,2,3
∈ ℝ2×3 and 𝐴𝜃2 = (𝑎(2)𝑖𝑗)

2

𝑖,𝑗=1
∈ ℝ2×2 as

well as two bias vectors 𝑏𝜃1 ∈ ℝ3 and 𝑏𝜃2 ∈ ℝ2. The hidden layer is given by

ℎ = 𝑓1(𝐴𝜃1𝑥 + 𝑏𝜃1), (A.2)

and the final network output by

𝑦 = 𝑓2(𝐴𝜃2ℎ + 𝑏𝜃2). (A.3)

This is visualised in Figure A.1.

– 82 –

A Appendix

𝑥(1)

𝑥(2)

𝑥(3)

Input layer

Σ

Σ

𝑓1

𝑓1

Hidden layer

Σ

Σ

𝑓2

𝑓2

Output layer

𝑎 (1)11

𝑎 (1)21𝑎(
1)
12

𝑎 (1)
22 𝑎

(1
)

13
𝑎
(1)
23

𝑎(2)11

𝑎 (2)21

𝑎
(2)
12

𝑎(2)22

𝑏𝜃1 𝑏𝜃2

𝑦(1)

𝑦(2)

Figure A.1: Feedforward neural network with one hidden layer. Each connection carries a weight 𝑎(1)
𝑖𝑗 or 𝑎(2)

𝑖𝑗 .
Linear combinations (Σ) are followed by bias addition (𝑏𝜃1

and 𝑏𝜃2
) and activation functions 𝑓1, 𝑓2 to produce the

outputs 𝑦(1), 𝑦(2).

This example can be extended to more hidden layers by recursively carrying on with
the structure above. In general, artificial neural networks belong to the class of learning-
basedmethods. Given training samples {𝑥1,… , 𝑥𝑛}with𝑥𝑖 ∈ ℝ𝑘 and corresponding ground-
truth labels {𝑦𝑔𝑡1 ,… , 𝑦𝑔𝑡𝑛 } with 𝑦𝑔𝑡𝑖 ∈ ℝ𝑙, a neural network defines a mapping

𝐹𝜃(𝑥) = 𝑓𝑚(𝑏𝜃𝑚 +𝐴𝜃𝑚𝑓𝑚−1(𝑏𝜃𝑚−1
+𝐴𝜃𝑚−1

𝑓𝑚−2(… 𝑓1(𝑏𝜃1 +𝐴𝜃1𝑥)…))) (A.4)

where 𝐴𝜃𝑖 and 𝑏𝜃𝑖 denote the weight matrices and bias vectors of the 𝑖-th layer, and the 𝑓𝑖
are activation functions (see Section A.1.3). Depending on the network type, 𝐴𝜃𝑖 can
represent fully connected or convolutional transformations, among others.

The parameters 𝜃 = (𝜃𝑖)𝑚𝑖=1 are optimised during training by minimising a loss func-
tion 𝐿, which, for example, measures the difference between the predicted and target
outputs:

𝜃∗ ∈ argmin
𝜃∈ℝ𝑚

𝑛
∑
𝑖=1

𝐿(𝐹𝜃(𝑥𝑖), 𝑦
𝑔𝑡
𝑖) (A.5)

Typical loss functions include the mean squared error and the cross-entropy loss, de-
pending on the application. The optimisation is usually performed using gradient-based
methods such as stochastic gradient descent, where gradients are computed via backprop-
agation.

After training, the model parameters 𝜃∗ are fixed, and new, unseen inputs 𝑥new are
processed by a simple forward pass:

𝑦new = 𝐹𝜃∗(𝑥new). (A.6)

A.1.1 Convolutional Neural Networks

A commonly used type of feedforward neural network, especially in image computing,
is the convolutional neural network (CNN). There, features are learned through kernel

– 83 –

A Appendix

1 3 2 4

5 6 1 2

9 8 4 3

0 7 6 5

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6 4

9 6

Input

After Max Pooling

Figure A.2: Example of a 2×2 max pooling on a 4×4 input. Each coloured region is pooled into a single maximum
value.

optimisation. Simpler features like edges are usually learned in earlier layers, while more
abstract patterns are derived in deeper layers. Instead of having fully connected layers,
CNNs have convolutional layers to learn spatial features. The layers are typically followed
by activation functions and pooling layers to reduce spatial information and achieve invari-
ance.

A convolutional layer is used to extract local features, such as edges or shapes. This
is done by applying filters (kernels) to the input data, producing a feature map. Kernels
(filters) are small weight matrices that are learned during training. The 2D convolution
operation is a simple discrete convolution:

Definition A.2 (Discrete convolution). Let 𝑥 ∈ ℝℎ1×ℎ2 be an input and 𝑤 ∈ ℝ𝑘1×𝑘2 be a
kernel. Then, the discrete convolution between 𝑥 and 𝑤 is defined as

𝑦𝑖,𝑗 =
𝑘1−1

∑
𝑚=0

𝑘2−1

∑
𝑛=0

𝑥𝑖+𝑚,𝑗+𝑛 ⋅ 𝑤𝑚,𝑛. (A.7)

The ranges of the indices 𝑖 and 𝑗 vary depending on the stride and the padding strategy.

A convolution operation is similar to sliding a small window (the kernel) over the input
and multiplying the values of the kernel and input at every position they overlap. The
padding strategy and the stride specify how the edges of the input are handled, and how
the kernel moves across the input. They are used to control the output size and compu-
tational cost.

A.1.2 Pooling Layers

Another way to control output size and computational cost in CNNs is to use pooling
layers. They reduce the spatial dimensions (downsample) by summarising local regions.
Commonly used pooling strategies are max pooling and average pooling.

Example A.3 (Max pooling). Let 𝑥 ∈ ℝ2ℎ1×2ℎ2 be the input on which we apply 2×2 max
pooling. The output 𝑦 ∈ ℝℎ1×ℎ2 is computed as follows:

𝑦𝑖,𝑗 = max{𝑥2𝑖,2𝑗, 𝑥2𝑖+1,2𝑗, 𝑥2𝑖,2𝑗+1, 𝑥2𝑖+1,2𝑗+1} (A.8)

– 84 –

A Appendix

with (𝑖, 𝑗) ∈ {0,… , ℎ1 − 1} × {0,… , ℎ2 − 1}.

A visualisation of max pooling is shown in Figure A.2.

A.1.3 Activation Functions

Activation functions are typically non-linear functions applied within the network. They
allow the network to learn more complex patterns. Commonly used activation functions
include the rectified linear unit (ReLU), the logistic function, and the softmax function.

Definition A.4 (Rectified Linear Unit (ReLU)). The Rectified Linear Unit (ReLU) is de-
fined as the function ReLU ∶ ℝ𝑛 → ℝ𝑛

≥0, which maps an input 𝑥 = (𝑥1,… , 𝑥𝑛)⊤ ∈ ℝ𝑛 to
its non-negative part:

(ReLU(𝑥))𝑖 ∶= max{0, 𝑥𝑖}, for all 𝑖 = 1,… , 𝑛. (A.9)

ReLU is widely used due to its simplicity and efficiency, though it is not differentiable
at 0, and is unbounded. To enable backpropagation, implementations define the gradient
at 𝑥 = 0; in PyTorch, it is set to 0.

In contrast, the logistic and softmax functions are bounded and in 𝒞∞.

DefinitionA.5 (Logistic activation function). The logistic activation function (also called
the sigmoid function) maps a vector 𝑥 = (𝑥1,… , 𝑥𝑛)⊤ ∈ ℝ𝑛 to (0, 1)𝑛:

𝑓(𝑥)𝑖 ∶=
1

1 + e−𝑥𝑖
. (A.10)

for all 𝑖 ∈ {1,… , 𝑛}. It is especially useful for binary classification tasks.

For multi-class classification tasks, the softmax function is more suitable.

DefinitionA.6 (Softmax function). The softmax function 𝜎 ∶ ℝ𝑛 → (0, 1)𝑛 maps a vector
𝑥 = (𝑥1,… , 𝑥𝑛)⊤ ∈ ℝ𝑛 to a probability distribution. It is defined as

𝜎(𝑥)𝑖 ∶=
e𝑥𝑖

∑𝑛
𝑗=1 e

𝑥𝑗
(A.11)

for all 𝑖 ∈ {1,… , 𝑛}.

A less common activation function is the sinusoidal activation function:

Definition A.7. The sinusoidal activation function sine ∶ ℝ → [−1, 1] is defined as

sine(𝑥) = sin(𝜔0𝑥), (A.12)

where 𝜔0 ∈ ℝ denotes the frequency of the sine wave.

– 85 –

A Appendix

A.2 Synthetic Dataset

𝑋𝐸 𝑌𝐸 𝑋𝑇𝐸 𝑌𝑇𝐸

Figure A.3: Examples of the generated square images 𝑋𝐸 (column one) and their binary segmentation 𝑌𝐸 (col-
umn two), as well as a random diffeomorphic transformations of those images ,𝑋𝑇𝐸, (column three) and the
corresponding output 𝑌𝑇𝐸 (column four). The images in 𝑋𝐸 contain two nested squares of varying size and
colour, where the squares’ edges are parallel to the image edges with added Gaussian noise. The binary segmen-
tation 𝑌𝐸 indicates the inner square. The images 𝑋𝑇𝐸 and their corresponding segmentations 𝑌𝑇𝐸 are obtained
by transforming the images 𝑋𝐸 and their binary segmentations 𝑌𝐸 with the same randomly chosen SVF-based
diffeomorphism.

– 86 –

A Appendix

A.3 DiffeoNN on the Synthetic Dataset

Input 𝑥 Canonicalised
Input 𝑥𝑐

Segmentation
of 𝑥𝑐

Output
DiffeoNN

Ground-Truth
Segmentation

Figure A.4: Examples of results of DiffeoNN step by step on the synthetic test dataset 𝑋test
𝑇𝐸. The first four rows

show a nearly perfect segmentation through DiffeoNN. The canonicalised input images look very similar to the
training dataset of squares𝑋𝐸, and the output segmentation is very similar to the ground-truth segmentation. Row
five shows an example where the canonicalisation step failed. As a result, the segmentation of the canonicalised
image 𝑥𝑐 contains artifacts. The artifacts are transferred to the output segmentation of the input 𝑥, which differs
noticeably from the ground-truth segmentation. In row six, we show an example where the canonicalisation step
leads to an image 𝑥𝑐 that contains rectangles rather than squares. Even though this image does not look exactly
like the training images with squares 𝑋𝐸, the segmentation output for 𝑥𝑐 is still very accurate, which leads to a
segmentation output for 𝑥 that is nearly identical to the ground truth.

– 87 –

A Appendix

Input
Output

Augmented
U-Net

Output
Naïve U-Net

Output
DiffeoNN Ground Truth

Figure A.5: Examples comparing the results of DiffeoNN, the naïve U-Net, and the augmented U-Net on 𝑋test
𝑇𝐸

(synthetic dataset). Column one shows the input image from 𝑥 ∈ 𝑋test
𝑇𝐸, and column five shows the correspond-

ing ground-truth segmentation. In column two, we present the segmentation output of 𝑥 by the augmented U-Net.
The segmentation output of the naïve U-Net, i.e., the inner U-Net of DiffeoNN without canonicalisation and aug-
mentation, is shown in column three. The output of DiffeoNN is shown in column four. In the first four rows, the
segmentation of the naïve U-Net is noticeably different from the ground truth, while the segmentations of DiffeoNN
and the augmented U-Net are similar. The last two rows show examples where the augmented U-Net performs
worse than the other two methods.

– 88 –

A Appendix

– 89 –

A Appendix

A.4 Experiments on Invariance of the Canonicalisation

𝑥 ∈ 𝑋test
𝐸 𝑥𝑐 𝑔 ⋅ 𝑥 ∈ 𝑋test

𝑇𝐸 (𝑔 ⋅ 𝑥)𝑐

Figure A.6: Examples of images 𝑥 ∈ 𝑋𝐸 (column one), their canonicalised form 𝑥𝑐 (column two), their corre-
sponding transformed images 𝑔 ⋅ 𝑥 ∈ 𝑋𝑇𝐸 (column three), and their canonicalised form (𝑔 ⋅ 𝑥)𝑐 (column four)
with their canonicalisation energies. The experiment is described in Section 5.4. The energies before the canonicali-
sation steps are very different. In contrast, the energies after canonicalising the inputs are approximately the same.
Furthermore, the canonicalised images look very similar to images from 𝑋𝐸. This verifies the effectiveness of the
canonicalisation step and its invariance empirically.

– 90 –

A Appendix

A.5 DiffeoNN for Lung Segmentation

Input 𝑥 Canonicalised
Input 𝑥𝑐

Segmentation
of 𝑥𝑐

DiffeoNN
Output

U-Net
Output

Ground-Truth
Segmentation

Figure A.7: Examples of lung segmentation of diffeomorphically transformed chest X-ray images from [68]. We
show the diffeomorphically transformed input images (column one), the canonicalised input images (column
two), the segmentation of the canonicalised input images (column three), the output segmentation of DiffeoNN
(column four), the output of the inner U-Net (column five), and the ground-truth segmentation (column six).
The canonicalisation step shrinks the images slightly. Furthermore, it aligns the shoulders with the horizontal axis
of the images in most cases. The DiffeoNN segmentation performance is better than or at least equally good as the
performance of the inner U-Net.

– 91 –

	1 Introduction
	1.1 Motivation
	1.2 Canonicalisation
	1.3 Contributions
	1.4 Structure of this Work
	1.5 Related Work

	2 Theoretical Background
	2.1 Topology, Manifolds, and Diffeomorphisms
	2.2 Lie Group Theory
	2.3 Measure Theory

	3 On Generalisation of Canonicalisation
	3.1 Setup of the Learning Scenario
	3.2 Bounding the Expected Generalisation Loss

	4 Diffeomorphism-Equivariant Neural Network
	4.1 Problem Setup
	4.2 Canonicalisation
	4.3 Segmentation
	4.4 Reverse Canonicalisation
	4.5 Theoretical Connection and Summary

	5 Experiments and Results
	5.1 Synthetic Datasets
	5.2 Hyperparameter Tuning and Implementation of DiffeoNN
	5.3 Benchmarking
	5.4 Invariance of the Canonicalisation
	5.5 DiffeoNN for Lung Segmentation

	6 Conclusion and Discussion
	Bibliography
	A Appendix
	A.1 Artificial Neural Networks
	A.2 Synthetic Dataset
	A.3 DiffeoNN on the Synthetic Dataset
	A.4 Experiments on Invariance of the Canonicalisation
	A.5 DiffeoNN for Lung Segmentation

