

Inverse Scale Space Iterations for Non-Convex Variational Problems Using Functional Lifting

Danielle Bednarski and Jan Lellmann, University of Lübeck

This work was supported through DFG grant LE 4064/1-1 "Functional Lifting 2.0: Efficient Convexifications for Imaging and Vision" and NVIDIA Corporation.

Eighth International Conference on Scale Space and Variational Methods in Computer Vision (SSVM) May 17th 2021

Notation

(Non-convex) Variational Problem

$$F(u) := \underbrace{\int_{\Omega} \rho(x, u(x)) dx}_{\text{data term } H(u)} + \underbrace{\int_{\Omega} \eta(\nabla u(x)) dx}_{\text{regularizer } J(u)},$$

 $u:\Omega \to \Gamma$ sufficiently smooth

 $\Omega \subset \mathbb{R}^d$ open and bounded image domain

 $\Gamma \subset \mathbb{R}$ compact range (label space)

 $\eta: \mathbb{R}^d \to \mathbb{R}$ non-negative and convex

 $\rho:\Omega\times\Gamma\to\overline{\mathbb{R}}$ proper, non-negative and possibly non-convex

Bregman Iteration

Consider the denoising problem:

$$F(u) = \int_{\Omega} \frac{\lambda}{2} \left(u(x) - f(x) \right)^2 dx + J(u).$$

With input data f and some convex, absolute one-homogeneous regularizer J.

Bregman Iteration [Osher et al. 2005]

Initialize $p_0 = 0$ and repeat for k = 1, 2, ...

$$u_k \in \arg\min_{u} \left\{ \frac{H(u)}{u} + J(u) - \langle p_{k-1}, u \rangle \right\}$$
$$p_k \in \partial J(u_k)$$

Continuous limit leads to the Inverse Scale Space Flow:

- Non-linear decompositions of the input
- Non-linear filters for the input

3 / 14 D. Bednarski

Example & Outlook

Bregman iteration on Rudin-Osher-Fatemi (convex)

Related Work

	Bregman iteration	ISS, non-linear filters	convex data term	non-convex data term	lifting
Osher et al. 2005	 ✓ 		\checkmark		
Burger et al. 2006, 2015, 2016	(√)	\checkmark	\checkmark		
Höltgen 2016	\checkmark			(optical flow)	
Alberti et al. 2003			(√)	\checkmark	\checkmark
Pock et al. 2010			(√)	\checkmark	\checkmark
Vogt 2019			(√)	\checkmark	√
Möllenhoff et al. 2015, 2017			(√)	\checkmark	(sublabel-accurate)
Lifted Bregman	 Image: A set of the set of the	?	√	\checkmark	√

Example & Outlook

Rudin-Osher-Fatemi (convex)

Stereo-Matching (non-convex)

Lifting Approach

Lifting Approach

Calibration-based Lifting [Alberti et al. 2003, Pock et al. 2010]

(O) Original Problem: $\inf_{u \in W^{1,1}} F(u), \quad F(u) := \int_{\Omega} \rho(x, u(x)) + \eta(\nabla u(x)) dx$ (E) Embedding: $\inf_{\mathbb{1}_{u}, u \in W^{1,1}} \mathcal{F}(\mathbb{1}_{u}), \quad \mathcal{F}(\mathbb{1}_{u}) := \sup_{\phi \in \mathcal{K}_{\rho,\eta}} \int_{\Omega \times \mathbb{R}} \langle \phi, D\mathbb{1}_{u} \rangle$ (C) Convexification: $\inf_{v \in C} \mathcal{F}(v)$

Global minimizers [Pock et al. 2010 (Thm. 3.1)]

Let v^* be a global minimizer in (C). Then for any $s \in [0, 1)$ the characteristic function $\mathbb{1}_{\{v^* > s\}}$ is a global minimizer in (E). Furthermore, the function $\mathbb{1}_{\{v^* > s\}}$ is the characteristic of the subgraph of a minimizer of (O).

Lifting Approach - Discretization

State of the art for J(u) = TV(u): sublabel-accurate discretization

- Relies on convexity and one-homogeneity of TV
- Data term and regularizer can be lifted separately
- Results in piecewise convex approximation of the data term

Lifting Approach - Discretization

State of the art for J(u) = TV(u): sublabel-accurate discretization

- Relies on convexity and one-homogeneity of TV
- Data term and regularizer can be lifted separately
- Results in piecewise convex approximation of the data term

Notation needed for the talk:

– Discretize the range Γ by choosing $\ell+1$ labels:

$$\gamma_1 < \ldots < \gamma_{\ell+1}, \quad \Gamma = [\gamma_1, \gamma_{\ell+1}]$$

- Denote the (sublabel-accurate discretized) lifted problem as

$$F(u) = H(u) + J(u)$$

Lifted Bregman Iteration

Lifted Bregman Iteration [Bednarski and Lellmann 2021]

Initialize $p_0 = 0$ and repeat for k = 1, 2, ...

$$egin{aligned} oldsymbol{u}_k \in rg\min_{oldsymbol{u}}ig\{oldsymbol{H}(oldsymbol{u})+oldsymbol{J}(oldsymbol{u})-\langleoldsymbol{p}_{k-1},oldsymbol{u}
angleig\}\ oldsymbol{p}_k\in\partialoldsymbol{J}(oldsymbol{u}_k) \end{aligned}$$

Lifted Bregman Iteration

Lifted Bregman Iteration [Bednarski and Lellmann 2021]

Initialize $p_0 = 0$ and repeat for $k = 1, 2, \dots$

$$egin{aligned} oldsymbol{u}_k \in rg\min_{oldsymbol{u}}ig\{oldsymbol{H}(oldsymbol{u})+oldsymbol{J}(oldsymbol{u})-\langleoldsymbol{p}_{k-1},oldsymbol{u}
angleig\}\ oldsymbol{p}_k \in \partialoldsymbol{J}(oldsymbol{u}_k) \end{aligned}$$

Solutions u_k^* and u_k^* are equivalent, if the projection of u_k^* given by

$$\widetilde{u}_k^*(x) := \gamma_1 + (\gamma_2 - \gamma_1, ..., \gamma_{\ell+1} - \gamma_\ell) \boldsymbol{u}_k^*(x)$$

gives a solution of the original problem, i. e. $u_k^* = \tilde{u}_k^*(x)$

Lifted Bregman Iteration

Lifted Bregman Iteration [Bednarski and Lellmann 2021]

Initialize $p_0 = 0$ and repeat for $k = 1, 2, \dots$

$$egin{aligned} oldsymbol{u}_k \in rg\min_{oldsymbol{u}} ig\{oldsymbol{H}(oldsymbol{u}) + oldsymbol{J}(oldsymbol{u}) - ig\langleoldsymbol{p}_{k-1},oldsymbol{u}
ight
angle ig\} \ oldsymbol{p}_k \in \partialoldsymbol{J}(oldsymbol{u}_k) \end{aligned}$$

Next: sufficient condition on the subgradients p_{k-1} and p_{k-1} such that the iterates u_k^* and u_k^* are equivalent.

Equivalence

Proposition 2 [Bednarski and Lellmann 2021]

Assume that the minimization problems in the original Bregman iteration have unique solutions. Assume that the solutions in the lifted Bregman iteration (u_k^*) are sublabel-integral.

If at every point x the chosen subgradients $p_{k-1} \in \partial J(u_{k-1})$ and $p_{k-1} \in \partial J(u_{k-1})$ satisfy

$$p_{k-1}(x) = p_{k-1}(x) \left(\gamma_2 - \gamma_1, \ldots, \gamma_{l+1} - \gamma_l\right)^{+},$$

then the solutions of the lifted Bregman iteration (u_k^*) and the original Bregman iteration (u_k^*) are equivalent.

Proof: Relies on the fact that the lifted representation of $H(u) = H_1(u) - H_2(u)$ for $H_2(u) = \langle p, u \rangle$ is $H(u) = H_1(u) - H_2(u)$.

 \Rightarrow Proposition applies to deconvolution/ denoising problem with anisotropic TV

Results

Rudin-Osher-Fatemi:

Lifted Bregman transformed subgradients

Implementation with prost library: Möllenhoff et al. 2016

Results

Stereo Matching:

$$F(u) = \int_{\Omega} \underbrace{\int_{W(x)} \sum_{d=1,2} h(\partial_{x_d} I_1((y_1, y_2 + u(x))) - \partial_{x_d} I_2((y_1, y_2)))}_{\rho(x, u(x))} dx + \mathsf{TV}(u)$$

Implementation with prost library: Möllenhoff et al. 2016; Middlebury Stereo Datasets: Scharstein et al. 2014

Conclusion

- Introduction of the lifted Bregman iteration
- Equivalence of original and lifted Bregman iteration if sufficient condition on subgradients is satisfied
- Sufficient condition satisfied in case of ROF problem with anisotropic TV
- First results of lifted Bregman iteration on originally non-convex problems

Inverse Scale Space Iterations for Non-Convex Variational Problems Using Functional Lifting
 { bednarski, lellmann }@mic.uni-luebeck.de