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Abstract

This thesis introduces the notion of measure-valued image processing models both as a
mathematical framework for the study of images that take values in a space of probability
measures, such as data from diffusion-weighted MRI, and as a global solution strategy
for a broad class of image processing problems, such as image enhancement, inpainting
and registration, that are often hard to solve globally optimally due to non-convexities.
A novel total variation regularization energy is proposed for edge-preserving denoising
and restoration of Q-ball data from diffusion-weighted MRI that naturally comes in the
form of probability measures describing the direction of diffusivity of water in fibrous
organic tissue. Furthermore, the global solution strategy that is known as functional
lifting is adapted to a large class of manifold-valued imaging problems with an efficient
discretization and implementation strategy based on finite elements. A generalization
of functional lifting to energies that depend on second-order derivatives is proposed and
its application to image registration problems is discussed. Finally, it is demonstrated
that a large class of state-of-the-art functional lifting approaches including all of the
previous models can be described through measure-valued image processing models whose
mathematical description and analysis involves tools from functional analysis and the
theory of optimal transport, especially dynamical models of optimal transportation.
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Zusammenfassung

Im Zentrum dieser Arbeit stehen maßwertige Modelle für die Bildverarbeitung. Solche
Modelle dienen einerseits als mathematischer Rahmen für die Handhabung von diffusi-
onsgewichteten MRT-Datensätzen. Andererseits bilden sie die Grundlage einer globalen
Lösungsstrategie für eine große Klasse von Bildverarbeitungsproblemen wie Bildverbes-
serung, -restauration oder -registrierung, die häufig aufgrund von Nichtkonvexität nur
schwierig global optimal zu lösen sind. Sogenannte Q-Ball-Daten aus der diffusionsge-
wichteten Magnetresonanztomographie beschreiben die lokale Verteilung der Diffusions-
richtung von Wasser in faserigem organischem Gewebe mit Hilfe von Wahrscheinlich-
keitsmaßen. In dieser Arbeit wird ein Regularisierer entwickelt und analysiert, der –
analog zur in der Bildverarbeitung häufig verwendeten Totalvariationsnorm – für die
strukturerhaltende Rauschentfernung von Q-Ball-Daten geeignet ist. Weitergehend wird
die als Funktionalanheben (engl. functional lifting) bekannte globale Lösungsstrategie so
angepasst, dass sie auf eine große Klasse von Bildverarbeitungsproblemen mit Werten
in Mannigfaltigkeiten anwendbar ist. Die numerische Implementierung dieses Ansatzes
basiert auf einer effizienten Diskretisierung mittels finiter Elemente. Im nächsten Schritt
wird das Funktionalanheben auch für Probleme mit Ableitungen höherer Ordnung ver-
allgemeinert, was vor allem in der Bildregistrierung eine interessante Anwendung findet.
Den Abschluss der Arbeit bildet die Ausformulierung eines mathematischen Models, das
alle zuvor genannten Strategien des Funktionalanhebens in einer gemeinsamen Sprache
vereint, der maßwertige Funktionen und Konzepte aus den Bereichen der Funktionalana-
lysis und des dynamischen optimalen Transports zugrunde liegen.
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Notation and Abbreviations

Abbreviations

ADMM Alternating Direction Method of Multipliers (optimization algorithm)
CB Chromaticity Brightness (color model)
CSD Constrained Spherical Deconvolution
CT Computer Tomography
DR Douglas-Rachford (optimization algorithm)
DTI Diffusion Tensor Imaging
DW-MRI Diffusion-weighted Magnetic Resonance Imaging
EBSD Electron Backscatter Diffraction
EMD Earth Mover’s Distance
GPU Graphics Processing Unit
HSV Hue Saturation Value (color model)
InSAR Interferometric Synthetic Aperture Radar
MRF Markov Random Field
MRI Magnetic Resonance Imaging
NP-hard Problem that is at least as hard in complexity as the hardest problem in

the class NP
OT Optimal Transport
ODF Orientation Distribution Function
QBI Q-Ball Imaging
PDE Partial Differential Equation
PDHG Primal-Dual Hybrid Gradient (optimization algorithm)
PET Positron-Emission Tomography
RGB Red Green Blue (color model)
ROF Rudin-Osher-Fatemi (L2-L1) model for image restoration
SSD Sum of Squared Distances (data discrepancy term)
TGV Total Generalized Variation (seminorm or regularizer)
TV Total Variation (seminorm or regularizer)
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Notation and Abbreviations

Sets

B(X) Borel σ-algebra in X
BV(Ω,Rn) (Vectorial) functions of bounded variation on Ω

C(Q) Continuous selections with respect to the set-valued map Q
C(X) Same as C(X,R)

Cb(X) Same as Cb(X,R)

Cc(X) Same as Cc(X,R)

C0(X) Same as C0(X,R)

C(X,Y ) Continuous maps from X to Y
Cb(X,Y ) Bounded continuous maps from X to Y
Cc(X,Y ) Continuous maps from X to Y with compact support
C0(X,Y ) Closure of Cc(X,Y ) with respect to supremum norm
Ck(Ω, Y ) k-times continuously differentiable functions from Ω to Y
Ckc (Ω, Y ) Compactly supported functions in Ck(Ω, Y )

∂Ω Set of boundary points of the set Ω

ker(A) Algebraic kernel of the linear operator A: vectors x with Ax = 0

KR(X) Kantorovich-Rubinstein space, completion ofM0(X) with respect to ‖·‖KR

Lp(Ω) Lebesgue p-integrable functions on Ω

Lpµ(Ω) Functions that are p-integrable with respect to the measure µ
L∞w (Ω, V ) Weakly measurable and essentially bounded functions from Ω to V
L∞w∗(Ω, V

∗) Weakly* measurable and essentially bounded functions from Ω to V ∗

Lip(X) Real-valued Lipschitz functions on X
Lip(X,Y ) Lipschitz functions from X to Y
Lip0(X,Y ) Lipschitz functions on X that vanish at a given point x0

M(X) Finite signed Radon measures on X
M0(X) Finite signed Radon measures on X with zero mean
M(X,Rn) Finite vectorial Radon measures on X
N Natural numbers (integers) {1, 2, 3, . . . }
N0 Natural numbers (integers) including zero {0, 1, 2, 3, . . . }
NpM Normal space of submanifoldM at p
P(X) Borel probability measures on a given topological space X
Π(µ, ν) Measures in P(X ×X) with marginals µ and ν
Rd d-dimensional Euclidean space
Rn,k n× k matrices with real entries
S1 Circle as a compact manifold in R2
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Sn n-dimensional sphere in Rn+1 as a compact manifold
SE(n) n-dimensional group of rigid motions
SO(n) Special orthogonal group of n× n matrices
TpM Tangent space ofM at p

Operators and Functions

1A Measure-theoretic indicator function of A; 1 on A and 0 otherwise
1u Indicator function of the subgraph of the function u
adjs ξ Vector of s× s minors of the matrix ξ
argminx F (x) Set of minimizers of F or the unique minimizer if it exists
dM(p, q) Geodesic distance on given manifoldM
δx Dirac unit point measure concentrated at x
δC Convex indicator function of the set C; 0 on C and ∞ otherwise
∂Ω Set of boundary points of the set Ω

∂ki u k-th partial derivative of u in direction i
Du Distributional derivative (measure) of u
∇u Gradient/Jacobian of u
∇xu Gradient/Jacobian of u with respect to the variable x
div u Divergence of the vector field u
Div u (Column-wise) divergence of the matrix-valued function u
∆u (Channel-wise) Laplacian differential operator applied to u
epif Epigraphical set of the function f
expp Riemannian exponential map at p
Hm(A) Mass of the setA with respect to them-dimensional Hausdorff measure
Ln(A) Mass of the set A with respect to the n-dimensional Lebesgue measure
logp Riemannian logarithmic (inverse exponential) map at p
πiγ i-th marginal Distribution of Γ

projC(x) Orthogonal projection of x onto the convex closed set C
proxf (x̄) Proximal mapping of the convex function f
σC Support function of the set C; convex conjugate of δC
TV(u) Total variation seminorm of u
Wp(µ, ν) p-Wasserstein distance between given probability measures µ and ν
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Notation and Abbreviations

Expressions

A \B Set difference: set of elements that are in A, but not in B
A ⊂ B Each element of A is contained in B, the statement is true in particular

if A = B

Ω̊ The (topological) interior of Ω

n ∧m Shorthand for min{n,m}(
n
k

)
Binomial coefficient, number of ways to choose k out of a set of n

n! Factorial: 0! := 1 and (n+ 1)! := (n+ 1) · n!

F : U ⇒ Rm A set-valued function: F (x) ⊂ Rm for each x ∈ U
f−1(A) Preimage of a set A under a function f
f∗(y) Convex conjugate of the function f
T∗µ(A) Push-forward measure µ(T−1(A)) of µ under T
X∗ Topological dual space of a topological vector space Y
xk k-th component of the vector x
xi i-th element in the sequence (xk)

fk ⇀ g fk converges weakly (in the weak topology) to g
µk

∗
⇀ ν µk converges weakly* (in the weak* topology) to ν

µ+, µ− Hahn decomposition of the signed measure µ
ν � µ ν is absolutely continuous with respect to µ
dν/dµ Radon-Nikodym derivative of ν with respect to µ
|µ| Total variation measure of signed measure µ
‖x‖ Euclidean norm ‖x‖2 of vector x
‖x‖p lp-norm of vector x
‖µ‖ Total variation measure of vectorial measure µ
‖x‖Y Norm with respect to given normed space Y
‖A‖F Frobenius norm of matrix A
‖A‖σ,∞ Matrix operator (or spectral) norm
‖A‖σ,1 Matrix nuclear norm, Schatten-1-norm
‖f‖∞ Supremum norm of the function f
‖µ‖M Total variation norm of measure µ
[x]Lip Lipschitz seminorm
〈x, y〉 Dual pairing or scalar product between x and y∫

Ω f(x) dx Integral of f with respect to the Lebesgue measure over the set Ω∫
Ω f dµ Integral of f with respect to the (signed) measure µ over the set Ω∫
Ω f(x, y)µ(dy) Integral of f(x, ·) with respect to µ for x fixed
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1 Introduction

In this thesis, we will be concerned with the mathematical modeling, approximation and
numerical solution of certain classes of variational image processing problems

inf
u∈U

F (u) (1.1)

with U a space of images u : Ω → Γ, that are defined on an open and bounded image
domain Ω ⊂ Rd. In particular, we will consider problems where the images u take values
in a metric space Γ of features. The features might be discrete, such as classification
labels, or Γ might be a scalar interval of gray values, a vectorial linear or nonlinear
continuous range, such as Euclidean space in case of RGB color values or displacement
vectors, or a Riemannian manifold in case of more abstract features, such as chromaticity.
However, a pivot between the different approaches considered in this work will be

the case where u takes values in an infinite-dimensional space of measures. Namely,
we will approximate the previous cases with a measure-valued setting, discuss benefits
and difficulties of such an approximation, and show that the measure-valued setting
is a mathematically sound framework for the processing of so-called diffusion-weighted
magnetic resonance imaging or, more precisely, Q-ball data (Chap. 3).
In all cases, the starting point will be a model where the objective functional F is of

integral form, depending pointwise on u and, possibly, on one or more of its derivatives:

F (u) :=

∫
Ω
f(x, u(x),∇u(x), . . . ) dx. (1.2)

The integrand f will be assumed to depend on the derivatives of u in a convex way, while
the dependence on x and u(x) is allowed to be non-convex. Computational minimization
strategies for (1.2) typically start from a first guess that is iteratively improved by vary-
ing it according to the local energy landscape, e.g., based on the functional’s gradient.
Local in nature as they are, these strategies can get stuck in local minima and often fail
to find the globally optimal minimizers. In recent years [Ish03; Zac+08; Poc+10; SGC11;
Lel+13a; Bae+14], the convex approximation of problem (1.2) through so-called func-
tional lifting has been investigated as an alternative solution strategy that allows to apply

1



1 Introduction

efficient convex optimization methods and has been proved in some cases to yield global
minimizers of the original energy (see Sect. 1.2.2). In this thesis, we apply the functional
lifting idea to new classes of manifold-valued (Chap. 4) and second-order (Chap. 5) im-
age processing problems with a new efficient discretization strategy. We demonstrate in
Chap. 6 that a large class of these functional lifting approaches can be described through
measure-valued image processing models and investigate their mathematical properties.
After a short motivational section where we illustrate our approach on the basis of

explicit applications (Sect. 1.1), we introduce the basic notions and problems that this
thesis will be concerned with and discuss related work (Sect. 1.2) before summarizing
our contribution (Sect. 1.3).

1.1 Motivation

One specific application of our proposed model is the problem of image registration,
where a given template image It : Rd → R is deformed to match a given reference image
Ir : Rd → R in a bounded region of interest Ω ⊂ Rd [Mod04; Gos05; FM08; Mod09]. As
an example, consider the variational image registration model

inf
u∈U

F (u), F (u) :=
1

2

∫
Ω

(It(x+ u(x))− Ir(x))2dx+
λ

2

∫
Ω
‖∆u(x)‖2dx, (1.3)

where U is a suitable space of displacement vector fields u : Ω→ Rd, λ > 0 is a regular-
ization parameter and ∆ is the Laplacian differential operator, applied componentwise:

[∆u(x)]k :=
d∑
i=1

∂2
i uk(x), k = 1, . . . , d. (1.4)

The first integral in (1.3), the data term, describes the pointwise match of image intensi-
ties between Ir and the deformed template image It. The regularization term, the second
integral in (1.3), measures the “smoothness” of the displacement u. The regularization
parameter λ ensures that a solution to the minimization problem (1.3) is a suitable bal-
ance between data discrepancy and smoothness of deformation according to the specific
application.
The variational image registration model (1.3) is usually solved numerically by em-

ploying local optimization algorithms such as gradient descent or quasi-Newton methods
[Mod09]. However, the data term in (1.3) is highly non-convex in general (Fig. 1.1) so
that local optimization methods often fail to find globally optimal solutions.
An alternative solution strategy for non-convex variational problems is the method of

2



1.1 Motivation

Reference image Ir Template image It
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Figure 1.1: In image registration, the task is to align a pair of images: Given Ω ⊂ R2

open and bounded and two images Ir, It : R2 → R (left and center), the goal
is to find a displacement u(x) = z ∈ R2 for each x ∈ Ω such that x 7→ Ir(x)
and x 7→ It(x+u(x)) are “similar” in the region Ω. In variational formulations
of image registration, the similarity is expressed in a data discrepancy term,
such as the sum of squared distances of intensity values (right). For a fixed
reference point x ∈ Ω (red square in the left image), the data term is typically
a highly non-convex function of the displacement z = u(x) (blue line in the
center image). Our functional lifting framework approximates the non-convex
variational formulation by a convex formulation in a space of measure-valued
images. In contrast to previous approaches, our framework is applicable to
models with second-order regularization, which is commonly used in image
registration. Image data from [Mod09].

functional lifting, where the non-convex objective functional F in (1.3) is approximated
by a convex functional F that is defined over a higher-dimensional set V. The auxiliary
minimization problem

inf
v∈V
F(v) (1.5)

can be solved globally using efficient and robust convex optimization algorithms. The
lifted functional F and the admissible set V are chosen in such a way that a minimizer
v∗ of the lifted problem (1.5) is a suitable approximation to a global minimizer u∗ of the
original problem (1.3).
In this work, we consider functional lifting strategies that replace the “hard” decision

for a displacement vector u(x) ∈ Rd in each x ∈ Ω by a “soft” probability measure
v(x) ∈ P(Rd) over the set of all possible displacement vectors. The admissible set V in the
lifted problem (1.5) is chosen to be a suitable space of measure-valued functions v : Ω→
P(Rd). Our proposed measure-valued functional lifting framework is applicable to image
processing problems that depend on first- or second-order derivatives of the unknown

3



1 Introduction

Figure 1.2: Images whose values underly symmetry or periodicity constraints can often
be interpreted as taking values in a manifold. In this case, the admissible set
fails to be convex in general so that variational models for denoising are non-
convex. Local optimization algorithms on manifolds might get stuck in local
minima. Instead, our functional lifting framework approximates the non-
convex variational problem by a convex problem in a higher-dimensional space
of measure-valued images to which efficient convex optimization algorithms
can be applied. Here, a noisy one-dimensional signal or image on the Klein
bottle (red) is denoised (blue) using our functional lifting framework.

function, as is the case in the image registration problem (1.3) (Chap. 5). Except for a few
cases [LL18; SG19], previous work on functional lifting is only applicable to variational
models that only depend on first-order derivatives of the unknown function u,

inf
u∈U

F (u), F (u) :=

∫
Ω
f(x, u(x),∇u(x)) dx, (1.6)

with f : Ω × R × Rd → R convex in the last, but non-convex in the first two variables..
In many functional lifting models, the range of the admissible functions u is required to
be scalar. Our proposed framework is compatible with first- and second-order models
with vectorial- and, more generally, manifold-ranges, i.e., where U is a set of functions
u : Ω→M for a smooth Riemannian manifoldM (Fig. 1.2).

If we are concerned with manifold-valued images, the admissible set U of functions
u : Ω→M in (1.6) is often non-convex. While local optimization algorithms for manifold-

4



1.1 Motivation

Figure 1.3: In diffusion-weighted MRI and, especially, Q-ball imaging, measure-valued
images are used to describe mathematically the diffusivity of water in fibrous
tissue. However, the signals are prone to noise and choosing a meaningful
notion of similarity between neighboring signals (measures) is crucial in the
process of restoration. In this work, optimal transport metrics are used to
define regularity or smoothness of measure-valued images which can be used
to denoise Q-ball images (Chap. 3). Left: 2-D fiber phantom of two crossing
fiber bundles. Center: Peak directions on a 15 × 15 grid, derived from the
phantom and used for the generation of synthetic DW-MRI data. Right:
An ODF reconstruction of DW-MRI data represents fiber orientation using
probability measures at each point, which allows to accurately recover fiber
crossings in the center region.

valued problems are available [AMS09], they can get stuck in local minima. Our proposed
functional lifting framework can be applied to a larger class of manifold-valued variational
models than previous functional lifting frameworks [Lel+13b] and comes with a more ef-
ficient discretization. It is compatible with a large class of convex regularization terms
and applicable to manifold-valued denoising and inpainting problems (Chap. 4).

Beyond the auxiliary role played by measure-valued functions in functional lifting
frameworks, they are central to the processing of so-called Q-ball images in diffusion-
weighted (DW) magnetic resonance imaging (MRI). In DW-MRI, the diffusivity of water
in tissues that exhibit fibrous microstructures, such as axons in cerebral white matter, is
measured in order to extract information about the fiber architecture in the living organ-
ism. For many medical applications, this is valuable information. Mathematically, these
measurements are commonly represented as orientation distribution functions (ODFs),
so-called Q-ball images (QBI): For each location x in the region of interest Ω ⊂ R3, a
probability measure u(x) ∈ P(S2) describes the distribution of diffusion directions over
the two-dimensional sphere S2, the set of all possible diffusion directions (Fig. 1.3).

A difficulty in the processing of Q-ball images is the high level of noise that distorts
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the signals during the acquisition process. For the denoising of image data, variational
models are a common solution strategy: On the suitably chosen set U of admissible
images u : Ω→ P(S2), an energy functional F : U → R,

F (u) := D(u, f) + λR(u), (1.7)

is defined. The data term D(u, f) describes the closeness of the solution candidate u
to the measured signal f : Ω → P(S2) while the regularization term λR(u) with λ > 0

measures the spatial regularity of u. As in variational models for image registration (1.3),
a solution of the denoising problem is expected to be a minimizer of the minimization
problem

inf
u∈U

F (u). (1.8)

As Q-ball images are measure-valued, defining spatial regularity is a non-trivial task.
Our proposed approach starts by defining a measure of similarity between neighboring
signals, which are probability measures on the metric space of directions S2. Distances
between probability measures that take the metric structure of the underlying space
into consideration are defined and investigated in the theory of optimal transport (see
Sect. 1.2.3). We employ optimal transport distances to generalize the total variation
(TV) seminorm, a popular regularization energy in image processing applications, to
measure-valued functions. The proposed TV seminorm is then used as a measure of
regularity for Q-ball images. When employed in the variational model (1.7) it preserves
structural features such as edges while removing noise substantially (Chap. 3).

1.2 Related Work

The subject of this thesis is interdisciplinary in character and, naturally, we will encounter
notions and results from numerous fields of research along the way:

• As illustrated in the previous motivational section, the main applications for our
mathematical framework will be from the field of mathematical signal and im-
age processing. We briefly introduce the reader to the field and give an overview
of image denoising, -segmentation, and -registration as well as manifold-valued-
and Q-ball images as far as these areas are relevant to this thesis (Sect. 1.2.1).

• The main contribution of this thesis is a novel measure-valued functional lifting
framework (Chap. 6) that is applicable to a large class of scalar, vectorial, manifold-
valued (Chap. 4), and first- and second-order (Chap. 5) problems. We introduce
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the main concepts and discuss recent work on scalar, vectorial, sublabel-accurate,
and higher-order models (Sect. 1.2.2).

• At the heart of our proposed models are methods from the mathematical theory
of optimal transport that define a natural geometry on spaces of measures and
therefore help in defining regularity of measure-valued functions. After a brief
introduction to optimal transport, we discuss the main three aspects that are rel-
evant to this work: the Kantorovich-Rubinstein formulation of optimal transport
distances, the dynamical formulation of optimal transport due to Benamou and
Brenier, and the more recent notion of (harmonic) functions with values in the
Wasserstein space (Sect. 1.2.3).

• Since almost every image processing model discussed in this work comes in varia-
tional form, usually defined over an infinite-dimensional space of functions, notions
from variational calculus are encountered in almost every chapter. Motivated
by the direct method and lower semicontinuous relaxations of functionals, we dis-
cuss gradient Young measures, Cartesian currents, and the method of calibrations
(Sect. 1.2.4), all of which play an important role in functional lifting approaches.

• We implemented most of our proposed models numerically in order to illustrate the
applicability to real-world image processing problems. Since the models come in a
convex variational form, we give a brief overview of recent algorithms from convex
finite-dimensional optimization, especially non-smooth primal-dual splitting
algorithms (Sect. 1.2.5).

1.2.1 Mathematical Signal and Image Processing

The main applications for the mathematical framework proposed in this work will be from
the field of image processing. The abstract mathematical formulation of our framework
on spaces of functions u : Ω→ Γ, with Ω ⊂ Rd open and bounded and Γ a metric space,
allows to apply the proposed framework to almost arbitrary kinds of images, where we
refer to an image as a physical signal that is acquired, modeled or interpreted in a
spatially coherent way. This definition of an image comprises the common notion of an
optical color or gray-value representation of a physical object or phenomenon, such as
a photography or a painting. But it also includes more abstract signals, in particular
biological, geological, ecological and meteorological features, such as acidity, density,
radioactivity, height, temperature, humidity, plant covering, land use, geological reserves
or seismic activity. These signals might be given on a bounded two-dimensional domain
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Ω ⊂ R2, such as a geographical area or a petri dish, or inside a three-dimensional volume
Ω ⊂ R3, such as the earth’s atmosphere, oceanic covering and crust, or the human body.

Depending on the application, the mathematical representation of a single signal u(x),
x ∈ Ω, is constrained to a specific set of values Γ: scalar or intensity values from a
continuous interval Γ := [a, b] ⊂ R, colors represented in a bounded three dimensional
color space Γ ⊂ R3, classification labels from a finite or infinite discrete set Γ ⊂ N, high-
dimensional spectral multichannel information Γ ⊂ RN or periodically, symmetrically or
geometrically constrained values from a topological or geometric manifold Γ =M.

For an overview of the highly active field, we point to introductions [VFG09; Sch+09;
BL11; VG16; LH17; Sun17; BL18], comprehensive surveys, and handbooks [AK06; Pin14;
Sch15; Jäh19] on mathematical image processing that appeared in recent years.

In the following paragraphs, we briefly introduce several image processing tasks and
techniques that are relevant to the results presented in this work. An emphasis will
be on variational (energy minimization) frameworks and we will point out the role of
non-convexity and local minimizers in each case.

Image enhancement, denoising and restoration When a given image is distorted by
noise, stains, or blur, lacks smoothness, sharpness, or contrast, the assumptions on the
spatial coherence of the underlying signal can be employed to enhance or restore signals
in damaged regions. Usually, restoration problems are ill-posed even if information about
the location and type of distortion as well as about the underlying physical data acquisi-
tion process is available. In those cases, a common approach is to choose an image that
is close to the acquired signal while being sufficiently regular according to a chosen regu-
larization energy. We will discuss this approach in a bit more detail, as it is prototypical
for many other image processing problems and, in particular, for the class of variational
problems that our proposed framework applies to.

Given a distorted signal f : Ω → Γ, the restored image u : Ω → Γ is chosen to satisfy
an optimality criterion of the form

inf
u : Ω→Γ

F (u), F (u) := D(u; f) + λR(u), (1.9)

where D describes the closeness to the measured signal and R is concerned with the
regularity of u. This method, especially the delicate question of choosing the regulariza-
tion parameter λ > 0, has its roots in the Tikhonov-Phillips regularization for ill-posed
problems [Phi62; Tik63; TA77].

In the mathematical image processing community, the name Tikhonov regularizer is
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frequently used for the particular choice of a squared image gradient,

R(u) :=
1

2

∫
Ω
‖∇u(x)‖2 dx. (1.10)

Moreover, a generic choice for the data term D in case of gray-value images is the sum
of squared differences (SSD)

D(u; f) :=
1

2

∫
Ω

(u(x)− f(x))2 dx. (1.11)

Since images commonly contain signals from more than one physical object, they exhibit
sharp edges between neighboring structures while being smooth away from these edges
– they are only piecewise smooth. The Tikhonov regularizer heavily penalizes outliers in
the gradient of u and, because of that, this restoration method will smooth out edges in
the input signal f as an undesirable side-effect.

David Mumford and Jayant Shah [MS89] therefore explicitly added a dependence on
the (d−1)-dimensional edge or boundary set B that is assumed to be compactly contained
in the d-dimensional image domain Ω:

F (u,B) =
1

2

∫
Ω\B

(u(x)− f(x))2 dx+
λ1

2

∫
Ω\B
‖∇u(x)‖2 dx+ λ2Hd−1(B). (1.12)

As in the Tikhonov-Phillips regularization method, the first term of this functional en-
codes closeness to the measured signal, the other two terms are concerned with the
regularity of the candidate u: large gradients and long edges are penalized proportion-
ally to the chosen regularization parameters λ1, λ2 > 0. However, the dependence on a
set B introduces a problem of parametrization as well as a problem of non-convexity.

The problem of parametrization in the Mumford-Shah functional is tackled by the
Ambrosio-Tortorelli approximation [AT90], where the indicator function of B is approx-
imated pointwise by a continuous function so that the resulting expressions Γ-converge
[GF75; MM77] to the original functional. These approximate functionals are still non-
convex, but local minimizers can be computed via gradient descent. Moreover, by the
definition of Γ-convergence, every sequence of minimizers of the approximate functionals
converges to a minimizer of the original functional. We refer the reader to the papers
[Fus03; Foc16] for an overview of the Mumford-Shah problem.

On the other hand, nonsmooth convex approximations of the Mumford-Shah functional
in the scalar [Poc+09b] and vectorial [SCC12] case are based on a sufficient condition
for minimizers of the Mumford-Shah functional known as calibration method [ABD03]
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(see Sect. 1.2.4). Even though the convex relaxation has been demonstrated to avoid
local minima compared to the Ambrosio-Tortorelli method in practice, no explicit algo-
rithm is known that provably produces minimizers of the Mumford-Shah functional from
minimizers of the convex relaxation yet [Cha01; Poc+09b] – an issue that can also be
observed in some of our proposed lifting approaches.

For the restoration of images with sharp edges, there are convex models that are based
on the total variation seminorm [AFP00; Cha+10] for so-called functions of bounded
variation u : Ω→ R,

TV(u) := sup

{∫
Ω
〈u,div φ〉 dx : φ ∈ C1

c (Ω,Rd), ‖φ(x)‖ ≤ 1

}
. (1.13)

Compared with the quadratic Tikhonov regularizer, the total variation seminorm grows
linearly in ∇u for smooth functions u : Ω→ R:

TV(u) =

∫
Ω
‖∇u(x)‖ dx, (1.14)

and it is well-defined for piecewise smooth functions with jump discontinuities. The
following three TV-based models are most relevant to this work: The Rudin-Osher-
Fatemi (ROF) model [ROF92],

F (u) =
1

2

∫
Ω

(u(x)− f(x))2 dx+ λTV(u), (1.15)

is known to preserve edges, but also to enforce piecewise constant solutions resulting in an
undesired staircasing effect. The Huber regularizer [Wer+09] is based on an estimation
procedure in robust statistics [Hub64] that – similar to Winsorizing, a data clipping
procedure in statistics [HR09] – avoids being dominated by outliers while still being
close to the mean-unbiased mean-square estimation procedure:

R(u) =

∫
Ω
φα(∇u) dx, (1.16)

φα(ξ) :=


‖ξ‖2
2α if ‖ξ‖ ≤ α,

‖ξ‖ − α
2 if ‖ξ‖ > α,

(1.17)

The Huber regularizer uses a quadratic Tikhonov term for small gradients and a linear
growth at infinity just as TV, which allows to preserve most edges as well as smooth tran-
sitions. Finally, in [BKP10], the total generalized variation (TGV) has been introduced
as a regularizer that enforces piecewise smooth functions by making use of higher-order
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derivatives.

Since many regularizers come in integral form and this work is concerned with integral
energy minimization models, we will frequently come back to these regularizers and
variants thereof.

Image segmentation, partitioning and multi-class labeling The grouping of shapes
and features arranged in an image according to given criteria is called image segmenta-
tion, -partitioning or -labeling. While there are models, especially statistical in nature,
that are able to apply prior semantic knowledge to this task [Guo+18], we will restrict
to models that only use the measured signal values f(x) together with assumptions on
spatial coherence of regions to identify each point x as belonging to one of several objects
or classes. Since this kind of image segmentation model is a prototypical application of
functional lifting methods (Sect. 1.2.2) and, historically, many functional lifting tech-
niques were developed in the context of image segmentation problems, we briefly give an
overview of relevant image segmentation techniques in the following.

In the most generic case of images segmentation, a foreground region is to be separated
from the background, a task known as 2-class labeling or binarization. Multi-Class la-
beling, on the other hand, corresponds to approximating the input image by a piecewise
constant image. In fact, the Mumford-Shah functional (1.12) is known to produce piece-
wise constant images in the boundary case λ1 →∞. The corresponding problem (1.12)
with the second term removed and with a finite set of admissible values Γ, u(x) ∈ Γ, is
called Potts model in the discrete setting, and its solution is known to be NP-hard in
general [BVZ01].

For the 2-class labeling case, efficient algorithms are available: The Chan-Vese model
[CV01] parametrizes the boundary curve in the two-phase piecewise constant Mumford-
Shah energy as the zero level set of a Lipschitz function and applies a fast solution
strategy for this kind of problem known as the level-set method [OS88]. Similarly, the
Ambrosio-Tortorelli method [AT90] can be adapted to the piecewise constant Mumford-
Shah energy. However, both methods are local in nature and might get stuck in local
minima. In [CEN06], it was shown that the binarization problem can provably be solved
globally by thresholding the solution of a convex denoising model.

There are several convex variational models for the solution of the multi-class label-
ing problem [Zac+08; Poc+09a; Lel+09; LBS09; BT09]. Contrary to the 2-class case,
thresholding the solutions to take discrete values does not yield the same result as solving
the same variational problems with values constrained to a discrete set. Instead, it was
possible to prove bounds on the relative error introduced by the convex relaxation for
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specific thresholding or rounding techniques [LLS13b]. Many of these convex relaxation
approaches belong to the larger class of functional lifting approaches (see Sect. 1.2.2).

Intensity-based image registration In image registration or image matching, some-
times referred to as large-displacement optical flow, multiple images that represent the
same scene from different sensors, times, depths or viewpoints are aligned by applying
transformations of the image domain. In this work, we will restrict ourselves to the regis-
tration of pairs of images based on their pointwise intensities instead of salient geometric
features, such as edges. As illustrated in the motivational Sect. 1.1, one application of our
mathematical framework are image registration models in which a template or moving
image It : Rd → Rk is deformed using a deformation y : Ω → Rd to match a reference
image Ir : Rd → Rk in a bounded region of interest Ω ⊂ Rd according to a pointwise
distance measure

D(u) :=

∫
Ω
d(It(x+ u(x)), Ir(x)) dx, (1.18)

where u(x) := y(x) − x is the displacement vector field. The distance measure d(·, ·)
is a nonnegative continuous function, such as the squared Euclidean distance d(a, b) =
1
2‖a − b‖

2. For an overview of more general approaches to image registration [Mod04;
Gos05; FM08; Mod09], including optimal control [You10; MTY15; Pol18], statistical
[Yan+17] and feature-based [RV10] frameworks we refer to the broad literature on the
subject.
Just as image restoration, image registration is an ill-posed problem that can only be

solved in a meaningful way by adding further assumptions on the regularity or smoothness
of the displacement u. Usually, this is done by applying a Tikhonov-Phillips regulariza-
tion term as in (1.9). The choice of regularizer has to be well-adapted to the specific
setting. When objects in the image undergo sliding or tearing movements, the deforma-
tion cannot be expected to be continuous everywhere and edge-enhancing regularizers,
such as total (generalized) variation, will yield reasonable results. On the other hand, in
situations where all parts of an image are sufficiently connected, as is often the case with
organic tissue, the deformation can be assumed to be smooth. In these cases, first-order
regularizers tend to be too restrictive since they heavily penalize affine and especially rigid
deformations, such as rotations, which are often a mere artifact of a changed viewpoint.
The second-order curvature regularizer [FM03]

R(u) :=
1

2

∫
Ω
‖∆u(x)‖2 dx (1.19)

is an alternative that is easy to implement efficiently. The fact that the curvature regu-
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larizer does not only ignore affine deformations but all harmonic functions, i.e., solutions
of ∆u = 0, is unphysical in theory. In practice, however, this regularizer is known to
perform reasonably well.

The resulting variational formulation of the image registration problem is usually tack-
led using quasi-Newton optimization methods. However, the highly non-convex nature of
the data discrepancy term D (Fig. 1.1) can lead to situations where these local optimiza-
tion methods get stuck in local minima, especially in case of large displacements or many
fine structures, such as thin vessels or fibers. Multi-level models and pre-registration
steps are often employed to mitigate this deficiency in practice. In this work, we try to
find global solutions to image registration problems by refining the work in [LL18] on
convex relaxation methods based on functional lifting (Chap. 5).

Manifold-valued images As noted above, the signals underlying an image might come
with periodicity, symmetry or geometric constraints that favor the mathematical rep-
resentation as functions with nonlinear range, such as a manifold M. Such a choice of
mathematical modeling is widespread in the processing of Interferometric Synthetic Aper-
ture Radar (InSAR) [MF98], Electron Backscatter Diffraction (EBSD) [BHS11], Diffu-
sion Tensor Imaging (DTI) [BML94], orientational/positional [Ros+12] data or of images
with values in non-flat color spaces, such as hue-saturation-value (HSV) or chromaticity-
brightness (CB) color spaces [CKS01].

They come with an inherent non-convexity (Fig. 1.4), as the space of images u : Ω→M
is generally non-convex, with few exceptions, such as if M is a Euclidean space, or if
M is a Hadamard manifold, if one allows for the more general notion of geodesic con-
vexity [Bač14; Bač+16]. Efficient and robust convex numerical optimization algorithms
therefore cannot be applied and global optimization is generally out of reach.

In order to address the inherent non-convexity, functional lifting (see Sect. 1.2.2) meth-
ods have been applied to the restoration of cyclic data [SC11; CS12] withM = S1, which
was later [Lel+13b] generalized for the case of total variation regularization to data with
values in more general manifolds. In practice, the lifting methods are applicable to varia-
tional problems with values in manifolds of dimension s ≤ 3. The theoretical framework
applies to manifolds of arbitrary dimension, but the numerical costs increase exponen-
tially. Based on the work in [Lel+13b], we propose a functional lifting framework for
manifold-valued images that is applicable to a wider class of (convex) regularizers and
present a refined discretization strategy based on finite element spaces on manifolds
(Chap. 4).

There also exists a wide range of local smooth [AMS09] and nonsmooth [WDS14;

13



1 Introduction

S1

x1

x2

x̄

y

xstart

xlocal

x̄

0
π
2 π 3π

2 2π
2.0

2.5

3.0

3.5

4.0

4.5

xstart xlocalx̄

Figure 1.4: Variational problems where the feasible set is a non-Euclidean manifold are
prone to local minima and non-uniqueness, which makes them generally much
more difficult than their counterparts in Rn. The inherent non-convexity of
the feasible set is not only an issue of representation. The example shows the
generalization of the weighted mean to manifolds: the Riemannian center of
mass x̄ of points xi on a manifold – in this case, the unit circle S1 – is defined as
the minimizer (if it exists and is unique) of the problem infx∈S1

∑
i λid(xi, x)2,

where d is the geodesic (angular) distance and λi > 0 are given weights. Left:
Given the two points x1 and x2, the energy for computing their “average” has
a local minimum at y in addition to the global minimum at x̄. Compare this
to the corresponding problem in Rn, which has a strictly convex energy with
the unique and explicit solution (x1 + x2)/2. Center and right: When the
number of points is increased and non-uniform weights are used (represented
by the locations and heights of the orange bars), the energy structure be-
comes even less predictable. The objective function (right, parametrized by
angle) exhibits a number of non-trivial local minimizers that are not easily
explained by global symmetries. Again, the corresponding problem – com-
puting a weighted mean – is trivial in Rn.
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WDS16; Bau+16; BPS16; Bre+18; Ber+18a] optimization methods on manifolds. These
methods are generally applicable to manifolds of any dimension whose (inverse) expo-
nential mapping can be evaluated in reasonable time and are quite efficient in finding
a local minimum, but can get stuck in local extrema. We mention that, beyond varia-
tional models, there exist statistical [Fle12], discrete graph-based [BT18], wavelet-based
[SW18], PDE-based [Che+04] and patch-based [LPS17] models for the processing and
regularization of manifold-valued signals.

Diffusion-weighted MRI and Q-ball imaging In medical applications, the diffusivity
of water in tissues that exhibit fibrous microstructures, such as muscle fibers or axons in
cerebral white matter, contains valuable information about the fiber architecture in the
living organism. Diffusion-weighted (DW) magnetic resonance imaging (MRI) is well-
established as a way of measuring the main diffusion directions by consecutively applying
six or more magnetic field gradients. However, this imaging technique is prone to noise.
Consequently, DW-MRI data is a particularly interesting target for post-processing in
terms of denoising and regularization [Del+07]. A widely used reconstruction scheme
for DW-MRI data is Q-ball imaging (QBI) [Tuc04] where the quantity of interest is the
marginal probability of diffusion in a given direction, the orientation distribution function
(ODF) [ALS09]. Reconstructing orientation distributions rather than a single orientation
at each point allows to recover directional information of structures, such as vessels or
nerve fibers, that may overlap or have crossings.

Existing mathematical frameworks for QBI generally follow the standard literature
on the physics of MRI [Cal91, p. 330] in assuming ODFs to be given by a probability
density function in L1(S2), often with an explicit parametrization. While practical,
the probability density-based approach raises some modeling questions, which lead to
deeper mathematical issues. We rather propose to use the interpretation of Q-ball data
as measure-valued images and apply optimal transport metrics (see Sect. 1.2.3) that
properly take into account distances on the underlying set S2 (Chap. 3).

Markov random fields While, in this work, the mathematical definition of an image
is as a function over a continuous domain whose regularity or smoothness defines its
spatial coherence properties, we note that there are alternative mathematical frameworks
that model images as signals given on discrete sample points. In those models, the
spatial coherence is encoded in a graph structure defined on the sample points and in the
specification of the statistical dependence of the values at different points in the graph.
A very popular framework are Markov Random Fields (MRFs), where the value of a
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vertex in the graph is assumed to be statistically independent from all vertices outside
of its immediate neighborhood.

The functional lifting method (see Sect. 1.2.2) was originally introduced into the image
processing community through corresponding insights in the context of MRF models
[KT02; Ish03]. Furthermore, the discrete mathematics involved in the study of these
models allows for a rigorous complexity analysis of common image processing tasks that
continues to hold for many continuous image processing frameworks.

For a detailed introduction to MRF approaches, we refer to the literature on discrete
and statistical methods of image processing [WJ08; BKR11; Fie11].

1.2.2 Functional Lifting

The main contribution of this thesis is a novel measure-valued functional lifting frame-
work (Chap. 6) that is applicable to a large class of scalar, vectorial, manifold-valued
(Chap. 4), and first- and second-order (Chap. 5) problems. In this section, we introduce
the main concepts and discuss recent work on scalar, vectorial, sublabel-accurate, and
higher-order models.

Multi-class labeling problems The historical starting point of functional lifting meth-
ods in the image processing community are continuous multi-label- or multi-class labeling
problems [Poc+08; LBS09], the problem of finding a function u : Ω → Γ that assigns a
label u(x) ∈ Γ from a discrete range Γ to each point x in a continuous domain Ω ⊂ Rd,
while minimizing an energy functional F (u). The name stems from the interpretation
as the continuous counterpart to the fully discrete problem of assigning to each vertex
of a graph one of finitely many labels γ1, . . . , γL while minimizing a given cost function
[GPS89; CKR98; KT02; Ish03].

The prototypical application of multi-labeling techniques is multi-class image segmen-
tation (see Sect. 1.2.1), where the task is to partition a given image into finitely many
regions. In this case, the label set Γ is discrete and each label represents one of the
regions so that u−1({γ}) ⊂ Ω is the region that is assigned label γ.

In the fully-discrete setting, one way of tackling first-order multi-label problems is to
look for good linear programming relaxations [CKR98; KT02; Ish03]. These approaches
were subsequently translated to continuous domains Ω for the two-class [CEN06], multi-
class [Zac+08; Poc+08; LS11; Bae+14; BT15], and vectorial [GC10] case, resulting in
non-linear, but convex, relaxations. By honoring the continuous nature of Ω, they reduce
metrication errors and improve isotropy [SGC11; SNC12; GSC13; Str15], see [Lel+13a]
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for a discussion and more references. Many of these relaxations fit into the concept of
functional lifting.

General concept The general strategy of functional lifting methods, which we will also
follow in this work, is to replace the energy minimization problem

inf
u : Ω→Γ

F (u), (1.20)

by a problem
inf

v : Ω→X
F(v), (1.21)

where X is some “nice” convex set of larger dimension than Γ with the property that
there is an embedding i : Γ ↪→ X and F (u) ≈ F(i◦u) in some sense whenever u : Ω→ Γ.
In general, the lifted functional F is chosen in such a way that it exhibits favorable

numerical or qualitative properties compared with the original functional F while being
sufficiently close to the original functional so that minimizers of F can be expected to
have some recoverable relationship with global minimizers of F . Usually, F is chosen to
be convex when F is not, which will make the problem amenable for convex optimization
algorithms and allows to find a global minimizer of the lifted problem.

Projection of lifted solutions While recent lifting strategies generally avoid local min-
imizers of the original problem, they are still an approximation and they are generally
not guaranteed to find the global minimizers of the original problem. A central difficulty
is that some simplifications have to be performed in the lifting process in order to make
it computationally feasible, which may lose information about the original problem. As
a result, global minimizers v : Ω→ X of the lifted problem need not be in the image of Γ

under the embedding i : Γ ↪→ X and therefore are not directly associated with a function
in the original space.
The process of projecting a solution back to the original space of functions u : Ω→ Γ

is a difficult problem and, unless Γ is a continuous scalar range [Poc+10], the projection
cannot be expected to be a minimizer of the original functional. These difficulties may
be related to the fact that the original problems are NP-hard [CS12]. As in the dis-
crete labeling setting [KT02], so-called rounding strategies have been investigated in the
continuous case [LLS13a; Lel11] that come with an a priori bound for the relative gap
between the minimum of the original functional and the value attained at the projected
version of a minimizer to the lifted functional.
The issue of projecting minimizers of the lifted functional to minimizers of the original
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problem is well-understood in the continuous scalar-valued case where a simple thresh-
olding can be applied [Poc+10, Theorem 3.1]. Thresholding is also used for vectorial data
with component-wise lifting as in [SCC14] and, in [Lel+13b; Möl+16; Lau+16], simple
averaging produces useful results even though no theoretical proof is given addressing the
accuracy in general. The considerations in [Fed74; BVZ01; Lav19a; VL19] indicate that
there might be general theoretical obstructions to provably accurate projection methods
for vector-valued models.

Continuous scalar range In addition to the case of a discrete range Γ, relaxation meth-
ods have been derived for continuous (non-discrete) ranges, most notably the scalar case
Γ ⊆ R [ABD03; Poc+10]. They typically consider first-order energies that depend point-
wise on u and ∇u only:

F (u) =

∫
Ω
f(x, u(x),∇u(x)) dx. (1.22)

The integrand f is assumed to be convex in the third component and nonnegative. The
equivalent problem class in the fully discrete setting consists of the energies with only
unary (depending on one vertex’s label) and pairwise (depending on two vertices’ labels)
terms.

For the problem (1.22), applying a strategy as in (1.20)–(1.21) comes with a sub-
stantial increase in dimensions that originally [Poc+09b] coined the term functional
lifting. In [Poc+09b], the (non-convex) Mumford-Shah functional for edge-preserving
image regularization and segmentation (see Sect. 1.2.1) is lifted to a space of func-
tions v : Ω × Γ → [0, 1], Γ ⊂ R. The authors use the special “step function” lifting
X = {v : Γ→ [0, 1]} and i(z∗) = v with v(z) = 1 if z ≤ z∗ and 0 otherwise, which is only
available in the scalar case. The approach was motivated by the method of calibrations
[ABD03] (see Sect. 1.2.4).

Vectorial range The application of the step function lifting to vectorial data Γ ⊂ Rs,
s > 1, is not straightforward, as the concept of subgraphs, which is central to the
idea, does not translate easily to higher-dimensional ranges. There are functional lifting
approaches for vectorial data with first-order regularization that consider the subgraphs
of the components of u [GSC13; SCC14]. A variant without subgraphs [Lel+13b] applies
to manifold-valued ranges Γ and total variation-based functionals. In the vectorial case,
the integrand f : Ω × Γ × Rs,d → R in (1.22) is usually assumed to be convex in the
third component and nonnegative, but some lifting strategies [WC16; MC19], based on
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1.2 Related Work

the theory of currents [GMS98a; GMS98b] (see Sect. 1.2.4), are applicable to polyconvex
integrands so that also minimal surface problems fit into this framework.

Sublabel-accurate liftings While the above models come with a fully continuous de-
scription, a numerical implementation requires the discretization of Ω as well as the
range Γ. This introduces two possible causes for errors: metrication errors and label
bias.
Metrication errors are artifacts related to the graph or grid representation of the

spatial image domain Ω, finite-difference operators, and the associated choice of metric.
They manifest mostly in unwanted anisotropy, missing rotational invariance, or blocky
diagonals. They constitute a common difficulty with all variational problems and lifting
approaches [Klo+08; Lel+13b].
In contrast, label bias means that the discretization favors solutions that assume values

at the chosen “labels” (discretization points) Z1, . . . , ZL in the range Γ (see Fig. 1.5).
This is very desirable for discrete Γ, but in the continuous case severely limits accuracy
and forces a suitably fine discretization of the range.
In more recent so-called sublabel-accurate approaches for scalar and vectorial ranges Γ,

more emphasis is put on the discretization [ZK12; Möl+16; Lau+16] to get rid of label
bias in models with total variation regularization, which allows to greatly reduce the
number of discretization points for the range Γ. In a recent publication [MC17], the gain
in sublabel accuracy is explained to be caused by an implicit application of first-order
finite elements on Γ as opposed to previous approaches that can be interpreted as using
zero-order elements, which naturally introduces label-bias. Finally, there is a recent
extension of the sublabel-accurate approaches to arbitrary convex regularizers using the
theory of currents [MC19].
In Sect. 2.7, we propose a finite element-based discretization, that reduces label bias

in the manifold-valued case (Chap. 4) compared to previous approaches [Lel+13b]. The
proposed discretization agrees with the sublabel-accurate approaches [Möl+16; Lau+16]
for Euclidean ranges.

Models with higher-order terms Only very recently, attempts at generalizing the con-
tinuous lifting strategies to models with higher-order regularization have been made –
for regularizers that depend on the Laplacian [LL18; VL19] in case of vectorial ranges
Γ ⊂ Rs and for the total generalized variation [RPB13; SG19] in case of a scalar range
Γ ⊂ R. However, in contrast to the first-order theory, the higher-order models, although
empirically useful, are still considerably less mathematically validated. Furthermore, we
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Figure 1.5: Rudin-Osher-Fatemi (ROF) L2−TV denoising (blue) of a (Euclidean) vector-
valued signal u : [0, 1] → R2 (red), visualized as a curve in R2. The problem
is solved by the continuous multi-labeling framework with functional lifting
described in Chap. 4. The discretization points (labels) in the range R2, which
are necessary for the implementation of the lifted problem, are visualized by
the gray grid. Left: The method in [Lel+13b] does not force the solution
to assume values at the grid points (labels), but still shows significant bias
towards edges of the grid (blue curve). Second from left: With the same
number of labels, the method from [Lau+16] is able to reduce label bias by
improving data term discretization. Second from right: Furthermore, the
method from [Lau+16] allows to exploit the convexity of the data term to get
decent results with as little as four grid points. Right: Further exploiting
the quadratic form of the data term even produces the numerically exact
reference solution, which in this case can be precisely computed using the
unlifted formulation due to the convexity of the original problem. This shows
that, for the Euclidean fully convex case, the sublabel-accurate lifting allows
to recover the exact solution with careful discretization. We extend these
sublabel-accurate techniques to the case of manifold-valued images in Chap. 4,
e.g., for curves on the sphere S2 (Fig. 4.3).
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mention that there are models where the image domain Ω is replaced by a shape (or
manifold) [Del+09; Ber+17]. Our proposed functional lifting framework is applicable to
first- (Chap. 4) and second-order (Chap. 5) variational problems and comes with a robust
mathematical formulation (Chap. 6).

Measure-valued liftings In this work, we will be concerned with measure-valued frame-
works for functional lifting, i.e., where the lifted space is chosen to beX = P(Γ), the space
of Borel probability measures over Γ, with embedding i : Γ ↪→ P(Γ), where i(z) := δz is
the Dirac point measure with unit mass concentrated at z ∈ Γ. We consider a gener-
alization of existing functional lifting approaches to a general class of first-order models
with manifold ranges Γ =M (Chap. 4) and to second-order models with vectorial range
(Chap. 5). Furthermore, we introduce a measure-valued framework motivated by the
theory of dynamical optimal transport (Chap. 6) as an alternative to the popular frame-
work based on the theory of currents, that exclusively applies to first-order problems,
while our model applies to first- and second-order problems.

Models with submodular objective functions This thesis investigates variational prob-
lems (1.2) where the integrand is convex in the last and non-convex in the first two com-
ponents. However, the concept of functional lifting has been applied to other problems,
as well, in particular to (non-convex) submodular objective functions F : X → R that are
defined on the cartesian product X = X1 × · · · × XN of compact sets of real numbers
Xi ∈ R. The functional lifting approach [Bac19] for submodular functions uses multi-
marginal optimal transport to define a convex relaxation F of F on the product space
of measures P(X1) × · · · × P(XN ). This framework has the property that minimizers
of F may be obtained from minimizers of F . It has applications in signal processing,
especially in the denoising of sparse signals. For an overview of research on submodular
problems, their convex relaxations and applications, we refer to [Bac19].

1.2.3 Optimal Transport

At the heart of our proposed models are methods from the mathematical theory of
optimal transport that define a natural geometry on spaces of measures and therefore
help in defining regularity of measure-valued functions. After a brief introduction to
optimal transport, we discuss the main three aspects that are relevant to this work:
the Kantorovich-Rubinstein formulation of optimal transport distances, the dynamical
formulation of optimal transport due to Benamou and Brenier, and the more recent
notion of (harmonic) functions with values in the Wasserstein space.
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Historical background and basic notions The theory of optimal transport dates back
to 1784, when the French mathematician Gaspard Monge published a mathematical de-
scription of earthwork [Mon84]: Monge described the problem of minimizing the amount
of carriage needed to transport earth from a given area (déblai, excavation) to a given
equal area (remblai, embankment). In modern mathematical terms, given a measure
space X and two probability measures µ, ν ∈ P(X), we seek to find a transport map
T : X → X that minimizes the total transport cost∫

X
c(x, T (x))µ(dx), (1.23)

under the constraint T∗µ = ν, where T∗µ(A) := µ(T−1(A)), A ⊂ X measurable, is
the push-forward measure of µ under T , and c(·, ·) is a non-negative function of local
transport cost, such as c(x, y) = ‖x− y‖p, p ∈ [1,∞), in the case X ⊂ Rd. Under these
assumptions, however, the problem is ill-posed in general: When the total mass of µ
is concentrated in a single point while ν distributes the mass between two points, the
constraint T∗µ = ν clearly can never be satisfied.

When the Russian mathematician Leonid Kantorovich described a mathematical model
for the leveling of land area and for the assignment of consumption locations to production
locations in 1942 [Kan06b], he used an alternative problem description: Given a measure
space X and two probability measures µ, ν ∈ P(X), we seek to find a transport plan or
coupling γ ∈ P(X ×X) that minimizes the total transport cost∫

X×X
c(x, y) γ(dx, dy), (1.24)

subject to the constraints π1γ = µ and π2γ = ν, where π1γ(A) := γ(A×X), π2γ(A) :=

γ(X×A), A ⊂ X measurable, are the marginal distributions of γ. The existence of such
a transport plan can be shown for every µ and ν under very weak assumptions on X and
c [Vil09, Theorem 4.1]. Shortly after that, Kantorovich gave a sketch of how his theory
can be applied to Monge’s problem [Kan06a]. In fact, if the given measures µ and ν

are absolutely continuous with respect to the Lebesgue measure and c(x, y) = ‖x− y‖22,
the (in this case, unique) optimal transport plan according to Kantorovich is actually
deterministic, i.e., supported on the graph of an optimal transport map T in the sense
of Monge [Vil09, Theorem 9.4].

The minimal transport cost defines a statistical distance on P(X). Most notable, in
case of a metric space (X, d), the Kantorovich-Rubinstein [KR57] or Wasserstein [Vas69]
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distance between probability measures µ, ν ∈ P(X) is defined, for 1 ≤ p <∞, as

Wp(µ, ν)p := inf

{∫
X×X

d(x, y)p γ(dx, dy) : γ ∈ Π(µ, ν)

}
, (1.25)

Π(µ, ν) := {γ ∈ P(X ×X) : π1γ = µ, π2γ = ν}. (1.26)

In fact,Wp defines a metric on P(X) that metrizes weak* convergence of measures [Vil09,
Thm. 6.9]. Moreover, in the case p = 1, this distance is induced by a norm [KR57] and
known under the name earth mover’s distance (EMD) in the computer vision [RTG00]
and statistical [LB01] community.

Dynamical optimal transport It was more than 50 years after Kantorovich’s formu-
lation that a dynamic (Eulerian) formulation of the optimal transport problem was in-
troduced by Benamou and Brenier [BB00] for compact Euclidean sets X ⊂ Rs. They
proved that the Wasserstein distance between to measures µ0, µ1 ∈ P(X) is equal to the
minimal Dirichlet energy of absolutely continuous curves in P(X) connecting the two
measures:

Wp(µ, ν)p = inf

{∫ 1

0

∫
X
‖vt‖p dµt dt : ∂tµ+ div(vµ) = 0,

µ(0) = µ0, µ(1) = µ1

}
,

(1.27)

where the continuity equation ∂tµ + div(vµ) = 0 is to be understood in the sense of
distributions. A rigorous description of this setting, including a definition of absolutely
continuous curves in metric spaces, is given in [AGS04; AGS08; San15] and in [Amb03]
for p = 1. In [AGS08, Section 8.2], it is also established that absolutely continuous
curves in the Wasserstein space can be decomposed as the superposition of absolutely
continuous curves in X.

Recently, the above notion of regularity for curves in the space of probability measures
has been used for the reconstruction of temporal positron-emission tomography (PET)
imaging data, which allows to follow singular immune cells over time in-vivo [SSW19].

For the mathematical framework that we introduce in Chap. 6, a generalized version
of dynamical optimal transport is a central theoretical motivation and background: the
study of mappings with values in Wasserstein spaces that we describe in the following
paragraph.
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Mappings with values in Wasserstein spaces The minimizers of the dynamical formu-
lation of Wasserstein distances are geodesics in the corresponding Wasserstein space. As
a generalization of this, the concept of harmonic functions with values in the Wasserstein
space was introduced in [Bre03]: A harmonic function on Ω ⊂ Rd with values in P(X)

is a pair of measures (µ,E) on Ω×X valued in R and Rd,n that minimizes the energy∫
Ω×X

‖v‖2F dµ (1.28)

subject to ∇xµ+Divz E = 0 (in the sense of distributions) with E := vµ, and prescribed
boundary data on ∂Ω. Whenever the boundary data is concentrated on the graph of
a continuous function, the infimum of this Dirichlet energy is achieved for µ := δu and
E := ∇u δu where u is the corresponding harmonic extension in the classical sense and
δu(x) := δu(x) is, for each x ∈ Ω, the Dirac point mass concentrated at u(x). As
was recently investigated in [Lav19a; Lav19b], existence of harmonic extensions can be
shown for general Lipschitz boundary data. However, contrary to the one-dimensional
Benamou-Brenier setting, there is no superposition principle for generalized harmonic
functions.

In this work, we are interested in the regularity of measure-valued images, similar to
the case of generalized harmonic functions introduced above. Furthermore, our lifting
approaches are based on concepts from variational calculus that are also at the heart
of the Benamou-Brenier as well as the Kantorovich relaxation of the Monge transport
problem.

Optimal transport in image processing In the introduction to mathematical image
processing (Sect. 1.2.1), we identified images with functions on some domain on which a
notion of spatial coherence is available. Just as we can identify every L1-function as the
density function of a (signed) measure, we can also model images as measures on some
domain. In case of gray-value images, we can assume those measures to be probability
measures after normalization. Then, the Monge problem of optimal transport can be
interpreted as a model for image registration between two given images (measures) µ
and ν, as noted by [HT01; Cha+09]. The constraint T∗µ = ν then corresponds to
an exact match between the reference ν and transformed template image T∗µ while
the cost term c(x, T (x)) in (1.23) serves as a regularizer for the deformation T . The
exact matching constraint is too restrictive in many applications of image registration
where the alignment is expected to undo large deformations while preserving small and
medium-sized anomalies. While there exist generalizations of optimal transport that
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relax this constraint [Fer+14], it has not been applied to the particular problem of image
registration so far.
On the other hand, the dynamical optimal transport viewpoint has been successfully

applied to image metamorphosis, where the transition process is more interesting than
the actual deformation function [Maa+15]. In the same spirit, dynamic inverse problems
can be regularized using the notion of absolutely continuous curves in the Wasserstein
space [BF19; Bre+19] and barycenters in the Wasserstein space of images have been
applied to texture mixing [Rab+12].
Another popular application of Wasserstein distances is as a similarity measure in

image processing. Variants of the Kantorovich-Rubinstein formulation have been applied
in [BFS12; Lel+14; BL15] and, more recently, in [FLS16; TPG16; FLS17] to the problems
of real-, RGB- and manifold-valued image denoising. For more applications, we refer to
review articles on optimal transport in image processing [Pey+09] and statistics [PC19].

1.2.4 Variational Calculus

The calculus of variations is concerned with the minimization of real-valued mappings
over (infinite-dimensional) function spaces, often given in integral form as introduced
in (1.2). Central questions are existence, uniqueness and stability of minimizers (well-
posedness) as well as necessary or sufficient criteria and qualitative properties of minimiz-
ers. As minimization is usually over an infinite-dimensional topological vector space of
functions, theoretical results from functional analysis are a crucial ingredient. Through
the optimality criterion known as Euler-Lagrange equation, there is a natural relation-
ship with the theory of partial differential equations. For a general overview of and an
introduction to the field, we recommend the numerous monographs on the topic [GH96a;
GH96b; ABM06; Dac08; Str08; Cla13; Rin18]. An alternative and nowadays very influ-
ential point of view is taken by Rockafellar [RW04], where key concepts from traditional
variational calculus like stationarity are generalized to the case of non-smooth objects
and their subderivatives.
We will make use of both traditional and modern concepts from the calculus of varia-

tions in order to motivate, define and analyze our proposed functional lifting framework.
Furthermore, the modern concept of functional lifting (see Sect. 1.2.2) is similar to meth-
ods that have originally been introduced in the theory of variational calculus, as we will
see in the following paragraphs.

Direct method When tackling variational problems of the form (1.1), one of the first
questions is whether the minimum is attained at all – whether minimizers exist. A
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general method for constructing a proof of existence is the direct method : Given that
the feasible set is non-empty, there always exists a sequence of functions (uk) such that
F (uk) converges to its infimum. A direct method proof now chooses a topology with
respect to which F is sufficiently regular so that every minimizing sequence has a cluster
point in that topology and so that this cluster point is actually a minimizer of F . The
two regularity properties that F usually has to satisfy are:

1. F is coercive in the sense that the sublevel set {u : F (u) ≤ s} is precompact in the
chosen topology for each s ∈ R.

2. F is sequentially lower semicontinuous with respect to the chosen topology in the
sense that F (u∗) ≤ lim infk→∞ F (uk) whenever uk converges to u∗ in that topology.

A setup of such a proof often starts by embedding the feasible set X into a larger
topological space Y and defining a relaxed functional F that agrees with F on X while
being lower semicontinuous and coercive in the topology of Y . The direct method then
yields a minimizer of F in Y , and regularity results (necessary conditions) are applied to
show that this minimizer is actually an element of X and, therefore, a minimizer of F .
The procedure of replacing a functional F by a functional F defined on a larger space

and minimizing F in order to draw conclusions about minimizers of the original functional
F is a central concept of functional lifting strategies (see Sect. 1.2.2).

Lower semicontinuous relaxations While the regularity results mentioned at the end
of the last paragraph are not easily available in practice, there is a large theory about
lower semicontinuous relaxations of functionals. In the case of function spaces with
scalar range and integral functionals (1.2) with first-order terms, it is well-known that
the lower semicontinuity with respect to the weak topology of Sobolev spaces is closely
related to convexity of the integrand with respect to the gradient variable. In the case of
a vectorial range, a similar connection exists for generalized notions of convexity (quasi-
and polyconvexity) [Dac08].
Due to this connection to convexity, the functional lifting approach (see Sect. 1.2.4)

that aims to approximate a non-convex functional by a convex one, has natural theoretical
intersections with the study of lower semicontinuous relaxations.

Cartesian currents A useful viewpoint in the study of lower semicontinuous relaxations
is to identify functions u : Ω→ Γ with their (oriented) graph in Ω×Γ. The feasible set of
such graphs can then be embedded into a larger class of oriented objects in Ω× Γ called
currents, which are the dual concept to continuously differentiable vector fields or, more

26



1.2 Related Work

precisely, differential forms in Ω × Γ. The theory of Cartesian currents [GMS98a] then
studies those currents that arise as the weak limit of graph currents.
Every integral functional (1.2) of first order that depends on the Jacobian ∇u in a

polyconvex way while being non-convex in u can be extended in a completely convex
way to the space of currents [GMS98b]. This property has been used in functional
lifting approaches with vectorial range [MC19], and many functional lifting approaches
with scalar range, in particular those based on calibrations, fit into this framework after
simple reformulations (see Sect. 6.4.2).
Furthermore, the language of currents has been used to parametrize spaces of shapes

[Ben+19] and to solve correspondence or shape-matching problems [WC16].

Gradient Young measures Minimizing sequences of non-convex functionals often de-
velop singularities and show highly oscillatory behavior. Even if the regularity results
that are necessary for the last step in the direct method fail to hold, minimizers in the
lifted space can give interesting insight into the problem setting – for example in the
study of microstructures arising from solid-solid phase transitions in elastic crystals or
alloys [Mül99].
More precisely, some of the qualitative properties of a (minimizing) sequence of func-

tions vk : Ω→ RN can be expressed in the form of a parametrized measure νx ∈M(RN ),
x ∈ Ω, or, equivalently, a measure-valued function ν : Ω → M(RN ), ν(x) := νx: the
so-called Young measure generated by that sequence that has, under appropriate as-
sumptions, the property that f(vk) converges weakly to

∫
Ω

∫
RN f(A) νx(dA) dx for every

continuous function f : RN → R. Typically, minimizing sequences of many functionals
are, by Sobolev embedding theorems, strongly convergent in some Lp-space so that non-
trivial oscillatory behavior is only observed in the gradient sequence. That is why the
typical application of Young measures is as gradient Young measures that are generated
by a sequence of gradients vk = ∇uk of functions in some Sobolev space.
We mention this as another example where measure-valued functions play an important

role in the calculus of variations. An overview of Young measures in the calculus of
variations is given in [Ped97], where also the relationship with lower semicontinuous
relaxations is pointed out. Another introduction to the field is contained in the recent
book [Rin18].

The calibration method In the theory of minimal surfaces, a sufficient criterion for a
submanifold to be a surface of minimal area with given boundary – a minimal surface
– is that there exists a closed differential form on the enclosing manifold that satisfies
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certain compatibility properties on that submanifold [HL82; Mor90]. Such a differential
form is called a calibration. Inspired by this concept, a sufficient criterion for minimizers
of the Mumford-Shah functional has been developed [ABD03]: It can be shown that
a function u : Ω→ R is a minimizer of the Mumford-Shah functional if there exists a
divergence-free vector field on Ω × R that satisfies certain compatibility properties on
the graph of u. Later, the duality between graphs of functions u : Ω → R and vector
fields on Ω × R was used to study a duality theory for the Mumford-Shah functional
and similar variational problems [Cha01; Poc+09b; Poc+10; BF18]. Even though, apart
from [Mor02], these approaches have been applicable to problems with scalar range only,
this so-called calibration method sparked interest in general frameworks, such as those
presented in this work, for the convex relaxation of variational problems via functional
lifting in the following years.

1.2.5 Convex Finite-Dimensional Optimization

In contrast to the calculus of variations, we will discuss solution methods for finite-
dimensional energy minimization problems in this section. In image processing, and
in our work, finite-dimensional optimization plays an important role when variational
models are discretized and solved numerically. Since, in this work, we will always consider
convex energies or convex approximations of convex energies that are nonsmooth in
many cases, we introduce some key notions and issues from convex finite-dimensional
optimization.
In convex optimization, minimization problems of the form

inf
x∈S

f(x) (1.29)

are studied where the objective function f : S → R as well as the feasible set S ⊂ RN are
known to be convex. The convexity does not only guarantee that stationary points are
global minimizers, but it automatically comes with additional regularity of the objective
function such as local Lipschitz-continuity and the existence of meaningful subderivatives
at each x ∈ S. Furthermore, similar to the setting in linear programming, every convex
minimization problem comes with dual concave maximization problems that are, under
suitable assumptions, guaranteed to take the same extremal value. For an introduction
and overview of general concepts in convex analysis and optimization, we refer to [Roc97;
ET99]. Applications and numerical basics are covered in [BV04; Nes04].
Many convex optimization problems come with an objective function that is itself

the sum of two convex functions, each of which is often better understood or easier
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to handle than the sum. This is for example the case for (convex) image processing
problems with a (convex) Tikhonov-Phillips regularization term as in (1.9). Similarly,
the objective functions of the functional lifting approaches proposed in this work split
up into a sum of two convex functions. Over the years, many splitting optimization
algorithms have been investigated: To name some of the most prominent, we mention
the proximal forward backward splitting algorithm, the Douglas-Rachford algorithm and
the Alternating Direction Method of Multipliers (ADMM) [LM79].

Many of the popular convex optimization algorithms are primal-dual methods: they
update, in each iteration, a primal and a dual variable. Those algorithms are often
more stable or manage to overcome complexities and non-smoothness in the structure
of the primal or dual objectives. By evaluating a primal and a dual objective function,
they can give a guaranteed certificate of approximation quality through the concept of
a (relative) primal-dual gap, as opposed to conventional stopping criteria based on first-
order residuals, such as the gradient of the objective function [BV04, Chapter 5.5].

All numerical experiments in this work have been implemented based on the primal-
dual splitting algorithm known as (modified) Primal-Dual Hybrid Gradient (PDHG)
[ZC08; EZC10] or Chambolle-Pock [CP11] algorithm (see Sect. 2.6). It has been intro-
duced in [Poc+09b] as an algorithm to solve a convex relaxation of the Mumford-Shah
functional and was then generalized to more general convex models with objective func-
tions of the form F (x) = g(x) + f(Ax), where g and f are convex while A is linear. A
convergence analysis [CP11] was able to show that its complexity is optimal in a class of
convex problems and complexity automatically improves when either f or g (or both) are
strictly convex or smooth. Recently, preconditioning [PC11], adaptive step sizes [GEB13]
and a line-search procedure [MP18] have been investigated for a further increase in per-
formance. Extensions to nonlinear operators A exist [Val14; CV17]. We use the PDHG
algorithm for our very high-dimensional lifting models, as it is highly parallelizable on
GPUs while still being comparably easy to implement and applicable to a wide range
of nonsmooth objectives. The variant of the algorithm used for our implementations is
documented in detail in Sect. 2.6.

1.3 Contributions and Outline

We specify our notation and some mathematical foundations that we will use throughout
this work in Chap. 2. The main results are then presented in the following four chapters.
Each chapter starts with a short introduction to the setting where related work is ref-
erenced. A demonstration of the theoretical novelties is contained in the main sections
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and, if applicable, numerical experiments are discussed.

1. In Chap. 3, we give a functional analytically rigorous framework for the mathemat-
ical processing of Q-ball data from diffusion-weighted MRI as images with values in
the Wasserstein space of measures. In particular, a new total variation regularizer
is proposed for the denoising and restoration of measure-valued (Q-ball) images.

Related Publications:

• T. Vogt and J. Lellmann. “An Optimal Transport-Based Restoration Method
for Q-Ball Imaging”. In: Proc SSVM 2017. Ed. by F. Lauze, Y. Dong, and
A. B. Dahl. Springer, 2017, pp. 271–282

• T. Vogt and J. Lellmann. “Measure-Valued Variational Models with Applica-
tions to Diffusion-Weighted Imaging”. In: J Math Imaging Vis 60.9 (2018),
pp. 1482–1502

2. In Chap. 4, we generalize existing lifting methods for manifold-valued imaging
problems to the general first-order variational model and give a rigorous math-
ematical framework in the continuous setting. We compare our proposed finite
element-based discretization scheme with previous manifold-valued functional lift-
ing approaches.

Related Publications:

• T. Vogt, E. Strekalovskiy, D. Cremers, and J. Lellmann. “Lifting methods
for manifold-valued variational problems”. In: Variational Methods for Non-
linear Geometric Data and Applications. Ed. by P. Grohs, M. Holler, and A.
Weinmann. Springer, 2019, In press

3. In Chap. 5, the lifting strategy is adapted to be applicable to second-order vari-
ational models. Based on this, a global solution strategy for image registration
problems with (Laplacian) curvature regularization is proposed and discussed.

Related Publications:

• T. Vogt and J. Lellmann. “Functional Liftings of Vectorial Variational Prob-
lems with Laplacian Regularization”. In: Proc SSVM 2019. Ed. by J. Lell-
mann, M. Burger, and J. Modersitzki. Springer, 2019, pp. 559–571

4. In Chap. 6, a new mathematical description of existing functional lifting strategies
based on notions from the theory of dynamical optimal transport is proposed. This
has the potential to serve as a basis for future efficient second- and higher-order
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1.3 Contributions and Outline

lifting approaches. Connections with the functional lifting approaches introduced
in the previous chapters are discussed and the proposed framework is compared
with existing frameworks in the language of Cartesian currents and calibrations.
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2 Notation and Mathematical
Foundations

Throughout this work, the set of natural numbers N := {1, 2, . . . } starts at 1 and we write
N0 := {0, 1, 2, . . . }. Whenever we write Rk, we assume the usual Euclidean topology,
metric, norm ‖ · ‖ and scalar product 〈·, ·〉, unless explicitly stated otherwise. For the
n × k matrices Rn,k we explicitly specify the norm used. Most importantly, ‖A‖2F :=∑n

i=1

∑k
j=1 a

2
ij is the Frobenius norm and ‖A‖σ,∞ := sup‖x‖=1 ‖Ax‖ is the (matrix)

operator norm or spectral norm.

We use the terms function, map and mapping synonymously. We say that a function is
vector-valued (or vectorial) and scalar-valued (or real-valued) if its values are vectors or
scalars. We use Banach space-valued as a synonym for taking values in a Banach space
even though we acknowledge the ambiguity carried by this expression. Analogously,
manifold-valued means taking values in a manifold and metric space-valued means taking
values in a metric space.

Sequences of functions, measures or vectors, (uk), (µk), (xk), etc., are indexed by
a superscript. The subscript is used to refer to the components of a vectorial object:
uk, µk, xk. We refer to a whole sequence of objects by adding parentheses: (uk).

For topological spaces X and Y , we denote by C(X,Y ) the set of continuous maps
f : X → Y . For a Banach space Y , we denote by Cb(X,Y ) the Banach space of bounded
continuous maps equipped with the supremum norm ‖f‖∞ := supx∈X ‖f(x)‖Y . The
corresponding subset of maps with compact support is denoted by Cc(X,Y ), and its
closure in Cb(X,Y ) with respect to the supremum norm is denoted by C0(X,Y ). As, in
this work, many topological spaces of interest are compact, we note that, for compact
topological spaces X, we have C(X,Y ) = Cb(X,Y ) = Cc(X,Y ) = C0(X,Y ). For real-
valued functions, i.e., Y = R, we write C(X) = C(X,R), Cb(X) = Cb(X,R), etc.

For metric spaces X and Y and a function f ∈ C(X,Y ), we denote by

[f ]Lip := sup

{
dY (f(x1), f(x2))

dX(x1, x2)
: x1, x2 ∈ X,x1 6= x2

}
(2.1)
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2 Notation and Mathematical Foundations

the Lipschitz seminorm of f and we write Lip(X,Y ) for the set of functions with finite
Lipschitz seminorm. In the special case Y = Rn, the set Lip(X,Rn) is a Banach space
when equipped with the norm ‖f‖Lip := ‖f‖∞ + [f ]Lip.

For k ∈ N, Ω an open subset of Rd and Y a topological vector space, we denote by
Ck(Ω, Y ) the k-times continuously differentiable functions f : Ω→ Y . The corresponding
subsets of functions with compact support are denoted by Ckc (Ω, Y ). The k-th partial
derivative of u ∈ Ck(Ω, Y ) in the i-th direction is denoted ∂ki u ∈ C(Ω, Y ), the gradient
is the vectorial function ∇u ∈ C(Ω, Y d) with components (∇u)i := ∂iu. The Laplacian
differential operator ∆ is defined for u ∈ C2(Ω,Rn) as

∆u(x) :=
d∑
i=1

∂2
i u(x) (2.2)

and the (column-wise) divergence Div u ∈ C(Ω,Rn) of u ∈ C1(Ω,Rd,n) is

[Div u(x)]k :=
d∑
i=1

∂iuik(x), for k = 1, . . . , n. (2.3)

For n = 1, we usually write div instead of Div. If a function is defined on a Cartesian
product Ω× Γ for some Ω ⊂ Rd and Γ ⊂ Rs, the components associated to Ω and Γ are
referred to using different variables x and z, and the associated differential operators are
marked with a corresponding subscript: ∆xu, Divz u, ∇xu.

2.1 Measure Theory

Let X be a locally compact separable metric space. The Borel σ-algebra B(X) is the
smallest σ-algebra in X that contains all open subsets of X. A (nonnegative) measure
on X is a countably additive function µ : B(X) → [0,∞] with µ(∅) = 0. A function
µ : B(X)→ Rn is a finite vectorial Radon measure onX if there exists a finite nonnegative
measure ‖µ‖ (the total variation measure of µ) and a measurable function g : X → Rn

with ‖g(x)‖ = 1 almost everywhere and

[µ(A)]i =

∫
A
gi d‖µ‖ (2.4)

for each 1 ≤ i ≤ n. We write µ = g‖µ‖ and all integrals are in the sense of Lebesgue
integration.

We denote by M(X,Rn) the vector space of finite vectorial Radon measures on X and
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2.2 Optimal Transport

write M(X) = M(X,R) for the finite signed Radon measures. For each µ ∈M(X), there
are nonnegative measures with disjoint support µ+, µ− ∈M(X), the Hahn decomposition
of µ, such that µ = µ+ − µ−. For the total variation measure |µ| of a signed measure µ
it holds that |µ| = µ+ + µ−. Equipped with the total variation norm ‖µ‖M := ‖µ‖(X),
the set M(X,Rn) is a Banach space and isometrically isomorphic to the topological dual
space of C0(X,Rn) with dual pairing

〈µ, f〉 :=

∫
X
〈f, dµ〉 :=

∫
X
〈f, g〉 d‖µ‖, (2.5)

whenever f ∈ C0(X,Rn) and µ = g‖µ‖ ∈ M(X,Rn) [HS65, p. 364]. Accordingly, a
sequence (µk) ⊂M(X,Rn) is weakly* convergent to µ∗ if, for each f ∈ C0(X,Rn),∫

X
〈f, dµk〉 →

∫
X
〈f, dµ∗〉 as k →∞. (2.6)

For every pair of measures µ, ν ∈ M(X,Rn), by a variant of the Radon-Nikodym
theorem [HS65, Thm. 19.42], there is a Lebesgue decomposition of ν with respect to µ,
i.e., there exist measurable functions g and g⊥ on X and a nonnegative measure ‖µ‖⊥ ∈
M(X) with support disjoint from the support of ‖µ‖ such that ν = g‖µ‖ + g⊥‖µ‖⊥. If
µ is a nonnegative measure, we say that ν is absolutely continuous with respect to µ (or
ν � µ) if µ(A) = 0 implies ν(A) = 0 for each A ∈ B(X). In this case, ‖µ‖⊥ = 0 and we
denote by (dν/dµ)(x) := g(x) the Radon-Nikodym derivative of ν with respect to µ. On
the other hand, if g = 0 (or ν = g⊥‖µ‖⊥), then ν and µ are called mutually singular.

Integration with respect to a measure is denoted by dµ and µ(dx) if the variable cannot
be omitted. Integration with respect to the Lebesgue measure is denoted by dx. For a
measurable set Ω ⊂ Rd, the Lebesgue spaces are denoted by Lp(Ω,Rn) for p ∈ [1,∞] and
the Sobolev spaces are W k,p(Ω,Rn) for k = 1, 2, . . . and p ∈ [1,∞]. The n-dimensional
Lebesgue measure of a measurable set A ⊂ Rn is denoted Ln(A) and, for s ∈ [0,∞), the
s-dimensional Hausdorff-measure is Hs(A).

2.2 Optimal Transport

For a Polish (metric, complete, and separable) space X, we briefly recall the defini-
tion of optimal transport metrics. We write P(X) for the set of Borel probability
measures on X, i.e., the nonnegative Borel measures in M(X) with unit total mass.
The Kantorovich-Rubinstein [KR57] or Wasserstein [Vas69] distance between probabil-
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2 Notation and Mathematical Foundations

ity measures µ, ν ∈ P(X) is defined, for 1 ≤ p <∞, as

Wp(µ, µ
′) :=

(
inf

γ∈Π(µ,µ′)

∫
X×X

d(x, y)p γ(dx, dy)

)1/p

, (2.7)

where
Π(µ, µ′) :=

{
γ ∈ P(X ×X) : π1γ = µ, π2γ = µ′

}
. (2.8)

Here, πiγ ∈ P(X) denotes the i-th marginal of the measure γ on the product space
X × X, i.e., π1γ(A) := γ(A × X) and π2γ(B) := γ(X × B) whenever A,B ⊂ X. In
fact, Wp defines a metric on P(X) that metrizes the weak* convergence of measures (see
Sect. 2.1) [Vil09, Thm. 6.9].

Fix some arbitrary x0 ∈ X. Then, the seminorm [·]Lip is actually a norm on the set

Lip0(X,Rd) := {p ∈ Lip(X,Rd) : p(x0) = 0}. (2.9)

The Kantorovich-Rubinstein duality [KR57] states that, for p = 1, the Wassersteinmetric
is actually induced by a norm, namely W1(µ, µ′) = ‖µ− µ′‖KR, where

‖ν‖KR := sup

{∫
X
p dν : p ∈ Lip0(X), [p]Lip ≤ 1

}
, (2.10)

whenever ν ∈M0(X) := {µ ∈M :
∫
X dµ = 0}. The completion KR(X) of M0(X) with

respect to ‖ · ‖KR is a predual space of (Lip0(X), [·]Lip) [Wea99, Thm. 2.2.2 and Cor.
2.3.5].

In the Euclidean case X ⊂ Rn, the Wasserstein distance between to measures µ0, µ1 ∈
P(X) can be expressed using the Benamou-Brenier [BB00] formulation:

Wp(µ, ν)p = inf

{∫ 1

0

∫
X
‖vt‖p dµt dt : ∂tµ+ div(vµ) = 0, µ(0) = µ0, µ(1) = µ1

}
,

(2.11)
where we write µt := µ(t), whenever µ : [0, 1] → P(X) is a curve in the space of Borel
probability measures. The continuity equation ∂tµ+ div(vµ) = 0 is to be understood in
the sense of distributions, i.e., for each φ ∈ C1

c ((0, 1)×X), we have∫ 1

0

∫
X
∂tφ(t, x) dµt dt+

∫ 1

0

∫
X
〈∇xφ(t, x), v(t, x)〉 dµt dt = 0. (2.12)

In other words, the Wasserstein distance is the minimal Dirichlet energy of absolutely
continuous curves in P(X) connecting the two measures. A rigorous description of this
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2.3 Functions of Bounded Variation

setting, including a definition of absolutely continuous curves in metric spaces, is given
in [AGS04; AGS08; San15] and in [Amb03] for p = 1.

2.3 Functions of Bounded Variation

In image processing, images that are piecewise smooth with sharp discontinuities (edges)
occur frequently. A popular function space for modeling this kind of data is the space
of functions of bounded variation. For an open set Ω ⊂ Rd, we say that a function u ∈
L1(Ω,Rn) is of bounded variation, if its distributional Jacobian exists as a finite vectorial
Radon measure µ ∈M(Ω,Rd,n) (see above). This means that, for each φ ∈ C1

c (Ω,Rd,n),
we have ∫

Ω
〈u,Div φ〉 dx =

∫
Ω
〈φ, dµ〉. (2.13)

For the set of these functions, we write BV (Ω,Rn) and we introduce the total variation
seminorm of u ∈ BV (Ω,Rn) by

TV(u) := sup

{∫
Ω
〈u,Div φ〉 dx : φ ∈ C1

c (Ω,Rd,n), ‖φ(x)‖F ≤ 1

}
. (2.14)

Note that TV(u) = ‖Du‖M if we denote the distributional derivative of u by Du ∈
M(Ω,Rd,n). The vector space BV (Ω,Rn) equipped with the norm ‖f‖BV := ‖f‖L1 +

TV(f) is a Banach space that is, remarkably, neither separable nor the completion of
C1(Ω,Rn) with respect to ‖ · ‖BV [AFP00, Chapter 3]. In fact, ‖f‖BV = ‖f‖W 1,1 ,
whenever f is in the Sobolev space W 1,1(Ω,Rn).

We illustrate the relationship with sharp discontinuities, as they occur in image process-
ing, with the following property: If U is compactly contained in Ω with C1-boundary ∂U
and u : Ω→ Rn is a cartoon-like jump function that takes only the values u+, u− ∈ Rn,

u(x) :=

u+, x ∈ U,

u−, x ∈ Ω \ U,
(2.15)

then the distributional derivative Du is concentrated on the (d − 1)-dimensional jump
set ∂U with TV(u) = Hd−1(∂U) · ‖u+ − u−‖. Hence, in this case, the total variation
seminorm is the length or area of the jump set times the jump size. Similar properties
hold for more general piecewise smooth functions and more general jump sets [AFP00,
Section 3.9].
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2.4 Manifolds

In this work, all manifolds are smooth Riemannian manifolds of a fixed finite dimension s.
We often denote manifolds by the symbolM. Usually, we can assume thatM is smoothly
embedded into RN by the Whitney embedding theorem [Lee13, Thm. 6.15]. Furthermore,
M is metrized by the geodesic distance dM(·, ·). The exponential map expp : TpM→M
maps from the tangent space TpM at a point p ∈ M to the point expp(v) ∈ M that is
reached by the geodesic curve with initial velocity v ∈ TpM in unit time. The exponential
map is invertible in a neighborhood U ⊂ TpM of 0 and its inverse map is the inverse
exponential or logarithmic map logp : expp(U) → TpM. Particular manifolds that will
appear in this work are the compact s-dimensional spheres Ss in Rs+1 and the compact
Lie group of n-dimensional special orthogonal matrices SO(n).

2.5 Convex Analysis

Convexity for functions on a topological vector space X that take values in the extended
real line R := [−∞,∞] is defined via convexity of their epigraphical sets. For a proper
function f : X → R, the convex conjugate or Legendre-Fenchel transformation

f∗(y) := sup
x∈X
{〈y, x〉+ f(x)} (2.16)

is a proper, lower semicontinuous and convex function on the topological dual space X∗.
For a reflexive space X, the biconjugate f∗∗ is the lower semicontinuous convex envelope
or convex hull of f . For a Hilbert space X, the proximal mapping of a proper, lower
semicontinuous and convex function f : X → R is

proxf (x̄) := argmin
x

{
1

2
‖x− x̄‖2X + f(x)

}
∈ X (2.17)

We give some examples of proximal mappings and convex conjugates that are used in
this work:

• For a lower-semicontinuous and proper convex function f , the proximal mapping
of f∗ satisfies, for each t > 0,

proxtf∗(x̄) = x̄− tproxt−1f (t−1x̄). (2.18)

• For C ⊂ X convex and closed, let f(x) = δC(x) be the indicator function of C
which is 0 on C and ∞ otherwise. Then f∗(y) = σC(y) := supy∈C〈y, x〉 is the
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2.6 Numerical Optimization

support function of C and proxf (x̄) = projC(x̄) is the orthogonal projection (with
respect to the Hilbert space geometry of X) onto C.

• If f(x) = ‖x‖X is a norm, then f∗(y) = δB∗(y) is the indicator function of the
closed unit norm ball B∗ in the dual norm ‖y‖X∗ := sup‖x‖X≤1〈y, x〉.

• If X = Rn, p ∈ [1,∞] and f(x) = ‖x‖p is the vector lp-norm, then f∗(y) = ‖y‖q
where 1/p+ 1/q = 1.

• For X = Rn, v ∈ X and f(x) = ‖x− v‖2/2, we have f∗(y) = ‖y‖2 + 〈v, y〉 and, for
t > 0, proxtf (x̄) = (x̄+ v)/(1 + t).

2.6 Numerical Optimization

For the numerical experiments in this work, we rely on the primal-dual splitting algo-
rithm known as (modified) Primal-Dual Hybrid Gradient (PDHG) [ZC08; EZC10] or
Chambolle-Pock [CP11] algorithm:

yk+1 = proxσkf∗(y
k + σkAx̄k),

xk+1 = proxτkg(x
k − τkA∗yk+1),

x̄k+1 = xk+1 + θ(xk+1 − xk).

It is applicable to convex models with objective functions F : RN → R of the form
F (x) = g(x) + f(Ax), where g and f are convex while A is linear. Extensions to
nonlinear operators A exist [Val14; CV17]. The algorithm converges to a saddle point
(x∗, y∗) of the minimax problem

min
x

max
y

g(x) + 〈Ax, y〉 − f∗(y),

so that x∗ is a minimizer of F (x) = g(x) + f(Ax) and y∗ maximizes the dual objective
G(y) = −g∗(A∗y)− f∗(y).

Throughout this work, we set θ = 1 and choose the step sizes τk and σk according to the
update scheme introduced in [GEB13; Gol+13; GLY15]. More precisely, we numerically
estimate the operator norm ‖A‖σ,∞ using power (von Mises) iterations applied to A∗A
[MP29; Ste73] and initialize τ0 = σ0 =

√
‖A‖σ,∞ and α0 = 1/2. In each iteration, we
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compute the primal and dual residuals

Rp = ‖(xk − xk+1)/τk −A∗(yk − yk+1)‖,

Rd = ‖(yk − yk+1)/σk − θA(xk − xk+1)‖,

and update the step sizes according to

τk+1 = τk/(1− αk),

σk+1 = σk · (1− αk),

αk+1 = ηαk,

if Rp/Rd > s∆, and according to

τk+1 = τk · (1− αk),

σk+1 = σk/(1− αk),

αk+1 = ηαk,

if Rp/Rd < s/∆. Here η = 0.95, ∆ = 3/2 and s is an appropriate scaling factor.

We stop the iteration as soon as the relative primal dual gap (g(yk) − f(xk))/g(yk)

drops below a given tolerance [BV04, Chapter 5.5]. Alternatively, if the evaluation of
the objectives f or g involves itself a minimization, we stop as soon as the residuals Rp
and Rd drop below a given tolerance to avoid large numerical errors in the evaluation of
f and g.

2.7 Discretization of Measure-Valued Functions

At the heart of all models discussed in this work are measure-valued functions. When
it comes to the numerical implementation of these models, a reasonable discretization of
measure-valued functions is crucial. Since we will be concerned with measures on subsets
of Euclidean space or of Riemannian manifolds, we formulate our discretization scheme
for Riemannian manifolds, which includes Euclidean space.

Furthermore, we formulate the discretization for submanifolds of RN , which is no
restriction by the Whitney embedding theorem [Lee13, Thm. 6.15], and employ the
notation from surface finite element methods [DE13]. For an s-dimensional submanifold
M of RN and Ω ⊂ Rd open and bounded, differentiable functions u : Ω→M are regarded
as a subset of differentiable functions with values in RN . For such functions, a Jacobian
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2.7 Discretization of Measure-Valued Functions

Figure 2.1: Triangulated approximations of the Moebius strip (left) and the two-
dimensional sphere (right) as surfaces embedded into R3.

∇u(x) ∈ Rd,N in the Euclidean sense exists that can be identified with the push-forward
of the tangent space TxΩ to Tu(x)M, i.e., for each x ∈ Ω and ξ ∈ Rd = TxΩ, we have

(∇u(x))Tξ ∈ Tu(x)M⊂ Tu(x)RN . (2.19)

On the other hand, for differentiable maps p : M → Rd, there exists an extension of p
to a neighborhood of M ⊂ RN that is constant in normal directions [BC92, p. 656],
and we denote by ∇p(z) ∈ RN,d the Jacobian of this extension evaluated at z ∈ M.
Being constant in normal directions means that (∇p(z))Tζ = 0 whenever ζ ∈ NzM, the
orthogonal complement of TzM in RN . This property ensures that the value of ∇p(z)
does not depend on the choice of extension.

The manifoldM⊂ RN is approximated by a triangulated topological manifoldMh ⊂
RN in the sense that there is some homeomorphism ι : Mh →M (Fig. 2.1 and 2.2). The
following discretization does not depend on the choice of homeomorphism ι. By Th, we
denote the set of simplices that make upMh:⋃

T∈Th

T =Mh. (2.20)

For T, T̃ ∈ Th, either T ∩ T̃ = ∅ or T ∩ T̃ is an (s − k)-dimensional face for k ∈
{1, . . . , s}. Each simplex T ∈ Th spans an s-dimensional linear subspace of RN and
there is an orthogonal basis representation PT ∈ Rs,N of vectors in RN to that subspace.
Furthermore, we enumerate the vertices of the triangulation as Z1, . . . , ZL ∈M∩Mh.
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z

ι(z)

Figure 2.2: Each simplex T in a triangulation (black wireframe plot) is in homeomorphic
correspondence to a piece ι(T ) of the original manifold (blue) through the
map ι : Mh →M.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.3: The first-order finite element space Sh is spanned by a nodal basis χ1, . . . , χL
which is uniquely determined by the property χk(Z

l) = 1 if k = l and
χk(Z

l) = 0 otherwise. The illustration shows a triangulation of the Moe-
bius strip with a color plot of a nodal basis function.
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2.7 Discretization of Measure-Valued Functions

For the numerics, we assume the first-order finite element space

Sh := {φh ∈ C(Mh) : φh|T is affine linear for each T ∈ Th}. (2.21)

The functions in Sh are piecewise differentiable onMh, and we define the surface gradient
∇Tφh ∈ RN of φh ∈ Sh by the gradient of the linear affine extension of φh|T to RN .
However, most of the time, we will consider the projected surface gradient PT∇Tφh ∈ Rs

where PT ∈ Rs,N is the orthogonal basis representation of vectors in RN in the subspace
spanned by the simplex T ∈ Th. If L is the number of vertices in the triangulation ofMh,
then Sh is a linear space of dimension L with nodal basis χ1, . . . , χL which is uniquely
determined by the property χk(Z l) = 1 if k = l and χk(Z l) = 0 otherwise (Fig. 2.3).
The dual space of Sh, which we denote by Mh(Mh), is a space of signed measures.

We identify Mh(Mh) = RL via dual pairing with the nodal basis χ1, . . . , χL, i.e., to
each µh ∈Mh(Mh) we associate the vector (〈µh, χ1〉, . . . , 〈µh, χL〉). We then replace the
space P(M) of probability measures overM by the convex subset

Ph(Mh) =

{
µh ∈Mh(Mh) : µh ≥ 0,

L∑
k=1

〈µh, χk〉 = 1

}
. (2.22)

Finally, for the fully discrete setting, the d-dimensional image domain Ω, d = 2, 3 of
a measure-valued function u : Ω → P(M) is replaced by a Cartesian rectangular grid
using N points X1, . . . , XN ∈ Ω. Differentiation in Ω is performed on a staggered
grid with homogeneous Neumann boundary conditions such that the dual operator to
the differential operator ∇x is the negative divergence with vanishing boundary values.
We choose homogeneous Neumann boundary conditions as an alternative to Dirichlet
boundary conditions that require to fix values at the image boundary that are often not
available, in particular for manifold-valued images.
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3 Measure-Valued Image Processing
with Applications to Q-Ball Imaging

In this chapter, we are concerned with variational problems in which the unknown func-
tion u : Ω → P(S2) maps from an open and bounded set Ω ⊆ R3, the image domain,
into the set of Borel probability measures P(S2) on the two-dimensional unit sphere S2

as the set of spatial directions or, more generally, on some metric space: each value
ux := u(x) ∈ P(S2) is a Borel probability measure on S2, and can be viewed as a
distribution of directions in R3.
Such measures µ ∈ P(S2), in particular when represented using density functions, are

known as orientation distribution functions (ODFs). We will keep to the term due to its
popularity in the literature, although we will be mostly concerned with measures instead
of functions on S2. Accordingly, an ODF-valued image is a function u : Ω → P(S2).
ODF-valued images appear in reconstruction schemes for diffusion-weighted magnetic
resonance imaging (MRI), such as Q-ball imaging (QBI) [Tuc04] and constrained spher-
ical deconvolution (CSD) [Tou+04].

3.1 Diffusion-Weighted MRI and Q-Ball Imaging

In diffusion-weighted (DW) magnetic resonance imaging (MRI), the diffusivity of water in
biological tissues is measured non-invasively. In medical applications where tissues exhibit
fibrous microstructures, such as muscle fibers or axons in cerebral white matter, the
diffusivity contains valuable information about the fiber architecture [Mai+17; Sch+19].
For DW measurements, several full 3D MRI volumes are acquired with varying magnetic
field gradients that are able to sense diffusion [Chi+15].
Under the assumption of anisotropic Gaussian diffusion, positive definite matrices (ten-

sors) can be used to describe the diffusion in each voxel. This model, known as diffusion
tensor imaging (DTI) [BML94], requires few measurements while giving a good estimate
of the main diffusion direction in the case of well-aligned fiber directions. However, cross-
ing and branching of fibers at a scale smaller than the voxel size, also called intra-voxel
orientational heterogeneity (IVOH), often occurs in human cerebral white matter due to
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3 Measure-Valued Image Processing with Applications to Q-Ball Imaging

Figure 3.1: Top left: 2-D fiber phantom of two crossing fiber bundles. Bottom left:
Peak directions on a 15×15 grid, derived from the phantom and used for the
generation of synthetic HARDI data. Center: The diffusion tensor (DTI)
reconstruction approximates diffusion directions in a parametric way using
tensors, visualized as ellipsoids. Right: The QBI-CSA ODF reconstruction
represents fiber orientation using probability measures at each point, which
allows to accurately recover fiber crossings in the center region.

the relatively large (millimeter-scale) voxel size of DW-MRI data. Therefore, DTI data
is insufficient for accurate fiber tract mapping in regions with complex fiber crossings
(Fig. 3.1).

By increasing the number of applied magnetic field gradients, more accurate restora-
tion of IVOH is possible with more refined approaches that are based on high angular
resolution diffusion imaging (HARDI) [Tuc+02] measurements. Reconstruction schemes
for HARDI data yield orientation distribution functions (ODFs) instead of tensors. In
Q-ball imaging (QBI) [Tuc04], an ODF is interpreted to be the marginal probability of
diffusion in a given direction [ALS09]. In contrast, ODFs in constrained spherical decon-
volution (CSD) approaches [Tou+04], also denoted fiber ODFs, estimate the density of
fibers per direction for each voxel of the volume.

In all of these approaches, ODFs are modeled as antipodally symmetric functions or
measures on the sphere, which could be modeled just as well on the projective space,
i.e., a sphere where antipodal points are identified. Novel approaches [Del+07; EOK11;
RKK12; KÖU18] allow for asymmetric ODFs to account for intra-voxel geometry. There-
fore, we keep to modeling ODFs on a sphere even though all results presented in this
work could be easily adapted to models on the projective space.
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3.1 Diffusion-Weighted MRI and Q-Ball Imaging

3.1.1 Variational Models for Orientation Distributions

As a common denominator, in the above applications, reconstructing orientation dis-
tributions rather than a single orientation at each point allows to recover directional
information of structures, such as vessels or nerve fibers, that may overlap or have cross-
ings: For a given set of directions A ⊂ S2 and a measure-valued function u : Ω→ P(S2),
the integral

∫
A dux, ux := u(x), describes the fraction of fibers crossing the point x ∈ Ω

that are oriented in any of the given directions v ∈ A.

However, modeling ODFs as probability measures in a non-parametric way is surpris-
ingly difficult. We propose a new formulation of the classical total variation seminorm
(TV) [AFP00; Cha+10] for nonparametric QBI that allows to formulate the variational
restoration model

inf
u:Ω→P(S2)

∫
Ω
ρ(x, ux) dx+ λTVW1(u), (3.1)

with various pointwise data fidelity terms

ρ : Ω× P(S2)→ [0,∞). (3.2)

This involves in particular a non-parametric concept of total variation for ODF-valued
functions that is mathematically robust and computationally feasible: The idea is to
build upon the TV-formulations developed in the context of functional lifting [Lel+13b]

sup

{∫
Ω
−divx p(x, z)ux(dz) dx : p ∈ C1

c (Ω× S2;R3), ‖∇zp‖∞ ≤ 1

}
. (3.3)

One distinguishing feature of this approach is that it is applicable to arbitrary Borel
probability measures. In contrast, existing mathematical frameworks for QBI and CSD
generally follow the standard literature on the physics of MRI [Cal91, p. 330] in assuming
ODFs to be given by a probability density function in L1(S2), often with an explicit
parametrization. As an example of one such approach, we point to the fiber continuity
regularizer [RS13] which is defined for ODF-valued functions u where, for each x ∈ Ω,
the measure ux can be represented by a probability density function φ(x, ·) on S2:

RFC(u) :=

∫
Ω

∫
S2

(z · ∇xφ(x, z))2 dz dx. (3.4)

A rigorous generalization of this functional to measure-valued functions for arbitrary
Borel probability measures is not straightforward, as it requires a notion of spatial gra-
dients, similar to ∇xφ, for measures that are not absolutely continuous with respect to
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Figure 3.2: Horizontal axis: Angle of main diffusion direction relative to the reference
diffusion profile in the bottom left corner. Vertical axis: Distances of the
ODFs in the bottom row to the reference ODF in the bottom left corner (L1-
distances in the top row andW 1-distance in the second row). L1-distances do
not reflect the linear change in direction, whereas the W 1-distance exhibits
an almost-linear profile. Lp-distances for other values of p, such as p = 2,
show a behavior similar to L1-distances.

the Lebesgue measure.

While practical, the probability density-based approach raises some modeling ques-
tions, which lead to deeper mathematical issues. In particular, comparing probability
densities using the popular Lp-norm-based data fidelity terms – in particular the squared
L2-norm – does not incorporate the structure naturally carried by probability densities,
such as nonnegativity and unit total mass, and ignores metric information about S2.
To illustrate the last point, assume that two probability measures are given in terms of
density functions f, g ∈ Lp(S2) satisfying supp(f) ∩ supp(g) = ∅, i.e., having disjoint
support on S2. Then ‖f − g‖Lp = ‖f‖Lp + ‖g‖Lp , irrespective of the size and relative
position of the supporting sets of f and g on S2.

One would prefer to use statistical metrics, such as optimal transport metrics (see
Sect. 2.2), that properly take into account distances on the underlying set S2 (Fig. 3.2).
However, replacing the Lp-norm with such a metric in density-based variational imaging
formulations will generally lead to ill-posed minimization problems, as the minimum
might not be attained in Lp(S2), but possibly in P(S2) instead.

Therefore, it is interesting to investigate whether one can derive a mathematical basis
for variational image processing with ODF-valued functions without making assumptions
about the parametrization of ODFs nor assuming ODFs to be given by density functions.

3.1.2 Contribution

We derive a rigorous mathematical framework for a generalization of the total variation
seminorm to Banach space-valued and, as a special case, ODF-valued functions on a
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3.1 Diffusion-Weighted MRI and Q-Ball Imaging

finite-dimensional Euclidean domain Ω ⊂ Rd. Well-definedness of the TV-seminorm
and of variational problems of the form (3.1) is established by carefully considering
measurability of the functions involved. Furthermore, a functional-analytic explanation
for the dual structure that is inherent in (3.3) is given. Building on this framework, we
show existence of minimizers and discuss properties of TV, such as rotational invariance
and the behavior on cartoon-like jump functions.
We demonstrate that our framework can be numerically implemented as a primal-dual

saddle point problem involving only convex functions. Applications to synthetic and
real-world data sets show significant reduction of noise as well as qualitatively convincing
results when combined with existing ODF-based imaging approaches, including Q-ball
and CSD.

3.1.3 Related Work

The high angular resolution of HARDI results in a large amount of noise compared with
DTI. Moreover, most QBI and CSD models reconstruct the ODFs in each voxel sepa-
rately. Consequently, HARDI data is a particularly interesting target for post-processing
in terms of denoising and regularization in the sense of contextual processing. Some
techniques apply a total variation or diffusive regularization to the HARDI signal be-
fore ODF reconstruction [McG+09; KTV10; DF11; Bec+12] and others regularize in a
post-processing step [Del+07; Dui+13; WDS16].

Variational Regularization of DW-MRI Data

A Mumford-Shah model for edge-preserving restoration of Q-ball data was introduced in
[WDS16]. There, jumps were penalized using the Fisher-Rao metric, which depends on a
parametrization of ODFs as discrete probability distribution functions on sampling points
of the sphere. Furthermore, the Fisher-Rao metric does not take the metric structure
of S2 into consideration and is not amenable to biological interpretations [Ncu11]. Our
formulation avoids any parametrization-induced bias.
The recent TV-based regularization scheme [OCW14] for the reconstruction of Q-

ball images from HARDI data relies on the underlying parametrization of ODFs by
spherical harmonics basis functions. Similarly, DTI-based models, such as the second-
order model for regularizing general manifold-valued data [Bač+16], make use of an
explicit approximation using positive semidefinite matrices, which the proposed model
avoids.
The application of spatial regularization to CSD reconstruction is known to signifi-
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3 Measure-Valued Image Processing with Applications to Q-Ball Imaging

cantly enhance the results [Dad+14]. However, total variation [Can+15] and other reg-
ularizers [HR15] are based on a representation of ODFs by square-integrable probability
density functions instead of the mathematically more general probability measures that
we base our method on.

Regularization of DW-MRI by Linear Diffusion

In another approach, the orientational part of ODF-valued images is included in the
image domain so that images are identified with functions U : R3×S2 → R that allow for
contextual processing via PDE-based models on the space of positions and orientation
or, more precisely, on the group SE(3) of 3D rigid motions. This technique comes from
the theory of stochastic processes on the coupled space R3 × S2. In this context, it has
been applied to the problems of contour completion [MS13] and contour enhancement
[DF11; Dui+13]. Its practical relevance in clinical applications has been demonstrated
[Prč+15].

This approach has been used to enhance the quality of CSD as a prior in a variational
formulation [RS13] or in a post-processing step [Por+15] that also includes additional
angular regularization. Due to the linearity of the underlying linear PDE, convolution-
based explicit solution formulas are available [DF11; PD17]. Implemented efficiently
[Mee+16b; Mee+16a], they outperform our more computationally demanding model,
which is not tied to the specific application of DW-MRI, but allows arbitrary metric
spaces. Furthermore, nonlinear Perona and Malik extensions to this technique have been
studied [Cre+13] that do not allow for explicit solutions.

As an important distinction, in these approaches, spatial location and orientation are
coupled in the regularization. Since our model starts from the more general setting of
measure-valued functions on an arbitrary metric space, rather than S2 only, it does not
currently realize an equivalent coupling. An extension to anisotropic total variation for
measure-valued functions might close this gap in the future.

In contrast to these diffusion-based methods, our approach is able to preserve edges by
design, even though the coupling of positions and orientations is able to compensate for
this shortcoming at least in part since edges in DW-MRI are, most of the time, oriented
in parallel to the direction of diffusion. Furthermore, the diffusion-based methods are
formulated for square-integrable density functions, excluding point masses. Our method
avoids this limitation by operating on mathematically more general probability measures.
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3.2 A Mathematical Framework for Measure-Valued Functions

Other Related Theoretical Work

Variants of the Kantorovich-Rubinstein formulation of the Wasserstein distance that
appears in our framework have been applied in [Lel+14; BL15] and, more recently, in
[FLS16; FLS17] to the problems of real-, RGB- and manifold-valued image denoising.

Total variation regularization for functions on the space of positions and orientations
was recently introduced in [CP19] based on [CMC17]. Similarly, the work and toolbox in
[SR17] is concerned with the implementation of so-called orientation fields in 3D image
processing.

A Dirichlet energy for measure-valued functions based on Wasserstein metrics was
recently developed in the context of harmonic mappings in [Lav19a], which can be inter-
preted as a diffusive (L2) version of our proposed (L1) regularizer.

In the literature, Banach space-valued functions of bounded variation (BV) mostly
appear as a special case of metric space-valued BV-functions as introduced in [Amb90].
Apart from that, the case of one-dimensional domains attracts some attention [DD11],
and the case of Banach space-valued BV-functions defined on a metric space is studied
in [Mir03]. In contrast to these approaches, we give a definition of Banach space-valued
BV-functions that live on a finite-dimensional Euclidean domain. In analogy with the
real-valued case, we formulate the TV seminorm by duality, inspired by the functional-
analytic framework from the theory of lifting [II69] as used in the context of Young
measures [Bal89].

Due to the functional-analytic approach, our model does not depend on the specific
parametrization of the ODFs and can be combined with the QBI and CSD frameworks
for ODF reconstruction from HARDI data, either in a post-processing step or during re-
construction. Combined with suitable data fidelity terms such as least-squares or Wasser-
stein distances, it allows for an efficient implementation using state-of-the-art primal-dual
methods.

3.2 A Mathematical Framework for Measure-Valued
Functions

Our work is motivated by the study of ODF-valued functions u : Ω→ P(S2) for Ω ⊂ R3

open and bounded. However, from an abstract viewpoint, the unit sphere S2 ⊂ R3

equipped with the metric induced by the Riemannian manifold structure [Lee13] – i.e.,
the distance between two points is the arc length of the great circle segment through the
two points – is simply a particular example of a compact metric space.
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3 Measure-Valued Image Processing with Applications to Q-Ball Imaging

As it turns out, most of the analysis only relies on this property. Therefore, in the
following we generalize the setting of ODF-valued functions to the study of functions
taking values in the space of Borel probability measures on an arbitrary compact metric
space (instead of S2).
More precisely, throughout this section, let

1. Ω ⊂ Rd be an open and bounded set, and let

2. (X, d) be a compact metric space, e.g., a compact Riemannian manifold equipped
with the commonly-used metric induced by the geodesic distance, such as X = S2.

Not all of the statements below require boundedness of Ω and compactness of X. How-
ever, as we are ultimately interested in the case ofX = S2 and rectangular image domains,
we impose these restrictions. Apart from DW-MRI, one natural application of this gen-
eralized setting are two-dimensional ODFs where d = 2 and X = S1 which is similar to
the setting introduced in [CP19] for the edge enhancement of color or grayscale images.
The goal of this section is a mathematically well-defined formulation of TV as given in

(3.3) that exhibits all the properties that the classical total variation seminorm is known
for: anisotropy (Prop. 3.5), preservation of edges and compatibility with piecewise-
constant signals (Prop. 3.2). Furthermore, for variational problems as in (3.1), we
give criteria for the existence of minimizers (Thm. 3.10) and discuss (non-)uniqueness
(Prop. 3.11).
A well-defined formulation of TV as given in (3.3) requires a careful inspection of

topological and functional analytic concepts from optimal transport and general mea-
sure theory. We present the theoretical background for a rigorous understanding of
the notation and definitions underlying the notion of TV for Banach-space valued and
measure-valued functions.

3.2.1 Functions of Bounded Variation

We first give a definition of the total variation seminorm TV for Banach space-valued
functions, i.e., functions that take values in a Banach space, which a definition of TV for
measure-valued functions will turn out to be a special case of.

Measurability of Banach Space-Valued Functions

Let (V, ‖ · ‖V ) be a real Banach space with (topological) dual space V ∗, i.e., V ∗ is the set
of bounded linear operators from V to R. The dual pairing is denoted by 〈p, v〉 := p(v)

whenever p ∈ V ∗ and v ∈ V .
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3.2 A Mathematical Framework for Measure-Valued Functions

We say that u : Ω→ V is weakly measurable [DU77, p. 41] if x 7→ 〈p, u(x)〉 is measurable
for each p ∈ V ∗ and say that u ∈ L∞w (Ω, V ) if u is weakly measurable and essentially
bounded in V , i.e.,

‖u‖∞,V := ess supx∈Ω ‖u(x)‖V <∞. (3.5)

Note that the essential supremum is well-defined even for non-measurable functions as
long as the measure is complete. In our case, we assume the Lebesgue measure on Ω

which is complete.

The following Lemma ensures that the integrand in (3.7) is measurable.

Lemma 3.1. Assume that u : Ω → V is weakly measurable and p : Ω → V ∗ is weakly*
continuous, i.e., for each v ∈ V , the map x 7→ 〈p(x), v〉 is continuous. Then the map
x 7→ 〈p(x), u(x)〉 is measurable.

Proof. Define f : Ω× Ω→ R via

f(x, ξ) := 〈p(x), u(ξ)〉. (3.6)

Then f is continuous in the first and measurable in the second variable. In the calculus
of variations, functions with this property are called Carathéodory functions and have
the property that x 7→ f(x, g(x)) is measurable whenever g : Ω→ Ω is measurable, which
is proven by approximation of g as the pointwise limit of simple functions [Dac08, Prop.
3.7]. In our case we can simply set g(x) := x, which is measurable, and the assertion
follows.

Banach Space-Valued Functions of Bounded Variation

For weakly measurable functions u : Ω → V with values in a Banach space V , that we
will replace by a space of measures later on, we define,

TVV (u) := sup

{∫
Ω
〈− div p(x), u(x)〉 dx : p ∈ C1

c (Ω, (V ∗)d),

∀x ∈ Ω: ‖p(x)‖(V ∗)d ≤ 1

}
.

(3.7)

By V ∗, we denote the (topological) dual space of V , i.e., V ∗ is the set of bounded linear
operators from V to R. The criterion p ∈ C1

c (Ω, (V ∗)d) means that p is a compactly
supported function on Ω ⊂ Rd with values in the Banach space (V ∗)d and the directional
derivatives ∂ip : Ω → (V ∗)d, 1 ≤ i ≤ d, (in Euclidean coordinates) lie in Cc(Ω, (V

∗)d).
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3 Measure-Valued Image Processing with Applications to Q-Ball Imaging

We write

div p(x) :=
d∑
i=1

∂ipi(x). (3.8)

Lemma 3.1 ensures that the integrals in (3.7) are well-defined. There is one subtlety
about formulation (3.7) of the total variation: The choice of norm for the product space
(V ∗)d affects the properties of our total variation seminorm.

Properties of TV for Banach-Space Valued Functions

In this section, we show that the classical properties of the classical total variation semi-
norm continue to hold for definition (3.7) in the case of Banach space-valued functions.

Cartoon functions A reasonable demand is that the new formulation should behave
similarly to the classical total variation on cartoon-like jump functions u : Ω→ V ,

u(x) :=

u+, x ∈ U,

u−, x ∈ Ω \ U,
(3.9)

for some fixed measurable set U ⊂ Ω with smooth boundary ∂U , and u+, u− ∈ V . The
classical total variation assigns to such functions a penalty of

Hd−1(∂U) · ‖u+ − u−‖V , (3.10)

where the Hausdorff measure Hd−1(∂U) describes the length or area of the jump set.
The following proposition, which generalizes [VL17, Prop. 1], provides conditions on the
norm ‖ · ‖(V ∗)d which guarantee this behavior.

Proposition 3.2. Assume that U is compactly contained in Ω with C1-boundary ∂U .
Let u+, u− ∈ V and let u : Ω → V be defined as in (3.9). If the norm ‖ · ‖(V ∗)d in (3.7)
satisfies ∣∣∣∑d

i=1 xi〈pi, v〉
∣∣∣ ≤ ‖x‖2‖p‖(V ∗)d‖v‖V , (3.11)

‖(x1q, . . . , xdq)‖(V ∗)d ≤ ‖x‖2‖q‖V ∗ , (3.12)

whenever q ∈ V ∗, p ∈ (V ∗)d, v ∈ V , and x ∈ Rd, then

TVV (u) = Hd−1(∂U) · ‖u+ − u−‖V . (3.13)

54



3.2 A Mathematical Framework for Measure-Valued Functions

Proof. Let p : Ω → (V ∗)d satisfy the constraints in (3.7) and denote by ν the outer
unit normal of ∂U . The set Ω is bounded, p and its derivatives are continuous and
u ∈ L∞w (Ω, V ) since the range of u is finite and U , Ω are measurable. Therefore all of
the following integrals converge absolutely. Due to linearity of the divergence,

〈div p(x), u±〉 = div(〈p(·), u±〉), (3.14)

〈p(x), u±〉 := (〈p1(x), u±〉, . . . , 〈pd(x), u±〉) ∈ Rd. (3.15)

Using this property and applying Gauss’ theorem, we compute∫
Ω
〈− div p(x), u(x)〉 dx

= −
∫

Ω\U
div(〈p(x), u−〉) dx−

∫
U

div(〈p(x), u+〉) dx

Gauss
=

∫
∂U

d∑
i=1

〈νi(x)pi(x), u+ − u−〉Hd−1(dx)

≤ Hd−1(∂U) · ‖u+ − u−‖V .

(3.16)

For the last inequality, we used our first assumption on ‖ · ‖(V ∗)d together with the norm
constraint for p in (3.7). Taking the supremum over p as in (3.7), we arrive at

TVV (u) ≤ Hd−1(∂U) · ‖u+ − u−‖V . (3.17)

For the reverse inequality, let p̃ ∈ V ∗ be arbitrary with the property ‖p̃‖V ∗ ≤ 1 and
φ ∈ C1

c (Ω,Rd) satisfying ‖φ(x)‖2 ≤ 1. Now, by (3.12), the function

p(x) := (φ1(x)p̃, . . . , φd(x)p̃) ∈ (V ∗)d (3.18)

has the properties required in (3.7). Hence,

TVV (u) ≥
∫

Ω
〈−div p(x), u(x)〉 dx (3.19)

= −
∫

Ω
div φ(x) dx · 〈p̃, u+ − u−〉. (3.20)

Taking the supremum over all φ ∈ C1
c (Ω,Rd) satisfying ‖φ(x)‖2 ≤ 1, we obtain

TVV (u) ≥ Per(U,Ω) · 〈p̃, u+ − u−〉, (3.21)
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where Per(U,Ω) is the perimeter of U in Ω. In the theory of Caccioppoli sets (or sets
of finite perimeter), the perimeter is known to agree with Hd−1(∂U) for sets with C1-
boundary [AFP00, p. 143].
Now, taking the supremum over all p̃ ∈ V ∗ with ‖p̃‖V ∗ ≤ 1 and using the fact that the

canonical embedding of a Banach space into its bidual is isometric, i.e.,

‖u‖V = sup
‖p‖V ∗≤1

〈p, u〉, (3.22)

we arrive at the desired reverse inequality, which concludes the proof.

The following proposition gives some examples for norms that satisfy or fail to satisfy
the conditions (3.11) and (3.12) in Prop. 3.2.

Proposition 3.3. The following norms for p ∈ (V ∗)d satisfy (3.11) and (3.12) for every
normed space V :

1. For s = 2:

‖p‖(V ∗)d,s :=

(
d∑
i=1

‖pi‖sV ∗

)1/s

. (3.23)

2. Writing p(v) := (〈p1, v〉, . . . , 〈pd, v〉) ∈ Rd, v ∈ V ,

‖p‖L(V,Rd) := sup
‖v‖V ≤1

‖p(v)‖2. (3.24)

On the other hand, for each 1 ≤ s < 2 and s > 2, there is a normed space V such that
at least one of the properties (3.11), (3.12) is not satisfied by the corresponding product
norm (3.23).

Remark 3.4. In the finite-dimensional Euclidean case V = Rn with norm ‖ · ‖2, we
have (V ∗)d = Rd,n, thus p is matrix-valued and ‖ · ‖L(V,Rd) agrees with the spectral norm
‖ · ‖σ,∞. The norm defined in (3.23) is the Frobenius norm ‖ · ‖F for s = 2.

Prop. 3.3. By Cauchy-Schwarz,∣∣∣∑d
i=1xi〈pi, v〉

∣∣∣ ≤ ‖x‖2 (∑d
i=1 |〈pi, v〉|

2
)1/2

(3.25)

≤ ‖x‖2
(∑d

i=1‖pi‖2V ∗‖v‖2V
)1/2

(3.26)

≤ ‖x‖2‖v‖V
(∑d

i=1‖pi‖2V ∗
)1/2

, (3.27)

56



3.2 A Mathematical Framework for Measure-Valued Functions

whenever p ∈ (V ∗)d, v ∈ V , and x ∈ Rd. Similarly, for each q ∈ V ∗,(∑d
i=1‖xiq‖2V ∗

)1/2
= ‖x‖2‖q‖V ∗ . (3.28)

Hence, for s = 2, the properties (3.11) and (3.12) are satisfied by the product norm
(3.23).

For the operator norm (3.24), consider∣∣∣∑d
i=1xi〈pi, v〉

∣∣∣ ≤ ‖x‖2 (∑d
i=1 |〈pi, v〉|

2
)1/2

(3.29)

= ‖x‖2‖p(v)‖2 (3.30)

≤ ‖x‖2‖p‖L(V,Rd)‖v‖V , (3.31)

which is property (3.11). On the other hand, (3.12) follows from

‖(x1q, . . . , xdq)‖L(V,Rd) = sup
‖v‖V ≤1

(∑d
i=1|xiq(v)|2

)1/2
(3.32)

= ‖x‖2 sup
‖v‖V ≤1

|q(v)| (3.33)

= ‖x‖2‖q‖V ∗ . (3.34)

Now, for s > 2, property (3.11) fails for d = 2, V = V ∗ = R, p = x = (1, 1) and v = 1

since ∣∣∣∣∣
d∑
i=1

xi〈pi, v〉

∣∣∣∣∣ = 2 > 21/2 · 21/s = ‖x‖2‖p‖(V ∗)d,s‖v‖V . (3.35)

For 1 ≤ s < 2, consider d = 2, V ∗ = R, q = 1 and x = (1, 1), then

‖(x1q, . . . , xdq)‖(V ∗)d,s = 21/s > 21/2 = ‖x‖2‖q‖V ∗ , (3.36)

which contradicts property (3.12).

The classical total variation has the property that the distributional derivative Du of
a function u : Ω → Rn of bounded variation is given by a vector measure, i.e., Du ∈
M(Ω,Rn). The cartoon-like jump function property (3.13) then follows from general
decomposition theorems for vector measures [AFP00, Section 3.9]. In case of Banach
space-valued functions u : Ω→ V , we generally expect the distributional derivative Du to
be a vector measure with values in the bidual space V ∗∗ by the well-known representation
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theorem [DU77, p. 182], and a decomposition theorem continues to hold for Banach space-
valued measures [DU77, p. 31]. In this chapter, our main application is the case where
V is a space of measures. In that case, V ∗∗ is not easily available and, therefore, we will
not go into the details about decomposition theorems, but leave an in-depth analysis of
Banach space-valued functions of bounded variation for future work.

Rotational invariance The cartoon-like jump function property (3.13) is inherently
rotationally invariant: we have TVV (u) = TVV (ũ) whenever ũ(x) := u(Rx) for some
R ∈ SO(d) and u as in (3.9), with the domain Ω rotated accordingly. The reason is that
the jump size is the same everywhere along the edge ∂U . More generally, we have the
following proposition:

Proposition 3.5. Assume that ‖ · ‖(V ∗)d satisfies the rotational invariance property

‖p‖(V ∗)d = ‖Rp‖(V ∗)d ∀p ∈ (V ∗)d, R ∈ SO(d), (3.37)

where Rp ∈ (V ∗)d is defined via

(Rp)i =
d∑
j=1

Rijpj ∈ V ∗. (3.38)

Then TVV is rotationally invariant, i.e., TVV (u) = TVV (ũ) whenever u ∈ L∞w (Ω, V )

and ũ(x) := u(Rx) for some R ∈ SO(d).

Prop. 3.5. Let R ∈ SO(d) and define

RTΩ := {RTx : x ∈ Ω}, (3.39)

p̃(y) := RTp(Ry). (3.40)

In (3.7), the norm constraint on p(x) is equivalent to the norm constraint on p̃(y) by
condition (3.37). Now, consider the integral transform∫

Ω
〈−div p(x), u(x)〉 dx =

∫
RTΩ
〈−div p(Ry), ũ(y)〉 dy (3.41)

=

∫
RTΩ
〈−div p̃(y), ũ(y)〉 dy. (3.42)
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where, using RTR = I,

div p̃(y) =
d∑
i=1

∂ip̃i(y) =
d∑
i=1

d∑
j=1

Rji∂i [pj(Ry)] (3.43)

=
d∑
i=1

d∑
j=1

d∑
k=1

RjiRki∂kpj(Ry) (3.44)

=
d∑
j=1

d∑
k=1

∂kpj(Ry)
d∑
i=1

RjiRki (3.45)

=
d∑
j=1

∂jpj(Ry) = div p(Ry), (3.46)

which implies TVV (u) = TVV (ũ).

For V = (Rn, ‖ · ‖2), property (3.37) in Prop. 3.5 is satisfied by the Frobenius norm as
well as the spectral norms on (V ∗)d = Rd,n. In general, the following proposition holds:

Proposition 3.6. For every normed space V , the rotational invariance property (3.37)
is satisfied by the operator norm (3.24). For each s ∈ [1,∞), there is a normed space
V such that the rotational invariance property (3.37) does not hold for the product norm
(3.23).

Proof. By definition of the operator norm and rotational invariance of the Euclidean
norm ‖ · ‖2,

‖Rp‖L(V,Rd) = sup
‖v‖V ≤1

‖Rp(v)‖2 (3.47)

= sup
‖v‖V ≤1

‖p(v)‖2 = ‖p‖L(V,Rd). (3.48)

For the product norms (3.23), without loss of generality, we consider the case d = 2,
V := (R2, ‖ · ‖1), p1 = (1, 0), p2 = (0, 1) and

R :=

(
1/2 −

√
3/2√

3/2 1/2

)
∈ SO(2). (3.49)

Then V ∗ := (R2, ‖ · ‖∞) and

‖p‖(V ∗)d,s =
(∑2

i=1‖pi‖s∞
)1/s

= 21/s, (3.50)
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whereas
(Rp)1 = (1/2,−

√
3/2), (Rp)2 = (

√
3/2, 1/2), (3.51)

‖Rp‖(V ∗)d,s =
(∑2

i=1(
√

3/2)s
)1/s

= 21/s ·
√

3/2 6= 21/s = ‖p‖(V ∗)d,s, (3.52)

for each 1 ≤ s <∞.

Measure-Valued Functions of Bounded Variation

Recall that M(X) and P(X) ⊂ M(X) denote the sets of signed Radon measures and
Borel probability measures supported on X, and M(X) can be identified with the (topo-
logical) dual space of C0(X) = C(X) (see Sect. 2.1). Hence, P(X) is a bounded subset
of a dual space.
Furthermore, by Sect. 2.2, after subtracting a point mass at x0, the set P(X)− δx0 is

a subset of the Banach space KR(X), the predual (in the sense that its dual space can
be identified with a “meaningful” function space) of Lip0(X).
Consequently, the embeddings

P(X) ↪→ (KR(X), ‖ · ‖KR), (3.53)

P(X) ↪→ (M(X), ‖ · ‖M) (3.54)

define two different topologies on P(X). The first embedding space (M(X), ‖ · ‖M)

is isometrically isomorphic to the dual of C(X) while the second embedding space
(KR(X), ‖ · ‖KR) is a metrization of the weak*-topology on the bounded subset P(X)

of the dual space M(X) = C(X)∗. Importantly, while (P(X), ‖ · ‖M) is not separable
unless X is discrete, (P(X), ‖ · ‖KR) is in fact compact, in particular complete and sep-
arable [Vil09, Thm. 6.18] which is crucial in our result on the existence of minimizers
(Thm. 3.10).
Now, for u : Ω → P(X), our proposed definition (3.7) of TV for Banach space-valued

functions is

TVKR(u) := sup

{∫
Ω
〈−div p(x), u(x)〉 dx : p ∈ C1

c (Ω, [Lip0(X)]d),

‖p(x)‖[Lip0(X)]d ≤ 1

}
.

(3.55)

It can be regarded as a variant of the TV-formulation (3.3) introduced in the context of
functional lifting [Lel+13b].
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We give some considerations about the choice of product norm ‖ · ‖[Lip0(X)]d : For
p ∈ [Lip0(X)]d, the most natural choice is

[p]Lip(X,Rd) := sup
z 6=z′

‖p(z)− p(z′)‖22
d(z, z′)

, (3.56)

which is automatically rotationally invariant. On the other hand, the product norm
defined in (3.23) (with s = 2), namely

√∑d
i=1[pi]2Lip, is not rotationally invariant for

general metric spaces X. However, in the special case X ⊂ (Rn, ‖·‖2) and p ∈ C1(X,Rd),
the norms (3.56) and (3.23) coincide with supz∈X ‖∇p(z)‖σ,∞ (spectral norm of the
Jacobian) and supz∈X ‖∇p(z)‖F (Frobenius norm of the Jacobian) respectively, both
satisfying rotational invariance.

3.2.2 TVKR as a Regularizer in Variational Problems

In this section, we will prove that, in the case of measure-valued functions u : Ω→ P(X),
the functional TVKR exhibits a regularizing property, i.e., it establishes existence of
minimizers.
For λ ∈ [0,∞) and ρ : Ω× P(X)→ [0,∞) fixed, we consider the functional

Tρ,λ(u) :=

∫
Ω
ρ(x, u(x)) dx+ λTVKR(u). (3.57)

for u : Ω → P(X). In order for Tρ,λ to be well-defined, the mapping x 7→ ρ(x, u(x))

needs to be measurable. In the following Lemma, we show that this is the case under
mild conditions on ρ.

Lemma 3.7. Let ρ : Ω×P(X)→ [0,∞) be a globally bounded function that is measurable
in the first and convex in the second variable, i.e., x 7→ ρ(x, µ) is measurable for each
µ ∈ P(X), and µ 7→ ρ(x, µ) is convex for each x ∈ Ω. Then the map x → ρ(x, u(x)) is
measurable for every u ∈ L∞w (Ω,P(X)).

Remark 3.8. As will become clear from the proof, the convexity condition can be
replaced by the assumption that ρ be continuous with respect to (P(X),W1) in the
second variable. However, in order to ensure weak* lower semi-continuity of Tρ,λ, we
will require convexity of ρ in the existence proof (Thm. 3.10) anyway. Therefore, for
simplicity we also stick to the (stronger) convexity condition in Lemma 3.7.

Remark 3.9. One example of a function satisfying the assumptions in Lemma 3.7 is
given by

ρ(x, µ) := W1(f(x), µ), x ∈ Ω, µ ∈ P(S2). (3.58)
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Indeed, boundedness follows from the boundedness of the Wasserstein metric in the case
of an underlying bounded metric spaces (here S2). Convexity in the second argument
follows from the fact that the Wasserstein metric is induced by a norm (2.10).

Proof of Lemma 3.7. The metric space (P(X),W1) is compact, hence separable. By
Pettis’ measurability theorem [Bou04, Chapter VI, §1, No. 5, Prop. 12], weak and
strong measurability coincide for separably-valued functions so that u is actually strongly
measurable as a function with values in (P(X),W1). Note, however, that this does not
imply strong measurability with respect to the norm topology of (M(X), ‖·‖M) in general!
As bounded convex functions are locally Lipschitz continuous [Cla13, Thm. 2.34], ρ

is continuous in the second variable with respect to W1. As in the proof of Lemma 3.1,
we now note that ρ is a Carathéodory function, for which compositions with measurable
functions such as x 7→ ρ(x, u(x)) are known to be measurable.

Then, minimizers of Tρ,λ exist in the following sense:

Theorem 3.10. Let Ω ⊂ Rd be open and bounded, let (X, d) be a compact metric space
and assume that ρ satisfies the assumptions in Lemma 3.7. Then the variational problem

inf
u∈L∞w (Ω,P(X))

Tρ,λ(u) (3.59)

with Tρ,λ as in (3.57) admits a (not necessarily unique) solution.

Before we can continue with the proof of existence of minimizers to Tρ,λ, we need to
introduce the notion of weak* measurability because this will play a crucial role in the
proof. Analogously with the notion of weak measurability and with L∞w (Ω,KR(X)) intro-
duced above, we say that a measure-valued function u : Ω→M(X) is weakly* measurable
[DU77, p. 41] if the mapping

x 7→
∫
X
f(z)ux(dz) (3.60)

is measurable for each f ∈ C(X). L∞w∗(Ω,M(X)) is defined accordingly as the space
of weakly* measurable functions. For functions u : Ω → P(X) mapping into the space
of probability measures, there is an immediate connection between weak* measurability
and weak measurability: u is weakly measurable if the mapping

x 7→
∫
X
p dux (3.61)

is measurable whenever p ∈ Lip0(X). However, since, by the Stone-Weierstrass theorem,
the Lipschitz functions Lip(X) are dense in (C(X), ‖ · ‖∞) [Car00, p. 198], both notions
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of measurability coincide for probability measure-valued functions u : Ω→ P(X), so that

L∞w (Ω,P(X)) = L∞w∗(Ω,P(X)). (3.62)

However, as this equivalence does not hold for the larger spaces L∞w∗(Ω,M(X)) and
L∞w (Ω,M(X)), it will be crucial to keep track of the difference between weak and weak*
measurability in the existence proof.

Proof of Thm. 3.10. The proof is guided by the direct method from the calculus of vari-
ations. The first part is inspired by the proof of the Fundamental Theorem for Young
measures as formulated and proven in [Bal89].
Let uk : Ω→ P(X), k ∈ N, be a minimizing sequence for Tρ,λ, i.e.,

Tρ,λ(uk)→ inf
u
Tρ,λ(u) as k →∞. (3.63)

As M(X) is the dual space of C(X), L∞w∗(Ω,M(X)) with the norm defined in (3.5) is dual
to the Banach space L1(Ω, C(X)) of Bochner integrable functions on Ω with values in
C(X) [II69, p. 93]. Now, P(X) as a subset of M(X) is bounded so that our sequence uk

is bounded in L∞w∗(Ω,M(X)). Here, we used again that L∞w∗(Ω,P(X)) = L∞w (Ω,P(X)).
Note that we get boundedness of our minimizing sequence “for free”, without any

assumptions on the coercivity of Tρ,λ! Hence we can apply the Banach-Alaoglu theorem
[Cla13, Thm. 3.14], which states that there exist u∞ ∈ L∞w∗(Ω,M(X)) and a subsequence,
also denoted by uk, such that

uk
∗
⇀ u∞ in L∞w∗(Ω,M(X)). (3.64)

This means by definition, for each p ∈ L1(Ω, C(X)),∫
Ω
〈uk(x), p(x)〉 dx→

∫
Ω
〈u∞(x), p(x)〉 dx as k →∞. (3.65)

We now show that u∞(x) ∈ P(X) almost everywhere, i.e., u∞ is a nonnegative measure
of unit mass: The convergence (3.65) holds in particular for the choice p(x, s) := φ(x)f(s),
where φ ∈ L1(Ω) and f ∈ C(X). For nonnegative functions φ and f , we have∫

Ω
φ(x)〈uk(x), f〉 dx ≥ 0 (3.66)

for all k, which implies ∫
Ω
φ(x)〈u∞(x), f〉 dx ≥ 0. (3.67)
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Since this holds for all nonnegative φ and f , we deduce that u∞(x) is a nonnegative
measure for almost every x ∈ Ω. The choice f(s) ≡ 1 in (3.65) shows that u∞ has unit
mass almost everywhere.
Therefore u∞(x) ∈ P(X) almost everywhere and we have shown that u∞ lies in the

feasible set L∞w (Ω,P(X)). It remains to show that u∞ is in fact a minimizer.
In order to do so, we prove weak* lower semi-continuity of Tρ,λ. We consider the two

integral terms in the definition (3.57) of Tρ,λ separately. For the TVKR term, for each
p ∈ C1

c (Ω,Lip(X,Rd)), we have div p ∈ L1(Ω, C(X)) so that

lim
k→∞

∫
Ω
〈uk(x), div p(x)〉 dx =

∫
Ω
〈u∞(x), div p(x)〉 dx. (3.68)

Taking the supremum over all p with [p(x)][Lip(X)]d ≤ 1 almost everywhere, we deduce
lower semi-continuity of the regularizer:

TVKR(u∞) ≤ lim inf
k→∞

TVKR(uk). (3.69)

The data fidelity term u 7→
∫

Ω ρ(x, u(x)) dx is convex and bounded on the closed convex
subset L∞w (Ω,P(X)) of the space L∞w∗(Ω,M(X)). It is also continuous, as convex and
bounded functions on normed spaces are locally Lipschitz-continuous. This implies weak*
lower semi-continuity on L∞w (Ω,P(X)).
Therefore, the objective function Tρ,λ is weakly* lower semicontinuous, and we obtain

Tρ,λ(u∞) ≤ lim inf
k→∞

Tρ,λ(uk) (3.70)

for the minimizing sequence (uk), which concludes the proof.

Non-uniqueness of minimizers of Tρ,λ is clear for pathological choices such as ρ ≡ 0.
However, there are non-trivial cases where uniqueness fails to hold:

Proposition 3.11. Let X = {0, 1} be the metric space consisting of two discrete points
of distance 1 and define ρ(x, µ) := W1(f(x), µ) where

f(x) :=

δ1, x ∈ Ω \ U,

δ0, x ∈ U,
(3.71)

for a non-empty subset U ⊂ Ω with C1-boundary. In the definition (3.55) of TVKR,
assume the coupled norm on [Lip0(X)]d to be defined as in (3.56).
Then there is a one-to-one correspondence between feasible solutions u of problem (3.59)
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and feasible solutions ũ of the classical L1-TV functional

inf
ũ∈L1(Ω,[0,1])

T̃λ(u) := ‖1U − ũ‖L1 + λTV(ũ) (3.72)

via the mapping
u(x) = ũ(x)δ0 + (1− ũ(x))δ1. (3.73)

Under this mapping, T̃λ(ũ) = Tρ,λ(u) holds so that our proposed Banach space-valued
problem (3.59) and the classical L1-TV-problem (3.72) are equivalent.

Furthermore, there exists λ > 0 for which the minimizer of Tρ,λ is not unique.

Proof. Let u ∈ L∞w (Ω,P(X)). With the given choice of X, there exists a measurable
function ũ : Ω→ [0, 1] such that

u(x) = ũ(x)δ0 + (1− ũ(x))δ1. (3.74)

The measurability of ũ is equivalent to the weak measurability of u by definition:

〈p, u(x)〉 = ũ(x) · p0 + (1− ũ(x)) · p1 (3.75)

= ũ(x) · (p0 − p1) + p1. (3.76)

The constraint
p ∈ C1

c (Ω, [Lip0(X)]d), [p(x)]Lip(X,Rd) ≤ 1 (3.77)

from the definition of TVKR in (3.55) translates to

p0, p1 ∈ Cc(Ω,Rd), ‖p0(x)− p1(x)‖2 ≤ 1. (3.78)

Furthermore,

〈− div p(x), u(x)〉 = −div p0(x) · ũ(x)− div p1(x) · (1− ũ(x)) (3.79)

= −div(p0 − p1)(x) · ũ(x)− div p1(x). (3.80)

By the compact support of p1, the last term vanishes when integrated over Ω. Conse-
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quently,

TVKR(u) = sup

{∫
Ω
−div(p0 − p1)(x) · ũ(x) dx : p0, p1 ∈ Cc(Ω,Rd), (3.81)

‖(p0 − p1)(x)‖2 ≤ 1

}
(3.82)

= sup

{∫
Ω
−div p(x) · ũ(x) dx : p ∈ Cc(Ω,Rd), ‖p(x)‖2 ≤ 1

}
(3.83)

= TV(ũ). (3.84)

and therefore

Tρ,λ(u) =

∫
Ω\U
ũ(x) dx+

∫
U

(1− ũ(x)) dx+ λTV(ũ) (3.85)

=

∫
Ω
|1U (x)− ũ(x)| dx+ λTV(ũ) (3.86)

= ‖1U − ũ‖L1 + λTV(ũ). (3.87)

Thus we have shown that the functional Tρ,λ is equivalent to the classical L1-TV func-
tional with the indicator function 1U as input data and evaluated at ũ which is known
to have non-unique minimizers for a certain choice of λ [CE05].

3.2.3 Application to ODF-Valued Images

For ODF-valued images, we consider the special case X = S2 equipped with the met-
ric induced by the standard Riemannian manifold structure on S2, and Ω ⊂ R3. Let
f ∈ L∞w (Ω,P(S2)) be an ODF-valued image and denote by W1 the Wasserstein metric
from the theory of optimal transport (see Sect. 2.2). Then the function

ρ(x, µ) := W1(f(x), µ), x ∈ Ω, µ ∈ P(S2), (3.88)

satisfies the assumptions in Lemma 3.7 and hence Thm. 3.10. For denoising of an ODF-
valued function f in a post-processing step after ODF reconstruction, similar to [VL17]
we propose to solve the variational minimization problem

inf
u:Ω→P(S2)

∫
Ω
W1(f(x), u(x)) dx+ λTVKR(u), (3.89)

using the definition of TVKR(u) in (3.55).

The following statement shows that this in fact penalizes jumps in u by the Wasserstein
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distance as desired, correctly taking the metric structure of S2 into account.

Corollary 3.12. Assume that U is compactly contained in Ω with C1-boundary ∂U . Let
the function u : Ω→ P(S2) be defined as in (3.9) for some u+, u− ∈ P(S2). Choosing the
norm (3.56) (or (3.23) with s = 2) on the product space Lip(S2)d, we have

TVKR(u) = Hd−1(∂U) ·W1(u+, u−). (3.90)

Proof. In the functional-analytic framework established above, this statement follows as
a simple corollary to Prop. 3.2.

3.3 Numerical Scheme

The framework presented in Sect. 3.2 applies to arbitrary compact metric spaces X.
However, for an efficient implementation of the Lipschitz constraint in (3.55), we will
assume an s-dimensional manifold X = M and follow the discretization scheme from
Sect. 2.7. This includes the case of ODF-valued images (X = M = S2, s = 2), but
neglects the reasonable parametrization of S2 using spherical harmonics in the case of
DW-MRI. Moreover, note that the following discretization does not apply to arbitrary
metric spaces X. Finally, we will write out the problem in a saddle point form that is
amenable to standard primal-dual algorithms (as discussed in Sect. 2.6).

3.3.1 Implementation of the Lipschitz Constraint

Functions p ∈ C1
c (Ω,Lip(X,Rd)) as they appear in our proposed formulation of TVKR

in (3.7) are identified with functions on Ω ×M and discretized via pikt := pt(X
i, Zk)

in RN,L,d where X1, . . . , XN are the discretization points for Ω and Z1, . . . , ZL are the
nodal basis points of the finite element space Sh on the triangulated manifoldMh (see
Sect. 2.7).

The Lipschitz constraint in the definition (2.10) of W1 and in the definition (3.55) of
TVKR is implemented as a norm constraint on the projected surface gradients

gij := PT j∇T jpi ∈ Rd,s, (3.91)

where T 1, . . . , TM is an enumeration of the simplices that make upMh. Alternatively,

gij = BjP jpi, for each j ∈ {1, . . . ,M}, (3.92)
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for sparse indexing matrices P j . Following our discussion about the choice of norm, the
(Lipschitz) norm constraint ‖gij‖ ≤ 1 can be implemented using the Frobenius norm
or the spectral norm, both being rotationally invariant and both acting as desired on
cartoon-like jump functions (cf. Prop. 3.2).

3.3.2 Discretized W1-TV Model

Based on the above discretization, we can formulate saddle point forms for (3.89) that al-
low to apply a primal-dual first-order method (as discussed in Sect. 2.6). In the following,
the measure-valued input or reference image is given by f ∈ RL,N and the dimensions of
the primal and dual variables are

u ∈ RL,N , p ∈ RL,N,d, g ∈ RN,M,s,d, (3.93)

p0 ∈ RL,N , g0 ∈ RN,M,s, (3.94)

where p is the dual variable in TVKR and p0 is the dual variable in W1.

Using a W1 data term, the saddle point form of the overall problem reads

min
u

max
p

W1(u, f) + 〈∇xu, p〉 (3.95)

s.t. ui ≥ 0,
∑L

k=1 u
i
k = 1, ∀i, (3.96)

‖BjP jpi‖ ≤ λ ∀i, j, (3.97)

or, applying the Kantorovich-Rubinstein duality (2.10) to the data term,

min
u

max
p,g,p0,g0

〈u− f, p0〉+ 〈∇xu, p〉 (3.98)

s.t. ui ≥ 0,
∑L

k=1 u
i
k = 1 ∀i, (3.99)

gij = BjP jpi, ‖gij‖ ≤ λ ∀i, j, (3.100)

gij0 = BjP jpi0, ‖g
ij
0 ‖ ≤ 1 ∀i, j. (3.101)

3.3.3 Discretized L2-TV Model

For comparison, we also implemented the Rudin-Osher-Fatemi (ROF) model

inf
u:Ω→P(S2)

∫
Ω

∫
S2

(fx(z)− ux(z))2 dz dx+ λTV(u) (3.102)
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using TV = TVKR. The quadratic data term can be implemented using the saddle point
form

min
u

max
p,g

〈u− f, u− f〉+ 〈∇xu, p〉 (3.103)

s.t. ui ≥ 0,
∑L

k=1 u
i
k = 1, (3.104)

gijt = BjP jpit, ‖gij‖ ≤ λ ∀i, j, t. (3.105)

From a functional-analytic viewpoint, this approach requires to assume that ux can be
represented by an L2 density, suffers from well-posedness issues, and ignores the metric
structure on S2 as mentioned in the introduction (see Fig. 3.2). Nevertheless we include
it for comparison, as the L2 norm is a common choice and the discretized model is a
straightforward modification of the W1-TV model.

3.3.4 Implementation Using a Primal-Dual Algorithm

Based on the saddle point forms (3.98) and (3.103), we applied the primal-dual first-order
method with adaptive step sizes as described in Sect. 2.6. We also evaluated the diagonal
preconditioning [PC11]. However, we found that while it led to rapid convergence in
some cases, the method frequently became unacceptably slow before reaching the desired
accuracy. The adaptive step size strategy exhibited a more robust overall convergence.
The equality constraints in (3.98) and (3.103) were included into the objective function

by introducing suitable Lagrange multipliers. As far as the norm constraint on g0 is
concerned, the spectral and Frobenius norms agree, since the gradient of p0 is one-
dimensional. For the norm constraint on the Jacobian g of p, we found the spectral and
Frobenius norm to give visually indistinguishable results.
Furthermore, sinceM = S2 and therefore s = 2 in the ODF-valued case, explicit formu-

las for the orthogonal projections on the spectral norm balls that appear in the proximal
steps are available [GSC12]. The experiments below were calculated using spectral norm
constraints, as in our experience this choice led to slightly faster convergence.

3.4 Results

We implemented our model in Python 3 (see https://github.com/room-10/opymize)
using the libraries NumPy and PyCUDA. The examples were computed on an Intel Xeon
X5670 2.93GHz with 24 GB of main memory and an NVIDIA GeForce GTX 480 graphics
card with 1,5 GB of dedicated video memory. For each step in the primal-dual algorithm,
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a set of kernels was launched on the GPU, while the primal-dual gap was computed and
termination criteria were tested every 5 000 iterations on the CPU.
For the following experiments, we applied our models presented in Sects. 3.3.2 (W1-

TV) and 3.3.3 (L2-TV) to ODF-valued images reconstructed from HARDI data using
the reconstruction methods that are provided by the Dipy project [Gar+14]:

• For voxel-wise QBI reconstruction within constant solid angle (CSA-ODF) [ALS09],
we used CsaOdfModel from dipy.reconst.shm with spherical harmonics functions
up to order 6.

• We used ConstrainedSphericalDeconvModel as provided with the submodule
dipy.reconst.csdeconv for voxel-wise CSD reconstruction [TCC07].

The response function that is needed for CSD reconstruction was determined using the
recursive calibration method [Tax+14] as implemented in recursive_response, which
is also part of dipy.reconst.csdeconv. We generated the ODF plots using VTK-based
sphere_funcs from dipy.viz.fvtk.
It is equally possibly to use other methods for Q-ball reconstruction for the preprocess-

ing step, or even integrate the proposed TV-regularizer directly into the reconstruction
process. Furthermore, our method is compatible with different numerical representations
of ODFs, including sphere discretization [Goh+09], spherical harmonics [ALS09], spher-
ical wavelets [Kez+08], ridgelets [MR10] or similar basis functions [KK11; Ahr+13], as
it does not make any assumptions on regularity or symmetry of the ODFs. We leave a
comprehensive benchmark to future work, as the main goal of this work is to investigate
the mathematical foundations.

3.4.1 Synthetic Data

L2-TV vs. W1-TV In order to justify the more involved approach based on optimal
transport distances, we demonstrate the different behaviors of the L2-TV model com-
pared to the W1-TV model with the help of one-dimensional synthetic images (Figs. 3.3
and 3.4) generated using the multi-tensor simulation method from dipy.sims.voxel,
which is based on [ST65] and [Des08, p. 42]; see also [VL17].
By choosing very high regularization parameters λ in the experiment illustrated in

Fig. 3.3, we force the models to produce constant results. The L2-based data term
prefers a blurred mixture of diffusion directions, essentially averaging the probability
measures. The W1 data term tends to concentrate the mass close to the median of the
diffusion directions on the unit sphere, properly taking into account the metric structure
of S2.
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Figure 3.3: Top: 1D image of synthetic unimodal ODFs where the angle of the main
diffusion direction varies linearly from left to right. This is used as input
image for the center and bottom row. Center: Solution of L2-TV model
with λ = 5. Bottom: Solution of W1-TV model with λ = 10. In both
cases, the regularization parameter λ was chosen sufficiently large to enforce
a constant result. The quadratic data term mixes all diffusion directions into
one blurred ODF, whereas the Wasserstein data term produces a tight ODF
that is concentrated close to the median diffusion direction.

(a)

(b)

(c)

(d)

Figure 3.4: Synthetic 1D Q-ball image of unimodal ODFs. (a) ground truth with con-
stant modes and (b) noisy image with distorted diffusion directions. The
noisy image was denoised using (c) a quadratic L2-data term (λ = 0.85)
and (d) the Wasserstein-1 data term (λ = 2.5). The directional noise causes
blurring in the L2 case (c), whereas the W1 data term keeps the mass con-
centrated (d): The entropy of the original data is 2.267 compared to 2.336
(L2) and 2.279 (W1).
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.5: Synthetic 1D Q-ball image of bimodal and almost uniform ODFs: The
(a) original data was denoised (b)–(f) using an L2 data term (left)
and a W1 data term (right) for increasing values of λ (on the left-
hand side λ = 0.05, 0.55, 1.05, 1.55, 2.05 and on the right-hand side λ =
0.05, 1.35, 2.65, 3.95, 5.25). Both models preserve the edge. However, as is
known from classical ROF models, the L2 data term produces a gradual
transition – i. e., contrast loss – towards the constant image, while the W1

data term exhibits an abrupt phase transition.

A similar experiment (Fig. 3.4) demonstrates that the behavior of the W1 model is
preferable if the main diffusion directions of the unimodal ODFs underlie random dis-
tortion (noise). The ground truth consists of 12 identical unimodal ODFs, while the
main diffusion directions have been randomly distorted in the input image following a
Gaussian distribution on the angle with 20◦ standard deviation.

Scale-space behavior The next two examples (Figs. 3.5 and 3.6) demonstrate the scale
space behavior of our variational models.
The first experiment is inspired by [WDS16], where a similar 1D image is used for

demonstration of edge preservation properties. Six voxels of the ground truth are chosen
to be bimodal ODFs with the two main diffusion directions separated by 55◦. The
remaining six voxels are almost uniform ODFs (unimodal ODFs with almost uniform
distribution of eigenvalues corresponding to the main diffusion directions). As both
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Figure 3.6: Numerical solutions of the proposed variational models (see Sects. 3.3.2
and 3.3.3) applied to the phantom (Fig. 3.1) for increasing values of the
regularization parameter λ. Left column: Solutions of L2-TV model for
λ = 0.11, 0.22, 0.33. Right column: Solutions of W1-TV model for λ =
0.9, 1.8, 2.7. As is known from classical ROF models, the L2 data term
produces a gradual transition/loss of contrast towards the constant image,
while the W1 data term stabilizes contrast as is especially visible along the
edges.
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models use the proposed TV regularizer, the edge is preserved and a piecewise constant
image is produced in both cases. However, just as classical ROF models tend to reduce
jump sizes across edges and lose contrast, the result produced using the L2 model exhibits
bimodal ODFs on both sides of the jump and the tightness of the original bimodals gets
lost.

Secondly, we implemented a 2-D phantom of two crossing fiber bundles as depicted in
Fig. 3.1, inspired by [OCW14]. From this phantom we computed the peak directions of
fiber orientations on a 15 × 15 grid. This was used to generate synthetic HARDI data
simulating a DW-MRI measurement with 162 gradients and a b-value of 3 000, again
using the multi-tensor simulation framework from dipy.sims.voxel.

We then applied our models to the CSA-ODF reconstruction of this data set for in-
creasing values of the regularization parameter λ in order to demonstrate the scale-space
behaviors of the different data terms (Fig. 3.6).

As in the previous case, edges are preserved, and the L2-TV model results in the
background and foreground regions becoming gradually more similar as regularization
strength increases. The W1-TV model preserves the unimodal ODFs in the background
regions and demonstrates a behavior more akin to robust L1-TV models [DAG09], with
structures disappearing abruptly rather than gradually depending on their scale.

Denoising We applied our model to the CSA-ODF reconstruction of a slice (NumPy
coordinates [12:27,22,21:36]) from the synthetic HARDI data set with added noise at
SNR = 10, provided in the ISBI 2013 HARDI reconstruction challenge. We evaluated
the angular precision of the estimated fiber compartments using the script provided on
the challenge homepage [Dad+14, compute_local_metrics.py]. The script computes
the mean µ and standard deviation σ of the angular error between the estimated fiber
directions inside the voxels and the ground truth as also provided on the challenge page
(Fig. 3.7).

The noisy input image exhibits a mean angular error of µ = 34.52 degrees (σ = 19.00).
The reconstructions using W1-TV (µ = 17.73, σ = 17.25) and L2-TV (µ = 17.82,
σ = 18.79) clearly improve the angular error and give visually convincing results: The
noise is effectively reduced and a clear trace of fibers becomes visible (Fig. 3.8). In these
experiments, the regularizing parameter λ was chosen optimally in order to minimize the
mean angular error to the ground truth.
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Figure 3.7: Slice of size 15 × 15 from the data provided for the ISBI 2013 HARDI re-
construction challenge [Dad+14]. Left: Peak directions of the ground truth.
Right: Q-ball image reconstructed from the noisy (SNR = 10) synthetic
HARDI data, without spatial regularization. The low SNR makes it difficult
to visually recognize the fiber directions.

Figure 3.8: Restored Q-ball images reconstructed from the noisy input data in Fig. 3.7.
Left: Result of the L2-TV model (λ = 0.3). Right: Result of the W1-
TV model (λ = 1.1). The noise is reduced substantially so that fiber traces
are clearly visible in both cases. The W1-TV model generates less diffuse
distributions.
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Figure 3.9: ODF image of the corpus callosum, reconstructed with CSD from HARDI
data of the human brain [Rok+]. Top: Noisy input. Middle: Restored using
L2-TV model (λ = 0.6). Bottom: Restored using W1-TV model (λ = 1.1).
The results do not show much difference: Both models enhance contrast
between regions of isotropic and anisotropic diffusion while the anisotropy of
ODFs is preserved.
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3.4.2 Human Brain HARDI Data

One slice (NumPy coordinates [20:50, 55:85, 38]) of HARDI data from the human
brain data set [Rok+] was used to demonstrate the applicability of our method to real-
world problems and to images reconstructed using CSD (Fig. 3.9). Run times of the
W1-TV and L2-TV model are approximately 35 minutes (105 iterations) and 20 minutes
(6 · 104 iterations).
As a stopping criterion, we require the primal-dual gap to fall below 10−5, which

corresponds to a deviation from the global minimum of less than 0.001%, and is a rather
challenging precision for the first-order methods used. The regularization parameter λ
was manually chosen based on visual inspection.
Overall, contrast between regions of isotropic and anisotropic diffusion is enhanced. In

regions where a clear diffusion direction is already visible before spatial regularization,
W1-TV tends to conserve this information better than L2-TV.

3.5 Conclusion and Outlook

Our mathematical framework for ODF- and, more general, measure-valued images allows
to perform total variation-based regularization of measure-valued data without assuming
a specific parametrization of ODFs, while correctly taking the metric on S2 into account.
The proposed model penalizes jumps in cartoon-like images proportional to the jump size
measured on the underlying normed space, in our case the Kantorovich-Rubinstein space,
which is built on the Wasserstein-1-metric. Moreover, the full variational problem was
shown to have a solution and can be implemented using off-the-shelf numerical methods.
With the first-order primal-dual algorithm chosen in this work, solving the underlying

optimization problem for DW-MRI regularization is computationally demanding due to
the high dimensionality of the problem. However, numerical performance was not a
priority in this work and can be improved. For example, optimal transport norms are
known to be efficiently computable using Sinkhorn’s algorithm [Cut13; Bra+17].
A particularly interesting direction for future research concerns extending the approach

to simultaneous reconstruction and regularization, with an additional (non-)linear oper-
ator in the data fidelity term [ALS09]. For example, one could consider an integrand of
the form ρ(x, u(x)) := d(S(x), Au(x)) for some measurements S on a metric space (H, d)

and a forward operator A mapping an ODF u(x) ∈ P(S2) to H.
Furthermore, modifications of our total variation seminorm that take into account the

coupling of positions and orientations according to the physical interpretation of ODFs
in DW-MRI could close the gap to state-of-the-art approaches such as [DF11; PD17].
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The model does not require symmetry of the ODFs, and therefore could be adapted
to novel asymmetric ODF approaches [Del+07; EOK11; RKK12; KÖU18]. Finally, it is
easily extendable to images with values in the probability space over a different manifold,
or even a metric space, as they appear for example in statistical models of computer vi-
sion [SJJ07], in histogram propagation [Sol+14] and in recent lifting approaches [Möl+16;
Lau+16; Åst+17] for combinatorial and non-convex optimization problems.
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4 Convex Lifting of Manifold-Valued
Variational Problems

Image processing problems where Ω ⊂ Rd is open and bounded and u takes values in an
s-dimensional manifold M,

inf
u:Ω→M

F (u) (4.1)

are wide-spread in image processing and especially in the processing of manifold-valued
images, such as InSAR [MF98], EBSD [BHS11], DTI [BML94], orientational/positional
[Ros+12] data or images with values in non-flat color spaces, such as hue-saturation-value
(HSV) or chromaticity-brightness (CB) color spaces [CV01].
They come with an inherent non-convexity, as the space of images u : Ω → M is

generally non-convex, with few exceptions, such as if M is a Euclidean space, or if M
is a Hadamard manifold, if one allows for the more general notion of geodesic convexity
[Bač14; Bač+16]. Except for these special cases, efficient and robust convex numerical
optimization algorithms therefore cannot be applied and global optimization is generally
out of reach.
The inherent non-convexity of the feasible set is not only an issue of representation.

Even for seemingly simple problems, such as the problem of computing the Riemannian
center of mass for a number of points on the unit circle, it can affect the energy in surpris-
ingly intricate ways, creating multiple local minimizers and non-uniqueness (Fig. 4.1).
The equivalent operation in Euclidean space, computing the weighted mean, is a simple
convex (even linear) operation, with a unique, explicit solution.
The problem of non-convexity is not unique to our setting, but rather ubiquitous in

a much broader context of image and signal processing (see introductory Sect. 1.2.1).
When applied to such non-convex problems, local optimization strategies often get stuck
in local minimizers. In convex relaxation approaches, an energy functional is approx-
imated by a convex one whose global optimum can be found numerically and whose
minimizers lie within a small neighborhood around the actual solution of the problem.
A popular convex relaxation technique that applies to a wide range of problems from
image and signal processing is functional lifting (see introductory Sect. 1.2.2). With this
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Figure 4.1: Variational problems where the feasible set is a non-Euclidean manifold are
prone to local minima and non-uniqueness, which makes them generally much
more difficult than their counterparts in Rn. The example shows the general-
ization of the (weighted) mean to manifolds: the Riemannian center of mass
x̄ of points xi on a manifold – in this case, the unit circle S1 – is defined as the
minimizer (if it exists and is unique) of the problem infx∈S1

∑
i λid(xi, x)2,

where d is the geodesic (angular) distance and λi > 0 are given weights. Left:
Given the two points x1 and x2, the energy for computing their “average” has
a local minimum at y in addition to the global minimum at x̄. Compare this
to the corresponding problem in Rn, which has a strictly convex energy with
the unique and explicit solution (x1 + x2)/2. Center and right: When the
number of points is increased and non-uniform weights are used (represented
by the locations and heights of the orange bars), the energy structure be-
comes even less predictable. The objective function (right, parametrized by
angle) exhibits a number of non-trivial local minimizers that are not easily
explained by global symmetries. Again, the corresponding problem – com-
puting a weighted mean – is trivial in Rn. Starting from xstart = π, our
functional lifting implementation finds the global minimizer x̄, while gradient
descent (a local method) gets stuck in the local minimizer xlocal. Empirically,
this behavior can be observed for every other choice of points and weights,
but there is no theoretical result in this direction.
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z

i : M→ P(M)

i(z) = δz

Figure 4.2: A manifold M is embedded into the space P(M) of probability measures
via the identification of a point z ∈ M with the Dirac point measure δz
concentrated at z. This “lifts” the problem into a higher-dimensional linear
space, which is much more amenable to global optimization methods.

technique, the feasible set is embedded into a higher-dimensional space where efficient
convex approximations of the energy functional are easier available.

In this chapter, we will explore the generalization of functional lifting methods to
manifold-valued problems. In contrast to prior work, we will explain existing results in
the updated finite element-based framework described in Sect. 2.7. Moreover, we propose
extensions to handle general regularizers other than the total variation on manifolds, and
to apply the “sublabel-accurate” methods to manifold-valued problems.

4.1 Related Work

Manifold-Valued Functional Lifting

A general introduction to the concept of functional lifting in Euclidean spaces is given
in the introductory Sect. 1.2.2. In this chapter, we will consider the more general case
of functions u : Ω → Γ with Γ = M having a manifold structure. We will also restrict
ourselves to first-order models

inf
u : Ω→Γ

F (u), F (u) :=

∫
Ω
f(x, u(x),∇u(x)) dx. (4.2)

The first step towards applying lifting methods to problems where Γ has a manifold
structure was an application to the restoration of cyclic data [SC11; CS12] with Γ = S1,
which was later [Lel+13b] generalized for the case of total variation regularization to
data with values in more general manifolds. In [Lel+13b], the functional lifting approach
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was applied to a first-order model with total variation regularizer,

F (u) =

∫
Ω
ρ(x, u(x))dx+ λTV(u), (4.3)

for u : Ω → M, where Γ = M is an s-dimensional manifold and ρ : Ω ×M → R is a
pointwise data discrepancy. The lifted space is chosen to be X = P(M), the space of
Borel probability measures over M, with embedding i : M ↪→ P(M), where i(z) := δz

is the Dirac point measure with unit mass concentrated at z ∈ M (see Fig. 4.2). The
lifted functional is

F(v) =

∫
Ω
〈ρ(x, ·), v(x)〉 dx+ λT̃V(v), (4.4)

where 〈g, µ〉 :=
∫
M g dµ for g ∈ C(M) and µ ∈ P(M). Furthermore,

T̃V(v) := sup

{∫
Ω
〈Divx p(x, ·), v(x)〉 dx : p : Ω×M→ R, ‖∇zp‖∞ ≤ 1

}
. (4.5)

As pointed out in Sect. 3.2, the Lipschitz constraint ‖∇zp‖∞ ≤ 1, where

‖∇zp‖∞ := sup {‖∇zp(x, z)‖σ,∞ : (x, z) ∈ Ω×M} , (4.6)

can be explained by a functional-analytic perspective on this lifting strategy: The lifted
total variation functional is the vectorial total variation semi-norm for functions over
Ω with values in the Kantorovich-Rubinstein Banach space of measures KR(M) (see
Sect. 3.2). However, this interpretation does not generalize easily to other regularizers.
We will instead loosely base our model for general convex regularizers on the functional
lifting strategies presented in [MC17] for scalar and in [MC19] for vectorial problems. In
Sect. 6.4.3, we demonstrate that our proposed functional lifting strategy for manifold-
valued problems is a special case of the novel, more general functional lifting framework
that we propose and discuss in Chap. 6.

Motivated by recent advances in so-called sublabel-accurate liftings (see introductory
Sect. 1.2.2), we propose to extend the methods from [Lel+13b] for manifold-valued images
to arbitrary convex regularizers, making use of the finite element discretization introduced
in Sect. 2.7. This reduces label bias and thus the amount of labels necessary in the
discretization (Fig. 4.3).
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Figure 4.3: Total Variation denoising (blue) of a signal u : [0, 1] → S2 with values in
S2 (red), visualized as curves on the two-dimensional sphere embedded into
R3. The problem is solved by the continuous multi-labeling framework with
functional lifting described in this chapter. The discretization points (la-
bels), which are necessary for the implementation of the lifted problem, are
visualized by the gray grid. Left: The method in [Lel+13b] does not force
the solution to take values at the grid points, but still shows significant grid
bias. Center: With the same number of labels, our proposed method, moti-
vated by [Lau+16], reduces label bias by improving data term discretization.
Right: Furthermore, our method can get excellent results with as little as
6 grid points (right). Note that the typical contrast reduction that occurs
in the classical Euclidean ROF can also be observed in the manifold-valued
case in the form of a shrinkage towards the Fréchet mean in the “center” of
the helical curve.

Further Related Work

The methods proposed in this work are applicable to variational problems with values
in manifolds of dimension s ≤ 3. The theoretical framework applies to manifolds of
arbitrary dimension, but the numerical costs increase exponentially with the dimension s
and become prohibitively large in practice for dimensions 4 and larger.

An alternative is to use local optimization methods on manifolds. A reference for the
smooth case is [AMS09]. For non-smooth energies, methods such as the cyclic proximal
point, Douglas-Rachford, ADMM and (sub-)gradient descent algorithm have been applied
to first- and second-order TV and TGV as well as Mumford-Shah and Potts regularization
approaches in [WDS14; WDS16; Bau+16; BPS16; BL18; Ber+18a]. These methods are
generally applicable to manifolds of any dimension whose (inverse) exponential mapping
can be evaluated in reasonable time. They are quite efficient in finding a local minimum,
but can get stuck in local extrema. Furthermore, the use of total variation regularization
in these frameworks is currently limited to anisotropic formulations; instead, quadratic
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regularization is isotropic [WDS14; Ber+18b]. An overview of applications, variational
models and local optimization methods is given in [Ber+18b].

Furthermore, we mention that, beyond variational models, there exist discrete graph-
based [BT18], statistical [Fle12], wavelet-based [SW18], PDE-based [Che+04] and patch-
based [LPS17] models for the processing and regularization of manifold-valued signals.

4.2 Calculus of Variations on Submanifolds of RN

We formulate our model for submanifolds of RN as discussed at the beginning of Sect. 2.7.

4.2.1 General First-Order Variational Problems

In this section, we generalize the total variation-based approach in [Lel+13b] to less
restrictive first-order variational problems by applying the ideas from functional lifting of
vectorial problems [MC19] to manifold-valued problems. Most derivations will be formal;
we leave a rigorous choice of function spaces as well as an analysis of well-posedness for
future work. We note that theoretical work is available for the scalar-valued case in
[ABD03; Poc+10; BF18] and for the vectorial and for selected manifold-valued cases in
[GMS98a; GMS98b].

We consider variational models on functions u : Ω→M,

F (u) :=

∫
Ω
f(x, u(x), Du(x)) dx, (4.7)

for which the integrand f : Ω ×M× RN,d → R is convex in the last component. Note
that the dependence of f on the full Jacobian of u avoids the coordinate-free tangent
bundle push-forward TΩ → TM, thus facilitating discretization in a coordinate system
later on.

Formally, the lifting strategy for vectorial problems [MC19] can be generalized to this
setting by replacing the range Γ with M. As the lifted space, we consider the space
of probability measures on the Borel σ-Algebra over M, X = P(M), with embedding
i : M → P(M), where i(z) = δz is the Dirac point mass concentrated at z ∈ M.
Furthermore, we write Σ := Ω ×M and, for (x, z) = y ∈ Σ, we define the coordinate
projections π1y := x and π2y := z. Then, for v : Ω → P(M), we define the lifted
functional

F(v) := sup

{∫
Ω
〈−Divx p(x, ·) + q(x, ·), v(x)〉 dx : (∇zp, q) ∈ K

}
, (4.8)
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where 〈g, µ〉 :=
∫
M g dµ is the dual pairing between g ∈ C(M) and µ ∈ P(M) and

K :=
{

(P, q) ∈ C(Σ;RN,d × R) : f∗(π1y, π2y, P (y)) + q(y) ≤ 0 ∀y ∈ Σ
}
, (4.9)

where f∗(x, z, ζ) := supξ〈ζ, ξ〉 − f(x, z, ξ) is the convex conjugate of f with respect to
the last variable.

In the following, the integrand f : Ω×M× RN,d → R is assumed to decompose as

f(x, z, ξ) = ρ(x, z) + η(Pzξ) (4.10)

into a pointwise data term ρ : Ω ×M → R and a convex regularizer η : Rs,d → R that
only depends on an s-dimensional representation of vectors in TzM given by a surjective
linear map Pz ∈ Rs,N with ker(Pz) = NzM, the orthogonal complement of TzM in RN .

This very general integrand covers most first-order models in the literature on manifold-
valued imaging problems. It applies in particular to isotropic and anisotropic regularizers
that depend on (matrix) norms of Du(x), such as the Frobenius or spectral/operator
norm where Pz is taken to be an arbitrary orthogonal basis transformation. Since z 7→ Pz

is not required to be continuous, it can also be applied to non-orientable manifolds,
such as the Moebius strip or the Klein bottle, where no continuous orthogonal basis
representation of the tangent bundle TM exists.

Regularizers of this particular form depend on the manifold through the choice of Pz
only. This is important because, in the course of discretization (see Sect. 2.7), M is
approximated by a discrete (simplicial) manifold Mh and the tangent spaces TzM are
replaced by the linear spaces spanned by the simplicial faces ofMh.

4.2.2 Finite Element Formulation

We translate the finite element approach for functional lifting [MC17] to the manifold-
valued setting by employing the notation introduced in Sect. 2.7. The energy functional
is translated to the discretized setting by redefining the integrand f on Mh for each
x ∈ Ω, z ∈Mh and ξ ∈ RN,d as

f(x, z, ξ) := ρ(x, ι(z)) + η(PT ξ), (4.11)

where PT ∈ Rs,N is the orthogonal basis representation of vectors in RN in the subspace
spanned by the simplex T ∈ Th that satisfies z ∈ T . The epigraphical constraints in K
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translate to

∀x ∈ Ω∀z ∈Mh : η∗(PT∇zp(x, z))− ρ(x, ι(z)) + q(x, z) ≤ 0, (4.12)

for functions p ∈ Sdh and q ∈ Sh. The constraints can be efficiently implemented on each
T ∈ Th where ∇zp is constant and q(x, z) = 〈qT,1(x), z〉+ qT,2(x) is linear affine in z:

η∗(PT∇T p(x)) + 〈qT,1(x), z〉 − ρ(x, ι(z)) ≤ −qT,2(x), (4.13)

for each x ∈ Ω, T ∈ Th and z ∈ T . Following the approach in [MC17], we define

ρ∗T (x, z) := sup
z′∈T

{
〈z, z′〉 − ρ(x, ι(z′))

}
, (4.14)

and introduce auxiliary variables aT , bT to split the epigraphical constraint (4.13) into
two epigraphical and one linear constraint for x ∈ Ω and T ∈ Th:

η∗(PT∇T p(x)) ≤ aT (x), (4.15)

ρ∗T (qT,1(x)) ≤ bT (x), (4.16)

aT (x) + bT (x) = −qT,2(x). (4.17)

The resulting optimization problem is described by the following saddle point form over
functions v ∈ L1(Ω,Ph(Mh)), p ∈ C1(Ω, Sd+1

h ) and q ∈ C(Ω, Sh):

inf
v

sup
p,q

∫
Ω
〈−Divx p(x, ·) + q(x, ·), v(x)〉 dx (4.18)

subject to η∗(PT∇T p(x)) ≤ aT (x), (4.19)

ρ∗T (qT,1(x)) ≤ bT (x), (4.20)

aT (x) + bT (x) + qT,2(x) = 0. (4.21)

Finally, for the fully discrete setting, the domain Ω is replaced by a Cartesian rectangular
grid with finite differences operator ∇x and Neumann boundary conditions.

4.2.3 Connection to [Lel+13b]

In [Lel+13b], the special case of total variation regularization is approached using a
similar functional lifting without the finite elements interpretation. More precisely, the
regularizing term is chosen to be η(ξ) = λ‖ξ‖σ,1 for ξ ∈ Rs,d, where ‖ · ‖σ,1 is the matrix
nuclear norm, also known as Schatten-1-norm, which is given by the sum of singular
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Figure 4.4: Data term discretization for the lifting approach applied to the Riemannian
center of mass problem introduced in Fig. 4.1. For each x ∈ Ω, the data term
z 7→ ρ(x, z) (blue graph) is approximated (orange graphs) between the label
points Zk (orange vertical lines). Left: In the lifting approach [Lel+13b]
for manifold-valued problems, the data term is interpolated linearly between
the labels. Right: Based on ideas from recent scalar and vectorial lifting
approaches [Möl+16; Lau+16], we interpolate piecewise convex between the
labels.
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v2
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yT
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Figure 4.5: Mapping a simplex T , spanned by Z1
T , . . . , Z

s+1
T , to the tangent space at its

center-of-mass yT using the logarithmic map. The proportions of the simplex
spanned by the mapped points v1

T , . . . , v
s+1
T may differ from the proportions

of the original simplex for curved manifolds. The illustration shows the case
of a circle S1 ⊂ R2, where the deformation reduces to a multiplication by a
scalar αT , the ratio between the geodesic (angular) and Euclidean distance
between Z1

T and Z2
T . The gradient ∇T p of a finite element p ∈ Sh can be

modified according to this change in proportion in order to compensate for
some of the geometric (curvature) information lost in the discretization.
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4 Convex Lifting of Manifold-Valued Variational Problems

values of a matrix. It is the dual to the matrix operator or spectral norm ‖ · ‖σ,∞. If we
substitute this choice of η into the discretization given above, the epigraphical constraint
(4.12) translates to the two constraints

‖PT∇T p(x)‖σ,∞ ≤ λ and q(x, z) ≤ ρ(x, ι(z)). (4.22)

The first one is a Lipschitz constraint just as in the model from [Lel+13b], but two
differences remain:

1. Sublabel-accuracy. In [Lel+13b], the lifted and discretized form of the data term
reads ∫

Ω

L∑
k=1

ρ(x, Zk)v(x)k dx. (4.23)

This agrees with our setting if z 7→ ρ(x, ι(z)) is affine linear on each simplex T ∈ Th, as
then q(x, z) = ρ(x, ι(z)) maximizes the objective function for each p and v. Hence, the
model in [Lel+13b] does not take into account any information about ρ below the reso-
lution of the triangulation. We improve this by implementing the epigraph constraints
ρ∗T (qT,1(x)) ≤ bT (x) as in [Lau+16] using a convex approximation of ρT (see Fig. 4.4).
The approximation is implemented numerically with piecewise affine linear functions in
a “sublabel-accurate” way, i.e., at a resolution below the resolution of the triangulation.

2. Gradient discretization on the manifold. A very specific discretization of the gra-
dients ∇T p(x) is used in [Lel+13b]: To each simplex in the triangulation a mid-point
yT ∈ M is associated. The vertices Z1

T , ..., Z
s+1
T of the simplex are projected to the

tangent space at yT as vkT := logyT Z
k
T . The gradient is then computed as the vector g

in the tangent space TyTM describing the affine linear map on TyTM that takes values
p(ZkT ) at the points vkT , k = 1, . . . , s+ 1.

This procedure aims to outweigh some of the error introduced by the simplicial dis-
cretization and amounts to a different choice of PT than in our proposed model. We did
not observe any significant positive or negative effects from using either discretization;
the difference between the minimizers is very small in practice.

For problems with a one-dimensional range, the two approaches differ only in a constant
factor: Denote by PT ∈ Rs,N the orthogonal basis representation of vectors in RN in the
subspace spanned by the simplex T ∈ Th and denote by P̃T ∈ Rs,N the alternative
approach from [Lel+13b]. Now, consider a triangulation Th of the circle S1 ⊂ R2 and a
one-dimensional simplex T ∈ Th. A finite element p ∈ Sh that takes values p1, p2 ∈ R at
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4.2 Calculus of Variations on Submanifolds of RN

the vertices Z1
T , Z

2
T ∈ R2 that span T has the gradient

∇T p = (p1 − p2)
Z1
T − Z2

T

‖Z1
T − Z2

T ‖22
∈ R2 (4.24)

and PT , P̃T ∈ R1,2 are given by

PT :=
(Z1

T − Z2
T )>

‖Z1
T − Z2

T ‖2
, P̃T :=

(Z1
T − Z2

T )>

dS1(Z1
T , Z

2
T )
. (4.25)

Hence PT = αT P̃T for αT = dS1(Z1
T , Z

2
T )/‖Z1

T −Z2
T ‖2 the ratio between geodesic (angu-

lar) and Euclidean distance between the vertices. If the vertices are equally spaced on
S1, this is a constant factor independent of T that typically scales the discretized regu-
larizer by a small constant factor. On higher-dimensional manifolds, more general linear
transformations PT = AT P̃T come into play. For very irregular triangulations and coarse
discretization, this may affect the minimizer; however, in our experiments the observed
differences were negligible.

4.2.4 Full Discretization and Numerical Implementation

A prime advantage of the lifting method when applied to manifold-valued problems is
that it is formulated over linear or convex sets of functions, even though the original
spaces of manifold-valued functions are non-convex in general. This allows to apply es-
tablished solution strategies for the non-manifold case, which rely on non-smooth convex
optimization: After discretization, the convex-concave saddle point form allows for a
solution using the primal-dual hybrid gradient method described in Sect. 2.6. In this
optimization framework, the epigraph constraints are realized by projections onto the
epigraphs in each iteration step. For the regularizers to be discussed in this paper (TV,
quadratic and Huber), we refer to the instructions given in [Poc+10]. For the data term
ρ, we follow the approach in [Lau+16]: For each x ∈ Ω, The data term z 7→ ρ(x, ι(z)) is
sampled on a subgrid ofMh and approximated by a piecewise affine linear function. The
quickhull algorithm [BDH96] can then be used to get the convex hull of this approxima-
tion. Projections onto the epigraph of ρ∗T are then projections onto convex polyhedra,
which amounts to solving many low-dimensional quadratic programs; see [Lau+16] for
more details.

Following [Lel+13b], the numerical solution u : Ω → Ph(Mh), taking values in the
lifted space Ph(Mh), is projected back to a function u : Ω → M, taking values in the
original spaceM, by mapping, for each x ∈ Ω separately, a probability measure u(x) =
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4 Convex Lifting of Manifold-Valued Variational Problems

(λ1, . . . , λL) = µh ∈ Ph(Mh) to the following Riemannian center of mass on the original
manifoldM:

µh = (λ1, . . . , λL) 7→ argmin
z∈M

L∑
k=1

λkdM(z, Zk)2. (4.26)

For M = Rs, this coincides with the usual weighted mean z̄ =
∑L

k=1 λkZk. However,
on manifolds this minimization is known to be a non-convex problem with non-unique
solutions (compare Fig. 4.1). Still, in practice the iterative method described in [Kar77]
yields reasonable results for all real-world data considered in this work: Starting from a
point z0 := Zk with maximum weight λk, we proceed for i ≥ 0 by projecting the Zk,
k = 1, . . . , L, to the tangent space at zi using the inverse exponential map, taking the
linear weighted mean vi there and defining zi+1 as the projection of vi to M via the
exponential map:

V k
i := logzi(Z

k) ∈ TziM, k = 1, . . . , L, (4.27)

vi :=

L∑
k=1

λkV
k
i ∈ TziM, (4.28)

zi+1 := expzi(vi). (4.29)

The method converges rapidly in practice. It has to be applied only once for each x ∈ Ω

after solving the lifted problem so that efficiency is non-critical.

4.3 Numerical Results

We apply our model to problems with quadratic data term ρ(x, z) := d2
M(I(x), z) and

Huber, total variation (TV) and quadratic regularization with parameter λ > 0:

ηTV(ξ) := λ‖ξ‖2, (4.30)

ηHuber(ξ) := λφα(ξ), (4.31)

ηquad(ξ) :=
λ

2
‖ξ‖22, (4.32)

where the Huber function φα for α > 0 is defined by

φα(ξ) :=


‖ξ‖22
2α if ‖ξ‖2 ≤ α,

‖ξ‖2 − α
2 if ‖ξ‖2 > α.

(4.33)
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4.3 Numerical Results

Figure 4.6: Quadratic denoising (blue) of a one-dimensional signal (red) u : [0, 1] →M
with values on the two-dimensional Klein surface (commonly referred to as
Klein bottle) M ⊂ R3. The black wireframe lines on the surface represent
the triangulation used by the discretization of our functional lifting approach.
The numerical implementation recovers the denoised signal at a resolution
far below the resolution of the manifold’s discretization. The lifting approach
does not require the manifold to be orientable.

Note that previous lifting approaches for manifold-valued data were restricted to total
variation regularization ηTV.

The methods were implemented in Python 3 with NumPy and PyCUDA, running on
an Intel Core i7 4.00GHz with an NVIDIA GeForce GTX 1080 Ti 12 GB and 16GB
RAM. The iteration was stopped as soon as the relative gap between primal and dual
objective fell below 10−5. Approximate runtimes ranged between 5 and 45 minutes. The
code is available from https://github.com/room-10/mfd-lifting.

4.3.1 One-Dimensional Denoising on a Klein Bottle

Our model can be applied to both orientable and non-orientable manifolds. Figure 4.6
shows an application of our method to quadratic denoising of a synthetic one-dimensional
signal u : [0, 1] → M on the two-dimensional Klein surface embedded in R3, a non-
orientable closed surface that cannot be embedded into R3 without self-intersections.
Our numerical implementation uses a triangulation with a very low count of 5×5 vertices
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4 Convex Lifting of Manifold-Valued Variational Problems

and 50 triangles. The resolution of the signal (250 one-dimensional data points) is far
below the resolution of the triangulation. Nevertheless, our approach is able to restore a
smooth curve.

4.3.2 Three-Dimensional Manifolds: SO(3)

Signals with rotational range u : Ω → SO(3) occur in the description of crystal sym-
metries in EBSD (Electron Backscatter Diffraction Data) and in motion tracking. The
rotation group SO(3) is a three-dimensional manifold that can be identified with the
three-dimensional unit-sphere S3 up to identification of antipodal points via the quater-
nion representation of 3D rotations. A triangulation of S3 is given by the vertices and
simplicial faces of the hexacosichoron (600-cell), a regular polytope in R4 akin to the
icosahedron in R3. As in [Lel+13b], we eliminate opposite points in the hexacosichoron
and obtain a discretization of SO(3) with 60 vertices and 300 tetrahedral faces.
Motivated by Bézier surface interpolation [Abs+16], we applied quadratic regular-

ization to a synthetic inpainting (interpolation) problem with added noise (Fig. 4.7).
In our variational formulation, we chose ρ(x, z) = 0 for x in the inpainting area and
ρ(x, z) = δ{z=I(x)} (a hard constraint to the input signal I : Ω → SO(3)) for x in the
known area.
Using the proposed sublabel-accurate handling of data terms, we obtain visually ap-

pealing results with only 60 vertices, in contrast to [Lel+13b], where the discretization
is refined to 720 vertices (Fig. 4.7).

4.3.3 Normals Fields from Digital Elevation Data

In digital elevation models (DEM), elevation information for earth science studies and
mapping applications often includes surface normals which can be used to produce a
shaded coloring of elevation maps. Normal fields u : Ω→ S2 are defined on a rectangular
image domain Ω ⊂ R2; variational processing of the normal fields is therefore a manifold-
valued problem on the two-dimensional sphere S2 ⊂ R3.
Denoising using variational regularizers from manifold-valued image processing before

computing the shading considerably improves visual quality (Figures 4.8 and 4.9). For
our framework, the sphere was discretized using 12 vertices and 20 triangles, chosen to
form a regular icosahedron. The lifting approach in [Lel+13b] required 162 vertices – and
solving a proportionally larger optimization problem – in order to produce comparable
results on the same dataset.
We applied our approach with TV, Huber and quadratic regularization. Interestingly,
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4.3 Numerical Results

Figure 4.7: Diffusive inpainting of a two-dimensional signal of (e.g., camera) orienta-
tions, elements of the three-dimensional special orthogonal group of rotations
SO(3), a manifold of dimension s = 3. The masked input signal (red) is in-
painted (gray) using our model with quadratic regularization. The interpola-
tion into the central area is smooth. Shape: Triceratops by BillyOceansBlues
(CC-BY-NC-SA, https://www.thingiverse.com/thing:3313805).
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Figure 4.8: Denoising of S2-valued surface normals on the digital elevation model (DEM)
dataset from [Ges+09] (noisy input on top). The total variation model
(λ = 0.4) enforces flat hillsides in the denoised image (bottom). See Fig. 4.9
for results from Huber and quadratic regularization.
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Figure 4.9: Denoising of S2-valued surface normals on the digital elevation model (DEM)
dataset from [Ges+09] (noisy input is in Fig. 4.8). Mountain ridges are sharp
while hillsides remain smooth with Huber (top, α = 0.1, λ = 0.75). In the
quadratically (λ = 3.0) denoised image (bottom) all contours are smoothed
out.
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many of the qualitative properties known from RGB and grayscale image processing
appear to transfer to the manifold-valued case: TV enforces piecewise constant areas,
such as flat hillsides, but preserves edges, such as mountain ridges (Fig. 4.8). Quadratic
regularization gives overall very smooth results, but tends to lose edge information. With
Huber regularization, edges (mountain ridges) remain sharp while hillsides are smooth,
and flattening is avoided (Fig. 4.9).

4.3.4 Denoising of High-Resolution InSAR Data

While the resolution of the DEM dataset is quite limited (40 × 40 data points), an
application to high resolution (432×426 data points) Interferometric Synthetic Aperture
Radar (InSAR) denoising shows that our model is also applicable in a more demanding
scenario (Fig. 4.10).
In InSAR imaging, information about terrain is obtained from satellite or aircraft

by measuring the phase difference between the outgoing signal and the incoming re-
flected signal. This allows a very high relative precision, but no immediate absolute
measurements, as all distances are only recovered modulo the wavelength. After nor-
malization to [0, 2π), the phase data is correctly viewed as lying on the one-dimensional
unit sphere S1. Therefore, handling the data before any phase unwrapping is performed
requires a manifold-valued framework.
Again, denoising with TV, Huber and quadratic regularizations demonstrates proper-

ties comparable to those known from scalar-valued image processing while all regulariza-
tion approaches reduce noise substantially (Fig. 4.10).

4.4 Conclusion and Outlook

We provided an overview and framework for functional lifting techniques for the varia-
tional regularization of functions with values in arbitrary Riemannian manifolds. The
framework is motivated from continuous multi-label relaxations, but generalizes these
from the context of scalar and vectorial ranges to geometrically more challenging mani-
fold ranges.
Using this approach, it is possible to solve variational problems for manifold-valued

images that consist of a possibly non-convex data term and an arbitrary, smooth or
non-smooth, convex first-order regularizer, such as quadratic, total variation or Huber.
A refined discretization based on manifold finite element methods achieves sublabel-
accurate results, which allows to use coarser discretization of the range and reduces
computational effort compared to previous lifting approaches on manifolds.
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Figure 4.10: Denoising of S1-valued InSAR measurements from Mt. Vesuvius, dataset
from [RPF97]: Noisy input (top left), total variation (λ = 0.6) denoised im-
age (top right), Huber (α = 0.1, λ = 0.75) denoised image (bottom left),
quadratically (λ = 1.0) denoised image (bottom right). All regularization
strategies successfully remove most of the noise. The total variation regular-
izer enforces clear contours, but exhibits staircasing effects. The staircasing
is removed with Huber while contours are still quite distinct. Quadratic
smoothing preserves some of the finer structures, but produces an overall
more blurry and less contoured result.
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4 Convex Lifting of Manifold-Valued Variational Problems

A primary limitation of functional lifting methods, which equally applies to manifold-
valued models, is dimensionality: The numerical cost increases exponentially with the
dimensionality of the manifold due to the required discretization of the range. Address-
ing this issue appears possible, but will require a significantly improved discretization
strategy.
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5 Lifting of Functionals with
Higher-Order Regularization

Let Ω ⊂ Rd and Γ ⊂ Rs both be bounded sets. In the following, we consider the
variational problem of minimizing the functional

F (u) =

∫
Ω
f(x, u(x),∆u(x))dx, (5.1)

that acts on vector-valued functions u ∈ C2(Ω,Γ), whose Laplacian ∆u is understood
component-wise. Convexity of the integrand f : Ω× Γ× Rs → R is only assumed in the
last entry so that u 7→ F (u) is generally non-convex.
Variational problems of this form occur in a wide variety of image processing tasks,

including image reconstruction, restoration, and interpolation. Commonly, the integrand
is split into data term and regularizer:

f(x, z, p) = ρ(x, z) + η(p). (5.2)

As an example, in image registration (sometimes referred to as large-displacement optical
flow), the data term ρ(x, z) = d(R(x), T (x + z)) encodes the pointwise distance of a
reference image R : Rd → Rk to a deformed template image T : Rd → Rk according to a
given distance measure d(·, ·), such as the squared Euclidean distance d(a, b) = 1

2‖a−b‖
2
2.

While often a suitable convex regularizer η can be found, the highly non-convex nature
of ρ renders the search for global minimizers of (5.1) a difficult problem.
Instead of directly minimizing F using gradient descent or other local solvers, we will

aim to replace it by a convex functional F that acts on a higher-dimensional (lifted)
function space (see introductory Sect. 1.2.2). If the lifting is chosen in such a way that
we can construct global minimizers of F from global minimizers of F , we can find a global
solution of the original problem by applying convex solvers to F . While we cannot claim
this property for our choice of lifting, we believe that the mathematical motivation and
some of the experimental results show that this approach can be a good basis for future
work on global solutions of variational models with higher-order regularization.
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5 Lifting of Functionals with Higher-Order Regularization

5.1 Related Work and Overview

The lifted functional F proposed in this work is motivated by previous lifting approaches
for first-order variational problems of the form

inf
u

∫
Ω
f(x, u(x),∇u(x))dx, (5.3)

that are defined on functions u : Ω→ Γ with Ω ⊂ Rd and Γ ⊂ Rs. For a general overview
of functional lifting, see the introductory Sect. 1.2.2 and Sect. 4.1 for manifold ranges.

Not much is known about functional lifting for models with higher-order regularizers,
such as the Laplacian-based curvature regularizer in image registration [FM03]. Recently,
a functional lifting approach has been successfully applied to second-order regularized
image registration problems [LL18], but the approach was limited to a single regularizer,
namely the integral over the 1-norm of the Laplacian (absolute Laplacian regularization).
It is stated for scalar problems and then applied componentwise for vectorial problems.
Similarly, the continuous lifting strategy for models with total generalized variation reg-
ularization [RPB13; SG19] is limited to a scalar range Γ ⊂ R.

Contribution In Sect. 5.2, we propose a functional lifting approach in the fully con-
tinuous vector-valued setting for functionals that depend in a convex way on ∆u. We
show that the lifted functional satisfies F(δu) ≤ F (u), where δu is the lifted version of
a function u and briefly discuss the question of whether the inequality is actually an
equality. For the case of absolute Laplacian regularization, we show that our model is
a generalization of [LL18]. Section 5.3 clarifies how convex saddle point solvers can be
applied to our discretized model and Sect. 5.4 presents experimental results. We dis-
cuss the problem of projection and demonstrate that the model can be applied to image
registration problems.

5.2 Functional Lifting with Vectorial Second-Order Terms

We propose the following lifted substitute for F :

F(v) := sup
(p,q)∈X

∫
Ω

∫
Γ
(∆xp(x, z) + q(x, z)) vx(dz)dx, (5.4)

acting on functions v : Ω → P(Γ) with values in the space P(Γ) of Borel probability
measures on Γ. This means that, for each x ∈ Ω and every measurable set U ⊂ Γ, the
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5.2 Functional Lifting with Vectorial Second-Order Terms

expression vx(U) ∈ R can be interpreted as the “confidence” of an assumed underlying
function on Ω to take a value inside of U at point x. A function u : Ω→ Γ can be lifted
to a function v : Ω→ P(Γ) by defining vx := δu(x), the Dirac mass at u(x) ∈ Γ, for each
x ∈ Ω.
We propose the following set of test functions in the definition of F :

X = {(p, q) : p ∈ C2
c (Ω× Γ), q ∈ L1(Ω× Γ), (5.5)

z 7→ p(x, z) concave (5.6)

and q(x, z) + f∗(x, z,∇zp(x, z)) ≤ 0 (5.7)

for every (x, z) ∈ Ω× Γ}, (5.8)

where f∗(x, z, q) := supp∈Rs〈q, p〉 − f(x, z, p) is the convex conjugate of f with respect
to the last argument.
A thorough analysis of F requires a careful choice of function spaces in the definition

of X as well as a precise definition of the properties of the integrand f and the admissible
functions v : Ω → P(Γ). In Chap. 6, we will show that a primal formulation of F – as
opposed to the dual formulation given here – is easier to handle in a certain sense. Here,
we present a proof that the lifted functional F bounds the original functional F from
below.

Proposition 5.1. Let f : Ω × Γ × Rs → R be measurable in the first two, and convex
in the third entry, and let u ∈ C2(Ω,Γ) be given. Then, for v : Ω → P(Γ) defined by
vx := δu(x), it holds that

F (u) ≥ F(v). (5.9)

Proof. Let p, q be a pair of functions satisfying the properties from the definition of X.
By the chain rule, we compute

∆xp(x, u(x)) = ∆ [p(x, u(x))]−
d∑
i=1

〈∂iu(x), D2
zp(x, u(x))∂iu(x)〉 (5.10)

− 2〈∇x∇zp(x, u(x)),∇u(x)〉 − 〈∇zp(x, u(x)),∆u(x)〉.

Furthermore, the divergence theorem ensures

−
∫

Ω
〈∇x∇zp(x, u(x)),∇u(x)〉dx =

∫
Ω
〈∇zp(x, u(x)),∆u(x)〉dx (5.11)

+

∫
Ω

d∑
i=1

〈∂iu(x), D2
zp(x, u(x))∂iu(x)〉dx,
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5 Lifting of Functionals with Higher-Order Regularization

as well as
∫

Ω ∆ [p(x, u(x))] dx = 0 by the compact support of p. As p ∈ C2
c (Ω × Γ),

concavity of z 7→ p(x, z) implies a negative semi-definite Hessian D2
zp(x, z) so that,

together with (5.10)–(5.11),∫
Ω

∆xp(x, u(x)) dx ≤
∫

Ω
〈∇zp(x, u(x)),∆u(x)〉 dx. (5.12)

We conclude

F(v) =

∫
Ω

∫
Γ
(∆xp(x, z) + q(x, z)) dvx(z)dx (5.13)

=

∫
Ω

∆xp(x, u(x)) + q(x, u(x)) dx (5.14)

(5.7)
≤
∫

Ω
∆xp(x, u(x))− f∗(x, u(x),∇zp(x, u(x))) dx (5.15)

(5.12)
≤
∫

Ω
〈∇zp(x, u(x)),∆u(x)〉 − f∗(x, u(x),∇zp(x, u(x))) dx (5.16)

≤
∫

Ω
f(x, u(x),∆u(x)) dx, (5.17)

where we used the definition of f∗ in the last inequality.

By a standard result from convex analysis [Roc97, Thm. 23.5], 〈p, g〉 − f∗(x, z, g) =

f(x, z, p) whenever g ∈ ∂pf(x, z, p), the subdifferential of f with respect to p. Hence, for
equality to hold in (5.9), we would need to find a function p ∈ C2

c (Ω× Γ) with

∇zp(x, u(x)) ∈ ∂pf(x, u(x),∆u(x)) (5.18)

and associated q(x, z) := −f∗(x, z,∆u(x)), such that (p, q) ∈ X or (p, q) can be approx-
imated by functions from X.

If the integrand can be decomposed into f(x, z, p) = ρ(x, z) + η(p) as in (5.2), with
η ∈ C1(Rs) and u sufficiently smooth, the optimal pair (p, q) in the sense of (5.18) is

p(x, z) := 〈z,∇η(∆u(x))〉, (5.19)

q(x, z) := ρ(x, z)− η∗(∇η(∆u(x))). (5.20)

For nonsmooth u, these candidates can be approximated by compactly supported func-
tions from the admissible set X using suitable cut-off functions on Ω× Γ.

We will see in Chap. 6 that considering F as a function of the pair (u,∆u) instead of
u leads to a functional lifting framework that avoids the problems discussed here.
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5.2 Functional Lifting with Vectorial Second-Order Terms

Connection to the Discretization-First Approach [LL18]

In [LL18], data term ρ and regularizer η are lifted independently from each other for the
case η = ‖ · ‖1. Following the continuous multilabeling approaches in [CCP12; Möl+16;
Lau+16], the setting is fully discretized in Ω × Γ in a first step. Then the lifted data
term and regularizer are defined to be the convex hull of a constraint function, which
enforces the lifted terms to agree on the Dirac measures δu with the original functional
applied to the corresponding function u. The data term is taken from [Lau+16], while
the main contribution concerns the regularizer that now depends on the Laplacian of u.

In this section, we show that our fully continuous lifting is a generalization of the result
from [LL18] after discretization.

Discretization In order to formulate the discretization-first lifting approach given in
[LL18], we have to clarify the used discretization. Note that this discretization is loosely
based on the one given in Sect. 2.7.

For the image domain Ω ⊂ Rd, discretized using points X1, . . . , XN ∈ Ω on a rectangu-
lar grid, we employ a finite-differences scheme: We assume that, on each grid point Xi0 ,
the discrete Laplacian of u ∈ RN,s, ui ≈ u(Xi) ∈ Rs, is defined using the values of u on
m+ 1 grid points Xi0 , . . . , Xim such that

(∆u)i0 =
∑m

l=1(uil − ui0) ∈ Rs. (5.21)

For example, in the case d = 2, the popular five-point stencil means m = 4 and the Xil

are the neighboring points of Xi0 in the rectangular grid. More precisely,

∑4
l=1(uil − ui0) = [ui1 − 2ui0 + ui2 ] + [ui3 − 2ui0 + ui4 ]. (5.22)

The range Γ ⊂ Rs is triangulated into simplices ∆1, . . . ,∆M with altogether L vertices
(or labels) Z1, . . . , ZL ∈ Γ. We write T := (Z1| . . . |ZL)T ∈ RL,s, and define the sparse
indexing matrices P j ∈ Rs+1,L in such a way that the rows of Tj := P jT ∈ Rs+1,s are
the labels associated to ∆j .

There exist piecewise linear finite elements Φk : Γ→ R, k = 1, . . . , L satisfying Φk(tl) =

1 if k = l, and Φk(tl) = 0 otherwise. In particular, the Φk form a partition of unity for
Γ, i.e.,

∑
k Φk(z) = 1 for each z ∈ Γ. For a function p : Γ → R in the function space

spanned by the Φk, with a slight abuse of notation, we write p = (p1, . . . , pL), where
pk = p(Zk) so that p(z) =

∑
k pkΦk(z).
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5 Lifting of Functionals with Higher-Order Regularization

Functional lifting of the discretized absolute Laplacian Along the lines of classical
continuous multilabeling approaches, we lift the absolute Laplacian regularizer using the
convex hull of the constraint function φ : RL → R ∪ {+∞},

φ(p) :=

µ
∥∥∑m

l=1(Tjlα
l − Tj0α0)

∥∥ , if p = µ
∑m

l=1(P jlαl − P jlα0),

+∞, otherwise,
(5.23)

where µ ≥ 0, αl ∈ ∆U
s+1 (for ∆U

s+1 the unit simplex) and 1 ≤ jl ≤M for each l = 0, . . . ,m.
The parameter µ ≥ 0 is enforcing positive homogeneity of φ which ensures that the convex
conjugate φ∗ of φ is given by the characteristic function δK of a set K ⊂ RL. Namely,

K =
⋂

1≤jl≤M{f ∈ RL :
∑m

l=1(f(tl)− f(t0)) ≤
∥∥∑m

l=1(tl − t0)
∥∥ , (5.24)

for every αl ∈ ∆U
s+1, l = 0, 1, . . . ,m}, (5.25)

where tl := Tjlα
l and f(tl) is the evaluation of the piecewise linear function f defined by

the coefficients (f1, . . . , fL). The formulation of K comes with infinitely many constraints
so far.
We now show two propositions which give a meaning to this set of constraints for

arbitrary dimensions s of the labeling space and an arbitrary choice of norm in the
definition of η = ‖ · ‖. They extend the component-wise (anisotropic) absolute Laplacian
result in [LL18] to the vector-valued case.

Proposition 5.2. The set K can be written as

K =
{
f ∈ RL : f : Γ→ R is concave and 1-Lipschitz continuous

}
.

Proof. If the piecewise linear function induced by f ∈ RL is concave and 1-Lipschitz
continuous, then

1

m

m∑
l=1

(f(tl)− f(t0)) =

(
1

m

m∑
l=1

f(tl)

)
− f(t0) (5.26)

≤ f

(
1

m

m∑
l=1

tl

)
− f(t0) (5.27)

≤

∥∥∥∥∥
(

1

m

m∑
l=1

tl

)
− t0

∥∥∥∥∥ (5.28)

=
1

m

∥∥∥∥∥
m∑
l=1

(tl − t0)

∥∥∥∥∥ . (5.29)
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5.3 Numerical Implementation

Hence, f ∈ K. On the other hand, if f ∈ K, then we recover Lipschitz continuity by
choosing tl = t1, for each l in (5.24). For concavity, we first prove mid-point concavity.
That is, for every t1, t2 ∈ Γ, we have

f(t1)+f(t2)
2 ≤ f

(
t1+t2

2

)
(5.30)

or, equivalently, [f(t1)− f(t0)] + [f(t2)− f(t0)] ≤ 0, where t0 = 1
2(t1 + t2). This follows

from (5.24) by choosing t0 = 1
2(t1 + t2) and tl = t0 for l > 2. With this choice, the

right-hand side of the inequality in (5.24) vanishes and the left-hand side reduces to the
desired statement. Now, f is continuous by definition and, for these functions, mid-point
concavity is equivalent to concavity [RV73, pp. 220–221].

The following theorem is an extension of [LL18, Thm. 1] to the vector-valued case and
is crucial for numerical performance, as it shows that the constraints in Prop. 5.2 can be
reduced to a finite number:

Proposition 5.3. The set K can be expressed using not more than |E| (nonlinear) con-
straints, where E is the set of faces (or edges in the 2D-case) in the triangulation.

Proof. Usually, Lipschitz continuity of a piecewise linear function requires one constraint
on each of the simplices in the triangulation, and thus as many constraints as there are
gradients. However, together with concavity, it suffices to enforce a gradient constraint
on each of the boundary simplices, of which there are fewer than the number of outer
faces in the triangulation. This can be seen by considering the one-dimensional case
where Lipschitz constraints on the two outermost pieces of a concave function enforce
Lipschitz continuity on the whole domain. Concavity of a function f : Γ→ R expressed
in the basis (Φk) is equivalent to its gradient being monotonously decreasing across the
common boundary between each pair of adjacent simplices (see [CL01, Lemma 3] and
[Dud77, Thm. 3.1]). Together, we need one gradient constraint for each inner, and at
most one for each outer face in the triangulation.

5.3 Numerical Implementation

For the numerical experiments, we restrict ourselves to the special case of integrands
f(x, z, p) = ρ(x, z) + η(p) as motivated in the previous section.
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5 Lifting of Functionals with Higher-Order Regularization

Full discretization We base our discretization on the considerations in the previous
section. For a function p : Γ→ R in the function space spanned by the Φk, we note that

p(z) =
∑L

k=1 pkΦk(z) = 〈Ajz − bj , P jp〉 whenever z ∈ ∆j , (5.31)

where Aj and bj are such that α = Ajz− bj ∈ ∆U
s+1 contains the barycentric coordinates

of z with respect to ∆j . More precisely, for T̄ j := (P jT | − e)−1 ∈ Rs+1,s+1 with e =

(1, . . . , 1) ∈ Rs+1, we set

Aj := T̄ j(1:s,:) ∈ Rs,s+1, (5.32)

bj := T̄ j(s+1,:) ∈ Rs+1. (5.33)

The functions v : Ω→ P(Γ) are discretized as

vik :=

∫
Γ

Φk(z)dvXi(z), (5.34)

hence v ∈ RN,L. Furthermore, whenever vx = δu(x), the discretization vi contains the
barycentric coordinates of u(Xi) relative to ∆j . In the context of first-order models, this
property is described as sublabel-accuracy in [Lau+16; MC17].

Dual admissibility constraints The admissible set X of dual variables is realized by
discretizing the conditions (5.6) and (5.7).

Concavity (5.6) of a function p : Γ → R expressed in the basis (Φk) is equivalent to
its gradient being monotonously decreasing across the common boundary between each
pair of neighboring simplices. This amounts to

〈gj2 − gj1 , nj1,j2〉 ≤ 0, (5.35)

where gj1 , gj2 are the (piecewise constant) gradients ∇p(z) on two neighboring simplices
∆j1 ,∆j2 , and nj1,j2 ∈ Rs is the normal of their common boundary pointing from ∆j1

to ∆j2 .

The inequality (5.7) is discretized using (5.31) similar to the one-dimensional setting
presented in [MC17]. We denote the dependence of p and q on Xi ∈ Ω by a superscript
i as in qi and pi. Then, for each j = 1, . . . ,M , we require

sup
z∈∆j

〈Ajz − bj , P jqi〉 − ρ(Xi, z) + η∗(gij) ≤ 0 (5.36)
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which, for ρj := ρ+ δ∆j , can be formulated equivalently as

ρ∗j (X
i, (Aj)TP jqi) + η∗(gij) ≤ 〈bj , P jq〉. (5.37)

The fully discretized problem can be expressed in convex-concave saddle point form

min
u

max
p,q,g

∑
i〈ui, (∆p)i + qi〉

s.t.
∑

k u
ki = 1, ui ≥ 0,

gij = BjP jpi,

ρ∗j (X
i, (Aj)TP jqi) + η∗(gij) ≤ 〈bj , P jqi〉,

〈gj2 − gj1 , nj1,j2〉 ≤ 0,

to which we apply the primal-dual splitting algorithm with adaptive step sizes described
in Sect. 2.6. The epigraph projections for ρ∗j and η are implemented along the lines of
[Möl+16] and [Poc+10].

5.4 Numerical Results

We implemented the proposed model in Python 3 (see https://github.com/room-10/

opymize) with NumPy and PyCUDA. The examples were computed on an Intel Core
i7 4.00GHz with 16GB of memory and an NVIDIA GeForce GTX 1080 Ti with 12GB
of dedicated video memory. The iteration was stopped when the Euclidean norms of
the primal and dual residuals [GEB13] fell below 10−6 ·

√
n where n is the respective

number of variables. We use this stopping criterion instead of the primal-dual gap (see
introductory Sect. 2.6), as the evaluation of the primal objective function involves itself
a minimization to avoid large numerical errors in the evaluation of the primal objective
function.

Image registration We show that the proposed model can be applied to two-dimensional
image registration problems (Figures 5.1 and 5.2). We used the sum of squared distances
(SSD) data term ρ(x, z) := 1

2‖R(x) − T (x + z)‖22 and squared Laplacian (curvature)
regularization η(p) := 1

2‖ · ‖
2. The image values T (x+ z) were calculated using bilinear

interpolation with Neumann boundary conditions. After minimizing the lifted functional,
we projected the solution by taking averages over Γ in each image pixel.
In the first experiment (Fig. 5.1), the reference image R was synthesized by numerically

rotating the template T by 40 degrees. The grid plot of the computed deformation as well
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Figure 5.1: Application of the proposed higher-order lifting to image registration with
SSD data term and squared Laplacian regularization. The method accurately
finds a deformation (bottom row, middle and right) that maps the tem-
plate image (top row, second from left) to the reference image (top row,
left), as also visible from the difference image (top row, right). The result
(top row, second from right) is almost pixel-accurate, although the range
Γ of possible deformation vectors at each point is discretized using only 25
points (second row, left).
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Figure 5.2: DCE-MRI data of a human kidney; data courtesy of Jarle Rørvik, Haukeland
University Hospital Bergen, Norway; taken from [BWM18]. The deformation
(middle row) mapping the template (top left) to the reference (top right)
image, computed using our proposed model, is able to significantly reduce
the misfit in the left half while fixing the spinal cord at the right edge as can
be observed in the difference images from before (bottom left) and after
(bottom right) registration.
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Figure 5.3: Minimizers of the lifted functional for a non-convex data term. Left: The
data term ρ(x, z) = (|x| − |z|)2. Middle: With classical first-order to-
tal variation-regularized lifting, the result is a composition of two solutions,
which can be easily discriminated using thresholding. Right: For the new
second-order squared-Laplacian regularized lifting, this simple approach fails
to separate the two possible (straight line) solutions.

as the deformed template are visually very close to the rigid ground-truth deformation
(a rotation by 40 degrees). Note that the method obtains almost pixel-accurate results
although the range Γ of the deformation is discretized on a disk around the origin,
triangulated using only 25 vertices, which is far less than the image resolution.

The second experiment (Fig. 5.2) consists of two coronal slices from a DCE-MRI
dataset of a human kidney (data courtesy of Jarle Rørvik, Haukeland University Hospital
Bergen, Norway; taken from [BWM18]). The deformation computed using our proposed
model is able to significantly reduce the misfit in liver and kidney in the left half while
accurately fixing the spinal cord at the right edge.

Projecting the lifted solution In the scalar-valued case with first-order regularization,
the minimizers of the calibration-based lifting can be projected to minimizers of the
original problem [Poc+10, Theorem 3.1]. In our notation, the thresholding technique
used there corresponds to mapping v to

u(x) := inf{t : vx((−∞, t] ∩ Γ) > s}, (5.38)

which is (provably) a global minimizer of the original problem for each s ∈ [0, 1).

To investigate whether a similar property can hold in our higher-order case, we applied
our model with Laplacian regularization η(p) = 1

2‖p‖
2 as well as the calibration method

approach with total variation regularization to the data term ρ(x, z) = (|x| − |z|)2 with
one-dimensional domain Ω = [−1, 1] and scalar data Γ = [−1, 1] using 20 regularly-spaced
discretization points (Fig. 5.3).
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5.5 Conclusion and Outlook

The result from the first-order approach is easily interpretable as a composition of two
solutions to the original problem, each of which can be obtained by thresholding (5.38).
In contrast, thresholding applied to the result from the second-order approach yields the
two hat functions u1(x) = |x| and u2(x) = −|x|, neither of which minimizes the original
functional. Instead, the solution turns out to be of the form v = 1

2δu3 + 1
2δu4 , where u3

and u4 are in fact global minimizers of the original problem: namely, the straight lines
u3(x) = x and u4(x) = −x.

5.5 Conclusion and Outlook

In this chapter, we presented a novel fully continuous functional lifting approach for
non-convex variational problems that involve Laplacian second-order terms and vectorial
data, with the aim to ultimately provide sufficient optimality conditions and find global
solutions despite the non-convexity. Experiments indicate that the method can produce
accurate solutions for the non-convex image registration problem. We argued that more
involved projection strategies than in the classical calibration approach will be needed
for obtaining a good (approximate) solution of the original problem from a solution of
the lifted problem. Another interesting direction for future work is the generalization to
functionals that involve arbitrary second- or higher-order terms.
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6 Measure-valued Liftings Motivated
from Dynamical Optimal Transport

In this chapter, we propose a new mathematical framework for the description of a
large class of first- and second-order functional lifting strategies for non-convex vectorial
variational problems of the form

inf
u∈U

F (u), F (u) :=

∫
Ω
f(x, u(x), Lu(x)) dx, (6.1)

for Ω ⊂ Rd open and bounded, Γ ⊂ Rs compact and L a linear differential operator
of first or second order, i.e., L = ∇ or L = ∇2 (furthermore, we explicitly discuss the
case L = ∆). According to the regularity imposed by L, we denote by U a suitable
set of functions u : Ω → Γ on which Lu is well-defined in a weak or strong sense, e.g.,
U = W 1,1(Ω,Γ) or U = C2(Ω,Γ). The integrand f is expected to be convex in the third
argument Lu and bounded from below, but f may be non-convex in u so that the whole
problem is non-convex in general. Our proposed framework uses notions from dynamical
optimal transport as introduced by Benamou and Brenier to define a convex functional
F on the space of measures M(Ω× Γ) with the property that

F(δu) = F (u) =

∫
Ω
f(x, u(x), Lu(x)) dx, (6.2)

whenever u : Ω→ Γ is smooth enough and δu is the measure on Ω×Γ that is concentrated
on the graph of u (this measure is defined rigorously in (6.51) below). Minimizing F on
the set {δu : u smooth enough} is equivalent to the original problem (6.1). Our proposed
lifting strategy then consists of minimizing the convex functional F over the convex set
{µ : Ω → P(Γ)} of measure-valued functions on Ω – a convex relaxation of the original
problem in a higher-dimensional space.
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport
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Figure 6.1: The theory of dynamical optimal transport exhibits conceptual similarities
with state-of-the-art lifting strategies. Left: The calibration method-based
lifting is defined on the space of functions BV(Ω×R, [0, 1]) that converge to 0
and 1 at∞ and −∞, respectively. A lifted functional is defined via dual pair-
ings 〈φ,Dv〉 with suitable vector fields φ = (φξ, φλ) on the Cartesian product
Ω × R. Center and Right: In the Benamou-Brenier approach to dynam-
ical optimal transport, the regularity of curves in the space of probability
measures is measured by defining tangential vector fields on the Cartesian
product [0, 1] × Γ. The derivative measures Dv from the calibration-based
model can be interpreted to correspond to the tangential vector fields in dy-
namical optimal transport.

6.1 Related Work and Overview

Scalar-valued problems The functional lifting theory (see introductory Sect. 1.2.2) for
scalar problems with first-order regularization, i.e., for (6.1) with Γ = R and L = ∇,
is well-understood when based on the theory of the calibration method as introduced
in [ABD03; Poc+10]. In this case, the lifted functional F is defined on the space of
functions v : Ω× R→ R and, for each u ∈W 1,1(Ω), satisfies F(1u) = F (u) where

1u(x, z) :=

1 if u(x) > z,

0 otherwise.
(6.3)

The convexified set of admissible functions is then defined as (a rigorous definition of
this set is beyond the scope of this work){

v ∈ BV(Ω× R, [0, 1]) : lim
z→∞

v(x, z) = 0, lim
z→−∞

v(x, z) = 1

}
. (6.4)

This framework has the property that, whenever v∗ is a minimizer of F , there is a
minimizer u∗ of F with F(v∗) = minu F (u) = F (u∗) that can be explicitly derived
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6.1 Related Work and Overview

v∗ = u∗
U

R F
F ∗∗

v∗ u∗
U

R F
F ∗∗

F

F

Figure 6.2: The convex hull F ∗∗ of a functional F : U → R defined on a Hilbert space
U has the property that every minimizer v∗ ∈ U of F ∗∗ satisfies F ∗∗(v∗) =
infu∈U F (u). Left: Since F ∗∗ is convex, global minimizers can be computed
efficiently. In some cases, it might hold that F ∗∗(v∗) = F (v∗). Center:
In general, F ∗∗(v∗) < F (v∗) and it is a non-trivial task to derive any u∗ ∈
U from v∗ such that F (u∗) = F ∗∗(v∗). Right: Figuratively speaking, a
“folding” of the objective functional along an additional axis is applied in
the functional lifting theory for scalar variational problems with first-order
regularization. Formally repeating the folding infinitely many times defines a
convex functional F with the following property: Whenever v∗ is a minimizer
of F , an explicit procedure is known how to compute a minimizer u∗ of the
original functional F . This is achieved at the price of a significant increase of
dimension (lifting) in the domain of F compared to the domain of F , but it
allows to apply efficient convex optimization algorithms and provably yields
globally optimal solutions to the original non-convex minimization problem.
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

from v∗ without any further optimization step. To demonstrate the power of this last
property, we compare it with properties of the convex hull F ∗∗ of a functional F : U → R
in case of a Hilbert space U (see Fig. 6.2): In fact, every minimizer v∗ ∈ U of F ∗∗

satisfies F ∗∗(v∗) = minu∈U F (u). But F ∗∗(v∗) < F (v∗) in general, and finding any
u∗ ∈ U such that F (u∗) = F ∗∗(v∗) is a non-trivial task in practice. On the other hand,
F ∗∗ is defined on the same domain as F while F is defined on a space of much higher
dimension, increasing numerical cost substantially. Our proposed measure-valued lifting
framework is equivalent with the calibration-based lifting approach in the case of scalar
first-order problems (see Sect. 6.4.1). However, for vectorial and higher-order problems,
our approach does not come with a guarantee that minimizers of the lifted functional are
somehow related to minimizers of the original functional, a trade-off that is shared with
any other framework for the lifting of vectorial problems that has been investigated so
far.

Vector-valued problems The concept of indicator functions of subgraphs 1u does not
easily extend to vectorial data. The calibration criterion [ABD03] that is at the heart
of the calibration-based lifting can be generalized to vectorial ranges [Mor02], but this
generalization has not been translated into a corresponding functional lifting approach
so far. Only very recently, a first attempt at a theory in the fully continuous vectorial
setting using currents has been investigated in [MC19]. Based on this, general variational
problems with manifold range Γ = M have been addressed [Vog+19] (see Chap. 4).
Those approaches can be shown to be equivalent to our approach in the first-order case
(Sect. 6.4.2). However, in contrast to our framework, neither of them easily extends to
higher-order models.

Higher-order models Existing extensions of the functional lifting approach to higher-
order models are restricted to a scalar range and to a single regularizer, such as the
total generalized variation [RPB13; SG19] and the 1-norm of the Laplacian (absolute
Laplacian regularization) [LL18]. On the other hand, the lifting approach [VL19] for
more general Laplacian regularization terms applied to problems with vectorial range
lacks a mathematically rigorous formulation (see also Chap. 5).

Dynamical optimal transport At the same time, the dynamical formulation of opti-
mal transportation as introduced by Benamou and Brenier [Bre03] (see introductory
Sect. 1.2.3) exhibits some striking conceptual similarities with some of these lifting theo-
ries (see Fig. 6.1). In fact, the Benamou-Brenier approach has been generalized to other
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6.2 Integral Representation of Lifted Functional

energy functionals in the language of one-dimensional currents [DGG06; Gra07; Gra09]
and it inspired the concept of harmonic functions with values in the Wasserstein space
as introduced in [Bre03]: A harmonic function on Ω ⊂ Rd with values in P(Γ) is a pair
of measures (µ,E) on Ω× Γ valued in R and Rd,n that minimizes the energy∫

Ω×Γ
‖v‖2F dµ (6.5)

subject to the continuity equation ∇xµ + Divz E = 0 (in the sense of distributions, see
Defn. 6.17 for a rigorous definition) with E := vµ for v : Ω × Γ → Rd,n measurable
and prescribed boundary data on ∂Ω. We propose to apply this scheme to more general
energy functionals and to more general continuity equations to lift problems such as (6.1)
in the language of measure-valued functions:

Definition 6.1. For a measure-valued function µ : Ω→ P(Γ), we write µx := µ(x) and
we call µ weakly measurable if x 7→

∫
Γ φdµx is measurable on Ω for each φ ∈ C0(Γ). We

denote by L∞w (Ω,P(Γ)) the weakly measurable functions on Ω with values in P(Γ).

Our approach is easier accessible for readers that are not familiar with the theory of
currents and the notation of differential geometry and exterior algebra. For simplicity,
we restrict ourselves to the case of convex integrands rather than the general polyconvex
setting, which avoids the need for introducing currents and exterior algebra.

Contribution In Sect. 6.2, we define a lifting Bf for augmented functionals

F (p, u) :=

∫
Ω
f(x, u(x), p(x)) dx (6.6)

with the property that Bf (pδu, δu) = F (u, p) (Cor. 6.13). In Sect. 6.3 we translate the
relationship p = Lu to equivalent constraints in the lifted setting in the form of weak
continuity equations for the cases L = ∇ (Sect. 6.3.1), L = ∇2 (Sect. 6.3.2) and L = ∆

(Sect. 6.3.3). In each case, we formulate the full lifting model and discuss some of its
properties. Finally, in Sect. 6.4, we clarify its relationship to existing lifting and measure-
valued frameworks, in particular the ones based on the calibration method (Sect. 6.4.1)
and on the theory of currents (Sect. 6.4.2).

6.2 Integral Representation of Lifted Functional

For this section, let U ⊂ Rn be nonempty and let f : U×Rm → R be convex in the second
argument. By R := [−∞,∞] we denote the extended real line. Convexity of functions
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

with values in R is defined via convexity of their epigraphical set and g : Rm → R is said
to be lower semicontinuous at t∗ ∈ Rm if, for each M < g(t∗), there exists δ > 0 such
that, for each t ∈ Bδ(t∗) we have M ≤ g(t). For the final functional lifting framework,
we will set U := Ω×Γ ⊂ Rd×Rs, n := d+ s and m := ds. We propose to use as a lifted
version of (6.6) the generalized Benamou-Brenier functional,

Bf (ν) := sup
φ∈Kf

〈ν, φ〉, (6.7)

where ν ∈ M(U,Rm+1), by 〈ν, φ〉 we denote the dual pairing between ν ∈ M(U,Rm+1)

and φ ∈ C0(U,Rm+1) (see Sect. 2.1), and we define

Kf := {φ = (φξ, φλ) ∈ C0(U,Rm × R) : φλ(t) + f∗(t, φξ(t)) ≤ 0 ∀t ∈ U}. (6.8)

Here f∗(t, ζ) := supξ∈Rm〈ξ, ζ〉 − f(t, ξ) is the convex conjugate of f with respect to the
second variable. The name generalized Benamou-Brenier functional and the symbol Bf
are motivated by [San15, Section 5.3.1], where the name Benamou-Brenier functional is
used for the special case

f(t, ξ) =
1

q
‖ξ‖q, q ∈ (1,∞). (6.9)

We start by stating the following basic properties of Bf :

Proposition 6.2. Let f : U × Rm → R be nonnegative, lower semicontinuous in both
variables and convex in the second variable. Then the functional Bf is nonnegative,
convex and lower semicontinuous on M(U,Rm+1).

Proof. Bf is defined as a pointwise supremum over continuous linear functions, since
M(U,Rm+1) is the dual space of C0(U,Rm+1). This implies lower-semicontinuity and
convexity. Nonnegativity follows from nonnegativity of f since this implies that φ = (0, 0)

is in Kf .

The goal of this section is to derive a primal formulation (an integral representation)
for the functional Bf that will clarify the relation between Bf and (6.6). This includes a
careful choice of suitable regularity conditions on the integrand f and its domain U .

6.2.1 Finite-Dimensional Analogon

We first note that Kf is a convex subset of C0(U,Rm+1), whose dual space is M(U,Rm+1)

(see Sect. 2.1). From this perspective, Bf is actually the support function of a convex
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6.2 Integral Representation of Lifted Functional

set in an infinite-dimensional setting. Furthermore, the specific form of Kf is a pointwise
variant of a convex set whose support function is well-understood in standard finite-
dimensional convex analysis and known in the literature under the name perspective
function:

Proposition 6.3 ([Roc97, Corollary 13.5.1]). Let f : Rm → R be a proper convex func-
tion that is lower semicontinuous. Then the support function of

Kf := {(ξ, λ) : λ+ f∗(ξ) ≤ 0} ⊂ Rm+1 (6.10)

is the perspective function h : Rm+1 → R of f defined by

h(ξ, λ) :=


λf(ξ/λ) if λ > 0,

f∞(ξ) if λ = 0,

+∞ if λ < 0,

(6.11)

Here, f∞(ξ) := lims→∞ f(sξ)/s is the recession function of f .

Remark 6.4. The function h is convex and positively 1-homogeneous in (ξ, λ). Many
examples of perspective functions with their corresponding properties and applications
are discussed in [Com18].

We are going to show that a similar statement holds in our pointwise infinite-dimen-
sional setting. This requires a careful analysis of measurability and semicontinuity of all
functions involved that we will discuss in the following subsections.

6.2.2 Main Result: Statement of Integral Representation

We define the function h : U × Rm+1 → R by

h(t, ξ, λ) :=


λf(t, ξ/λ) if λ > 0,

f∞(t, ξ) if λ = 0,

+∞ if λ < 0.

(6.12)

Moreover, we say that U ⊂ Rn is locally compact if, for each t ∈ U , there are V ⊂ Rn

open and C ⊂ U compact with t ∈ (V ∩ U) ⊂ C (or, equivalently, each t ∈ U has a
compact neighborhood in U).
Then, our main result in this section is that the explicit formula for the support function

of Kf in the finite-dimensional setting carries over to the case of the infinite-dimensional
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

set Kf in the following sense:

Theorem 6.5. Let U ⊂ Rn be locally compact and suppose that f : U×Rm → R is lower
semicontinuous in both variables, convex in the second variable, and such that t 7→ f(t, 0)

is locally bounded. Then, the generalized Benamou-Brenier functional Bf as defined in
(6.7) satisfies, for each ν ∈M(U,Rm+1),

sup
φ∈Kf

〈φ, ν〉 = Bf (ν) =

∫
U
h(t, (dν/d‖ν‖)(t)) ‖ν‖(dt). (6.13)

Here, ‖ν‖ is the total variation measure of ν and (dν/d‖ν‖) : U → Rm+1 denotes the
corresponding vectorial density of the vector measure ν (its Radon-Nikodym derivative
with respect to ‖ν‖, see Sect. 2.1).

Remark 6.6. For now, we simply assumed local compactness of U , but later this will
follow from U = Ω×Γ with Ω open and bounded and Γ compact (see also [Wil70, Theorem
18.6]). In many applications in image processing, f splits up as f(t, ξ) = ρ(t)+η(ξ) with
ρ bounded and η(0) = 0, which will imply the local boundedness assumption.

For the integral in (6.13) to be well-defined, h needs to satisfy appropriate measurability
properties. In fact, h inherits lower semicontinuity from f if f is sufficiently regular, as
noted in the proof of [Dal79, Theorem 3.1]:

Lemma 6.7. Suppose that U ⊂ Rn is nonempty and f : U × Rm → R is lower semi-
continuous in both variables and convex in the second variable. If t 7→ f(t, 0) is locally
bounded, then h as defined in (6.12) is lower semicontinuous (jointly in all variables).

Remark 6.8. The following two examples show that, while it cannot be skipped without
replacement, the criterion of local boundedness at 0 ∈ Rm is not a necessary criterion for
lower semicontinuity of h.

1. The function f : [0, 1]× R→ R,

f(t, ξ) :=

1/t, if t > 0,

0, otherwise,
(6.14)

is lower semicontinuous in both variables, but locally unbounded at t∗ = 0 for each
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ξ ∈ R. Still, the corresponding perspective function

h(t, ξ, λ) :=


λ/t, if t > 0, λ ≥ 0

0, if t = 0, λ ≥ 0,

+∞, otherwise,

(6.15)

is obviously lower semicontinuous in all variables.

2. The function f : [0, 1]× R→ R,

f(t, ξ) :=

|ξ − 1/t| if t > 0,

|ξ| otherwise,
(6.16)

is lower semicontinuous in both variables and locally unbounded at t∗ = 0 (for each
ξ ∈ R). The corresponding perspective function

h(t, ξ, λ) :=

|ξ − λ/t| if t > 0,

|ξ| otherwise,
(6.17)

fails to be lower semicontinuous at (t, ξ, λ) = (0, 1, 0) as can be seen from

h(1/k, 1, 1/k) = 0 < 1 = h(0, 1, 0). (6.18)

Proof of Lemma 6.7. Since h is obviously lower semicontinuous at all points (t, ξ, λ) with
λ 6= 0, it suffices to consider lower semicontinuity at (t∗, ξ∗, 0) ∈ U × Rm × R. We show
that, for M < h(t∗, ξ∗, 0), there exists δ > 0 such that, for each t ∈ Bδ(t∗), ξ ∈ Bδ(ξ∗)
and λ ∈ Bδ(0),

M ≤ h(t, ξ, λ). (6.19)

At first, let δ1 > 0 and fmax > 0 be such that |f(t, 0)| ≤ fmax for each t ∈ Bδ1(t∗).
Let ε > 0 be such that M + 2ε < h(t∗, ξ∗, 0). From the definition of f∞, there is
δ2 < min{δ1, ε/fmax} such that

M + 2ε ≤ h(t∗, ξ∗, δ2). (6.20)

On the other hand, lower semicontinuity at (t∗, ξ∗, δ2) implies that there is δ ∈ (0, δ2)
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

such that, for each t ∈ Bδ(t∗) and ξ ∈ Bδ(ξ∗),

M + ε ≤ h(t, ξ, δ2). (6.21)

By convexity of f , we can compute, for each λ ∈ (0, δ),

h(t, ξ, δ2) = δ2f(t, ξ/δ2) (6.22)

≤ λf(t, ξ/λ) + (δ2 − λ)f(t, 0) (6.23)

≤ h(t, ξ, λ) + δ2f(t, 0) (6.24)

≤ h(t, ξ, λ) + ε. (6.25)

Together we deduce, for each t ∈ Bδ(t∗), ξ ∈ Bδ(ξ∗) and λ ∈ (0, δ),

M ≤ h(t, ξ, λ). (6.26)

Note that the inequality trivially holds for λ < 0.

6.2.3 Proof of the Main Result

The main result Thm. 6.5 is a consequence of a well-known statement of which variants
have been known since the 1960s [Roc68; Roc71] at least. To state the general result,
let us first introduce some notation: For sets X and Y , we write Q : X ⇒ Y if Q is a
set-valued function, i.e., for each x ∈ X, the value Q(x) is a subset of Y . The preimage
Q−1(V ) of V ⊂ Y under Q is defined via

Q−1(V ) := {x ∈ X : Q(x) ∩ V 6= ∅}. (6.27)

For topological spaces X and Y we call a set-valued function Q : X ⇒ Y inner semi-
continuous if Q−1(V ) ⊂ X is open for each open set V ⊂ Y (Fig. 6.3). Note that inner
semicontinuity does not “correspond” to the usual concept of lower or upper semiconti-
nuity in case of single-valued functions. Furthermore, in case of a normed vector space
Y , we define the associated set of continuous selections

C(Q) := {φ ∈ C0(X,Y ) : φ(x) ∈ Q(x), ∀x ∈ X}. (6.28)

For a topological vector space Y and a convex set V ⊂ Y , we write σV := δ∗V for the
support function of V , the convex conjugate of the convex indicator function δV of V (see
Sect. 2.5). Finally, a second-countable locally compact Hausdorff space is a topological
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φ ∈ C(Q)
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Figure 6.3: A set-valued function Q : X ⇒ Y is a function that assigns a set Q(x) to
each point x ∈ X. We call Q inner semicontinuous if the preimage Q−1(V )
is open for each open set V ⊂ Y . Left: If the graph of a set-valued function
contains vertical boundaries, the function fails to be inner semicontinuous.
Right: Michael’s selection theorem (Thm. 6.10) says that, under suitable
assumptions onX, Y andQ, inner semicontinuity ofQ is a sufficient condition
for the existence of a continuous selection for Q, i.e., a continuous function
φ : X → Y with φ(x) ∈ Q(x) for each x ∈ X.

123



6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

space where points can be separated by disjoint neighborhoods, where every point has a
compact neighborhood and where there exists a countable family U of open sets such that
every open set can be written as the union of sets from U . Every separable metric space
(including every subset of Rn) is second-countable and Hausdorff [Wil70, Theorem 16.11]
and we will only be interested in subsets of Rn in this chapter. For subsets U ⊂ Rn, local
compactness is satisfied, for example, if U is open or closed. An example of a set that
fails to be locally compact is

{
(t1, t2) ∈ R2 : t2 > 0

}
∪ {(0, 0)}, (6.29)

which fails to have a compact neighborhood at t = (0, 0).
With this notation at hand, we will demonstrate in this subsection that Thm. 6.5 is a

special case of the following

Theorem 6.9 ([Per18, Theorem 1]). Assume X is a second-countable locally compact
Hausdorff space and let Q : X ⇒ Rm be such that C(Q) 6= ∅ and such that, for each x ∈
X, the set Q(x) is closed and convex. Then the following two statements are equivalent

1. The support function of C(Q) on M(X,Rm) is given by the formula

sup
φ∈C(Q)

〈ν, φ〉 = σC(Q)(ν) =

∫
X
σQ(x)((dν/dθ)(x)) θ(dx), (6.30)

whenever ν ∈M(X,Rm) and θ is a nonnegative measure in M(X) with respect to
which ν is absolutely continuous.

2. Q is inner semicontinuous.

In order to prove Thm. 6.9, we aim to apply this general result to the case where
X = U with U as in the statement of Thm. 6.5 and Q : U ⇒ Rm+1 is defined via

Q(t) := {(ξ, λ) ∈ Rm × R : λ+ f∗(t, ξ) ≤ 0}. (6.31)

First, U is a subset of Rn, hence a separable metric space and, thus, second-countable
and Hausdorff. Note that, by the definition of the convex conjugate,

Q(t) = {(ξ, λ) ∈ Rm+1 : λ+ 〈ξ, ζ〉 ≤ f(t, ζ) ∀ζ ∈ Rm}. (6.32)

By this alternative representation, we immediately see that Q is non-empty, closed and
convex-valued. It remains to show that C(Q) 6= ∅ and that Q is inner semicontinuous.
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6.2 Integral Representation of Lifted Functional

Existence of a continuous selection for Q By Michael’s selection theorem [Mic56],
C(Q) 6= ∅ is a consequence of inner semicontinuity (which will be shown in the following
paragraph):

Theorem 6.10 ([Mic56, Theorem 3.2”]). Assume that X is a separable metric space,
and let Q : X ⇒ Rm be an inner semicontinuous set-valued mapping that has nonempty,
convex and closed values. Then C(Q) 6= ∅.

Inner semicontinuity of Q The inner semicontinuity of a mapping similar to Q is
proved in [GMS98b, Sect. 1.1.3]. We present a proof of inner semicontinuity based on
arguments from the proof of [BV88, Theorem 8] that requires less restrictive assumptions
on f than the proof given in [GMS98b, Sect. 1.1.3]. In addition, we show that the lower
semicontinuity of f is also a necessary condition for Q to be inner semicontinuous.

Proposition 6.11. Suppose that U ⊂ Rn is nonempty, f : U ×Rm → R is convex in the
second variable and that t 7→ f(t, 0) is locally bounded. Let the map Q : U ⇒ Rm+1 be
defined as in (6.31). Then, the map Q is inner semicontinuous if and only if f is lower
semicontinuous jointly in both variables.

Proof. Suppose that f is lower semicontinuous, and, for the sake of contradiction, suppose
that Q fails to be inner semicontinuous. That means, there exists an open set V ⊂ Rm+1

such that Q−1(V ) is not open. Choose t∗ ∈ Q−1(V ) such that no open neighborhood of t∗

is contained in Q−1(V ). We can assume V = Bε(ξ, λ) for some ε > 0 and (ξ, λ) ∈ Q(t∗).
Then there is a sequence tk → t∗ such that Bε(ξ, λ) ∩Q(tk) = ∅. After subtracting the
linear and lower semicontinuous function ζ 7→ 〈ξ, ζ〉 + λ from f , we can assume that
(ξ, λ) = 0 ∈ Q(t∗).

The sequence (tk) is constructed in such a way that, for each k, the convex sets Q(tk)

and Bε(0) are disjoint. By the hyperplane separation theorem, there exist (ξk, λk) such
that

h(tk, ξk, λk) = sup
(ξ,λ)∈Q(tk)

〈(ξk, λk), (ξ, λ)〉 ≤ −1 ≤ inf
(ξ,λ)∈Bε(0)

〈(ξk, λk), (ξ, λ)〉. (6.33)

The right hand side is

inf
(ξ,λ)∈Bε(0)

〈(ξk, λk), (ξ, λ)〉 = −ε sup
(ξ,λ)∈B1(0)

〈(ξk, λk), (ξ, λ)〉 = −ε‖(ξk, λk)‖, (6.34)

so that ‖(ξk, λk)‖ ≤ 1/ε for each k. Hence, ξk → ξ∗, λk → λ∗ for a subsequence. By
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

Lemma 6.7, we know that h as in (6.12) is lower semicontinuous so that

h(t∗, ξ∗, λ∗) ≤ lim inf
k→∞

h(tk, ξk, λk) ≤ −1. (6.35)

But, by 0 ∈ Q(t∗) we have f(t∗, ·) ≥ 0 and therefore h(t∗, ξ∗, λ∗) ≥ 0, a contradiction.

Now, suppose that Q is inner semicontinuous, fix t∗ ∈ U , ζ∗ ∈ Rm and M < f(t∗, ζ∗).
We want to show that there exists δ > 0 such that, for each t ∈ Bδ(t∗) and ζ ∈ Bδ(ζ∗),
we have

f(t, ζ) ≥M. (6.36)

Let ε > 0 be such that M + 2ε < f(t∗, ζ∗). The point (ζ∗,M + 2ε) has positive distance
from the graph of ζ 7→ f(t∗, ζ) and hence, by convexity of f in the second variable, an
affine linear function separates ζ 7→ f(t∗, ζ) from M + 2ε. This means that there exists
(ξ∗, λ∗) ∈ Q(t∗) such that 〈ξ∗, ζ∗〉 + λ∗ ≥ M + 2ε. By inner semicontinuity of Q, there
exists δ̃ > 0, such that for each t ∈ U with ‖t − t∗‖ < δ̃, there exist (ξ(t), λ(t)) ∈ Rm+1

with
‖ξ(t)− ξ∗‖+ |λ(t)− λ∗| < ε/max{1, ‖ζ∗‖} (6.37)

and such that, for each ζ ∈ Rm,

f(t, ζ) ≥ 〈ξ(t), ζ〉+ λ(t). (6.38)

Expanding the right hand side of (6.38) and applying the definition of λ∗, we get

f(t, ζ) ≥ 〈ξ(t), ζ〉+ λ(t) (6.39)

= 〈ξ(t), ζ − ζ∗〉+ 〈ξ(t)− ξ∗, ζ∗〉+ (λ(t)− λ∗) + 〈ξ∗, ζ∗〉+ λ∗ (6.40)

≥ 〈ξ(t), ζ − ζ∗〉+ 〈ξ(t)− ξ∗, ζ∗〉+ (λ(t)− λ∗) +M + 2ε. (6.41)

Using the Cauchy-Schwarz inequality, we further bound from below

f(t, ζ) ≥M + 2ε+ 〈ξ(t), ζ − ζ∗〉 − ‖ξ(t)− ξ∗‖‖ζ∗‖ − |λ(t)− λ∗|. (6.42)

Applying (6.37) to this yields

f(t, ζ) ≥M + ε+ 〈ξ(t), ζ − ζ∗〉. (6.43)
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We again use (6.37) to bound ‖ξ(t)‖ from below:

f(t, ζ) ≥M + ε+ 〈ξ(t), ζ − ζ∗〉 (6.44)

≥M + ε− ‖ξ(t)‖‖ζ − ζ∗‖ (6.45)

≥M + ε− (‖ξ∗‖+ ε)‖ζ − ζ∗‖. (6.46)

Finally, we define δ := min{δ̃, ε/(‖ξ∗‖ + ε)} so that (‖ξ∗‖ + ε)‖ζ − ζ∗‖ ≤ ε whenever
ζ ∈ Bδ(ζ∗) and conclude

f(t, ζ) ≥M + ε+ 〈ξ(t), ζ − ζ∗〉 ≥M (6.47)

for every t ∈ Bδ(t∗) and ζ ∈ Bδ(ζ∗) which proofs lower semicontinuity of f at (t∗, ζ∗).

Proposition 6.11 shows inner semicontinuity of Q under the assumptions given in
Thm. 6.5 which implies that Thm. 6.5 is a direct consequence of Thm. 6.9.

6.2.4 Connection to the Unlifted Augmented Functional

To show the connection between the integral representation of Bf as in (6.13) and the
original (augmented) functional (6.6), we will split vectorial measures inM(U,Rm+1) into
an Rm-valued and a real-valued part (E,µ). For, brevity, we will then write Bf (E,µ) in-
stead of Bf ((E,µ)). We first note that the integral representation established in Thm. 6.5
can be split up in the following way:

Proposition 6.12. Suppose that the assumptions in Thm. 6.5 hold. Let (E,µ) ∈
M(U,Rm × R) and E = v|µ| + v⊥|µ|⊥ with |µ|⊥ ≥ 0 the part of E that is singular
with respect to µ (the Lebesgue decomposition of E with respect to µ, see Sect. 2.1).
Then

Bf (E,µ) =


∫
U f(t, v(t)) |µ|(dt) +

∫
U f
∞(t, v⊥(t)) |µ|⊥(dt), if µ ≥ 0,

+∞, otherwise,
(6.48)

where f∞(t, ξ) := lims→∞ f(t, sξ)/s is the recession function of f(t, ·).
In particular, if µ is nonnegative and E is absolutely continuous with respect to µ, then

we have, for v ∈ L1
µ(U,Rm) with E = v · µ,

Bf (E,µ) =

∫
U
f(t, v(t))µ(dt). (6.49)
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Proof. Let θ := ‖E‖+ |µ|. By Thm. 6.5, we have

Bf (E,µ) =

∫
U
h(t, (dE/dθ)(t), (dµ/dθ)(t)) θ(dt), (6.50)

If there is a set of positive θ-measure on which µ is negative, then h assumes the value
+∞ on this set and hence Bf (E,µ) = ∞. Otherwise, θ can be split up into a singular
and absolutely continuous part with respect to |µ| by the Radon-Nikodym theorem (see
Sect. 2.1) and the assertion follows from the positive one-homogeneity of h(t, ·, ·).

Denote by δu the measure in U = Ω×Γ that is concentrated on the graph of u : Ω→ Γ

in the sense that, for each φ ∈ C0(U),∫
U
φdδu :=

∫
Ω
φ(x, u(x)) dx. (6.51)

We establish conditions for equivalence of the original (augmented) functional (6.6) and
the lifted functional:

Corollary 6.13. Let Γ ⊂ Rs compact, Ω ⊂ Rd open and U = Ω × Γ. Assume that
p : Ω→ Rm and u : Ω→ R are measurable functions such that

F (p, u) :=

∫
Ω
f(x, u(x), p(x)) dx (6.52)

is finite. Furthermore, define the vectorial measure (E,µ) ∈ M(U,Rm × R) by µ = δu

and E = p · δu or, more precisely,∫
U
〈φ, dE〉 :=

∫
Ω
〈φ(x, u(x)), p(x)〉 dx, (6.53)

whenever φ ∈ C0(U,Rm). Then

Bf (E,µ) =

∫
Ω
f(x, u(x), p(x)) dx = F (p, u) (6.54)

with Bf (ν) = supφ∈Kf 〈ν, φ〉 as in (6.7).

From Cor. 6.13, we infer that the problem

minimize F (p, u)

subject to p = Lu
(6.55)

128



6.2 Integral Representation of Lifted Functional

is equivalent to the lifted problem

minimize Bf (E,µ)

subject to E = pµ, µ = δu, p = Lu.
(6.56)

In both cases, E, µ, p and u are restricted to suitable spaces of measures and functions,
according to the regularity imposed by L. In contrast to F , the functional Bf is convex,
but the admissible set of measures (E,µ) in (6.56) is non-convex. As a convex relaxation
of this set, we propose to consider measure-valued functions µ : Ω→ P(Γ) and E : Ω→
M(Γ,Rm). Section 6.3 will be concerned with the lifting of p = Lu to this relaxed setting.
First, we prove an important property of Bf in the following subsection.

6.2.5 Absolute Continuity Enforced by the Lifted Functional

We defined the generalized Benamou-Brenier functional (6.7) for an arbitrary vectorial
measure in M(U,Rm+1), but we showed in Cor. 6.13 that it acts in a special meaningful
way on split measures (E,µ) ∈M(U,Rm×R) with µ = δu and E = p ·δu. In fact, we can
show that, under stronger assumptions on the integrand f , the lifted functional forces E
to be absolutely continuous with respect to µ whenever Bf (E,µ) <∞.

Assumption 6.14. The integrand f : U × Rm → R is convex in the second argument
and its convex conjugate f∗ is continuous and satisfies

sup
t∈U,‖ξ‖<r

|f∗(t, ξ)| <∞ ∀r > 0. (6.57)

Proposition 6.15. Assume that U is locally compact and f satisfies Assumption 6.14.
Let (E,µ) ∈M(U,Rm ×R) satisfy Bf (E,µ) <∞. Then E is absolutely continuous with
respect to µ.

In order to prove Prop. 6.15, we show that the set Kf of continuous selections in the
definition of Bf can be replaced by essentially bounded measurable selections:

Lemma 6.16. Assume that U and f∗ satisfy the assumptions from Prop. 6.15. Let
ν ∈M(U,Rm+1) and define θ := ‖ν‖ as well as

Kθf := {(φξ, φλ) ∈ L∞θ (U,Rm × R) : φλ(t) + f∗(t, φξ(t)) ≤ 0 for a.e. t ∈ U}. (6.58)

Then,

Bf (ν) = sup
φ∈Kθf

∫
U
〈φ, dν〉. (6.59)

129



6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

Proof. Clearly, Kf ⊂ Kθf , so that we only need to show that

Bf (ν) ≥
∫
U
〈φ, dν〉 (6.60)

hold for all φ ∈ Kθf . Let φ = (φξ, φλ) ∈ Kθf and ε > 0. We now construct φ̃ = (φ̃ξ, φ̃λ) ∈
Kf such that ∣∣∣∣∫

U
〈φ− φ̃, dθ〉

∣∣∣∣ ≤ ε. (6.61)

Since ε was arbitrary and Bf is the supremum over Kf , this will prove the assertion.

We define
Mf = sup

t∈U,‖ξ‖<‖φ‖∞
|f∗(t, ξ)| (6.62)

andM := max{‖φ‖∞,Mf}. By Lusin’s theorem [HS65, Theorem 11.36], there is a closed
set A ⊂ U with θ(U \ A) ≤ ε/(2M) and continuous functions (φ̂ξ, φ̂λ) ∈ Cc(U,Rm × R)

that agree with (φξ, φλ) on A and satisfy ‖φ̂ξ‖∞ ≤ ‖φξ‖∞ and ‖φ̂λ‖∞ ≤ ‖φλ‖∞. Now,
define

φ̃λ(t) := min{φ̂λ(t),−f∗(t, φ̂ξ(t))} (6.63)

φ̃ξ(t) := φ̂ξ(t). (6.64)

Then, ‖φ̃‖∞ ≤ M and the scalar component φ̃λ is continuous with |φλ(t) − φ̃λ(t)| van-
ishing on A, so that (φ̃ξ, φ̃λ) ∈ Kf . Hence,∣∣∣∣∫

U
〈φ− φ̃, dθ〉

∣∣∣∣ =

∣∣∣∣∣
∫
U\A
〈φ− φ̃, dθ〉

∣∣∣∣∣ (6.65)

≤ θ(U \A)‖φ− φ̃‖∞ (6.66)

≤ θ(U \A)(‖φ‖∞ + ‖φ̃‖∞) (6.67)

≤ 2Mθ(U \A) ≤ ε, (6.68)

where we used θ(U \A) ≤ ε/(2M) in the last step.

Proof of Prop. 6.15. Let (E,µ) as above and assume that there is a measurable setA with
µ(A) = 0 and E(A) 6= 0. For k ∈ N, define v := E(A) ∈ Rm and ψξk(x) = kv1A(x) as
well as ψλk (x) = −f∗(x, ψξk(x))1A(x). Then, the pair (ψξ, ψλ) is in Kθf from Lemma 6.16
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and hence

Bf (E,µ) = sup
(φξ,φλ)∈Kθf

∫
U
〈φξ, dE〉+

∫
U
φλ dµ ≥

∫
U
〈ψξ, dE〉+

∫
U
ψλ dµ. (6.69)

Inserting the definition of (ψξ, ψλ) on the right hand side yields

Bf (E,µ) ≥ 〈kv,E(A)〉+ 0 = k‖v‖2. (6.70)

Since k was arbitrary, this is only possible for Bf (E,µ) =∞.

The boundedness assumption Assumption 6.14 on f∗ cannot be omitted. As an ex-
ample, consider the norm function f(t, ξ) = ‖ξ‖ with f∗(t, ζ) = δB(ζ) where B = {ξ ∈
Rm : ‖ξ‖ ≤ 1}. In this case,

Bf (E,µ) = sup
‖φξ‖∞≤1

∫
U
〈φξ, dE〉 = ‖E‖(U), (6.71)

which is finite, independent of µ. This means that some of the statements of this chapter
cannot be applied to problems (6.1) with linear growth in Lu. However, it is still possible
that many of the main results continue to hold for the case of linear growth. Note that
a similar conceptual difference between energies with linear and superlinear growth is
observed in the theory of dynamical optimal transport [Amb03].

6.3 Constraining the Augmented and Lifted Functional

At the heart of our proposed model is the idea to lift the coupling p = Lu of the variables
u and p in the augmented functional (6.6) to the space of measures by suitable continuity
equations. In the following subsections we will motivate and formulate the continuity
equations for the cases L = ∇, L = ∇2 and L = ∆. Throughout this section, we will
apply the previous section to the case U = Ω × Γ, where Ω ⊂ Rd is open and bounded
and Γ ⊂ Rs is compact.

We denote by Ckc (Ω̊×Γ,Rm) the space of k-times continuously differentiable functions
with compact support in the first component, i.e., for φ ∈ Ckc (Ω̊ × Γ,Rm) there is a
compact set V ⊂ Ω̊, such that φ(x, z) = 0 whenever x ∈ Ω \ V and z ∈ Γ. Here, Ω̊ is
the interior of Ω. For the notion of differentiability on the compact set Γ it is assumed
that there is an open neighborhood V ⊃ Γ and a function ψ ∈ Ckc (Ω̊× V,Rm) such that
φ(x, z) = ψ(x, z) for x ∈ Ω and z ∈ Γ. This is the usual notion of differentiability in
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

those cases where Γ is a smooth submanifold of Rs with or without boundary [Hes41,
Theorem 1].

As defined in (6.51) in the previous section, we denote by δu the measure in U = Ω×Γ

that is concentrated on the graph of u : Ω→ Γ.

6.3.1 The First-Order Continuity Equation

In this section, we cover the case L = ∇ and apply the previous section with Rm = Rd,s.
Our idea is to lift the constraint p = ∇u to a weak differential equation in (E,µ) that
is satisfied if (E,µ) is concentrated on the graph of u with E taking the values of the
Jacobian ∇u. An equation with this property is the first-order continuity equation

∇xµ+ divz E = 0 (6.72)

in the following weak sense:

Definition 6.17. We say that the pair (E,µ) ∈M(Ω×Γ,Rd,s×R) solves the first-order
continuity equation if, for every φ ∈ C1

c (Ω̊× Γ,Rd), we have∫
Ω×Γ

divx φdµ+

∫
Ω×Γ
〈∇zφ, dE〉 = 0. (6.73)

We now show that, for differentiable u, this agrees with p = ∇u if (E,µ) is concentrated
on the graph of u with E taking the values of the Jacobian ∇u:

Proposition 6.18. Let u ∈ C1(Ω,Γ) and define (E,µ) ∈M(Ω×Γ,Rd,s×R) by µ := δu

and E = ∇u · µ, i.e., ∫
Ω×Γ
〈φ, dE〉 :=

∫
Ω
〈φ(x, u(x)),∇u(x)〉 dx, (6.74)

whenever φ ∈ C0(Ω× Γ,Rd,s). Then (E,µ) solves the continuity equation.

Proof. Let φ ∈ C1
c (Ω̊×Γ,Rd) be arbitrary. By chain rule and by the regularity assumption

on u, we have

divx [φ(x, u(x))] = divx φ(x, u(x)) + 〈∇zφ(x, u(x)),∇u(x)〉. (6.75)
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Then ∫
Ω×Γ

divx φdµ =

∫
Ω

divx φ(x, u(x)) dx (6.76)

=

∫
Ω

divx [φ(x, u(x))] dx−
∫

Ω
〈∇zφ(x, u(x)),∇u(x)〉 dx. (6.77)

The first term vanishes by the compact support of φ and, by the definition of E, the
second term equals

∫
Ω×Γ〈∇zφ, dE〉, which implies (6.73).

Given a function u and letting µ := δu, the solution to the continuity equation is
unique in the following sense:

Proposition 6.19. Let u ∈ C1(Ω,Γ), µ := δu ∈ M(Ω × Γ), and suppose that E ∈
M(Ω× Γ,Rd,s) is absolutely continuous with respect to µ. If (E,µ) solves the first-order
continuity equation (Defn. 6.17), then E = ∇u · µ as given in Prop. 6.18 holds µ-almost
everywhere on the support of µ.

Proof. Let E be given as in Prop. 6.18 and let Ẽ ∈M(Ω× Γ,Rd,s) be a vector measure
that is absolutely continuous with respect to µ and such that (Ẽ, µ) solves the continuity
equation, say Ẽ = w · µ. Since both (E,µ) and (Ẽ, µ) solve the continuity equation, we
have ∫

Ω×Γ
〈∇zφ,w −∇u〉 dµ = 0, (6.78)

for every φ ∈ C1
c (Ω̊ × Γ,Rd). Now, let ψ ∈ Cc(Ω,Rd,s). Then φ(x, z) := ψ(x)z is in

C1
c (Ω̊× Γ,Rd) with ∇zφ = ψ. Therefore, (6.78) becomes∫

Ω
〈ψ(x), w(x, u(x))−∇u(x)〉 dx = 0, (6.79)

by the definition of µ. Since ψ was arbitrary, we conclude that w = ∇u almost everywhere
on the support of µ.

Remark 6.20. This uniqueness result fails to hold if µ is not concentrated on a graph or
without the assumption of absolute continuity of E with respect to µ, since the continuity
equation is invariant in E under the addition of divergence-free vector fields on Γ: Let
v ∈ C1(Γ,Rd,s) be a divergence-free vector field, e.g., v(z1, z2) = (z2, z1) for d = 1,
Γ = [0, 1]2. Whenever (E,µ) solves the first-order continuity equation, another solution
is given by (Ẽ, µ) where Ẽ is defined by∫

Ω×Γ
〈φ, dẼ〉 =

∫
Ω×Γ
〈φ, dE〉+

∫
Ω×Γ
〈φ(x, z), v(z)〉 dz dx (6.80)
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for every φ ∈ C0(Ω × Γ,Rd,s). To see this, note that, for every φ ∈ C1
c (Ω̊ × Γ,Rd), we

have ∫
Ω

∫
Γ
〈∇zφ(x, z), v(z)〉 dz dx =

∫
Ω

∫
Γ
〈φ(x, z),−divz v(z)〉 dz dx = 0, (6.81)

and therefore
∫

Ω

∫
Γ〈∇zφ, dE〉 =

∫
Ω

∫
Γ〈∇zφ, dẼ〉. Hence, both (E,µ) and (Ẽ, µ) solve the

first-order continuity equation (Defn. 6.17). However, if µ is concentrated on a graph, as
is the case in Prop. 6.19, not both E and Ẽ are absolutely continuous with respect to µ,
since E − Ẽ is not concentrated on a graph.

Finally, for each µ ∈M(Ω× Γ), we define the lifted version of our original functional
(6.1) (without the augmentation introduced in (6.6)) and with L = ∇ as

F(µ) := inf {Bf (E,µ) : (E,µ) solves (6.73) } (6.82)

with suitable choice of spaces for E and µ, see Defn. 6.17. In practice, we are interested
in minimizers of F which amounts to minimizing the convex and lower semicontinuous
functional Bf subject to the linear constraints (6.73). That’s why we omit a study of
lower semicontinuity and convexity of F . Furthermore, we leave a study of the set of
vector measures E that satisfy the first-order continuity equation (6.73) for given µ for
future work. The central result for this subsection is the following connection between
the lifted functional F and the original functional F under the stronger assumptions on
the integrand established in Prop. 6.15:

Proposition 6.21. Let Ω open, Γ compact and suppose that f satisfies Assumption 6.14.
If u ∈ C1(Ω,Γ) satisfies F (u) <∞ for F as in (6.1) with L = ∇, then

F(δu) = F (u) :=

∫
Ω
f(x, u(x),∇u(x)) dx. (6.83)

Proof. By Prop. 6.18, a solution to the continuity equation is given by µ := δu and
E = ∇u · µ, hence F(δu) ≤ F (u). On the other hand, whenever Bf (E,µ) is finite in
the infimum (6.82), the measure E is automatically absolutely continuous with respect
to µ by Prop. 6.15. This implies that E = ∇u · µ is, in fact, the unique solution to the
continuity equation by Prop. 6.19 so that F(δu) = F (u).

We conclude this subsection with a formal derivation of a dual formulation for F
that will help in understanding the relationship to similar functionals in the literature
on measure-valued models (see Sect. 6.4). By introducing a Lagrange multiplier p ∈
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C1
c (Ω̊ × Γ,Rd) for the first-order continuity equation and by the dual formulation (6.7)

of Bf , we deduce

F(µ) = inf
E

sup
φ∈Kf ,p

[∫
Ω×Γ

(divx p+ φλ) dµ+

∫
Ω×Γ
〈∇zp+ φξ, dE〉

]
, (6.84)

where E ∈ M(Ω × Γ,Rd,s) and p ∈ C1
c (Ω̊ × Γ,Rd). Formally swapping infimum and

supremum yields φξ = −∇zp almost everywhere and, renaming q := φλ, we obtain the
dual formulation:

FD(µ) = sup
φ∈Kf ,p

[∫
Ω×Γ

(divx p+ φλ) dµ+ inf
E

∫
Ω×Γ
〈∇zp+ φξ, dE〉

]
= sup

{∫
Ω×Γ

(divx p+ q) dµ : p ∈ C1
c (Ω̊× Γ,Rd) and (−∇zp, q) ∈ Kf

}
.

(6.85)

The equation FD(µ) = F(µ) holds only in a formal sense and is hard to justify in general.
The dual formulation establishes a formal connection to the total variation regularization
of measure-valued images introduced in Chap. 3, see Sect. 6.4.5) below. The relationship
of our first-order model with the calibration method-based and currents-based liftings
from the literature will be discussed in Sects. 6.4.1 and 6.4.2.

6.3.2 The Second-Order Continuity Equation

This section covers the case L = ∇2. For a function u : Ω→ Rs, the Hessian ∇2u(x) is a
third-order tensor in Rd,d,s, which means that, for each k = 1, . . . , s, the component-wise
Hessian ∇2uk(x) is a d × d matrix. Therefore, we apply the lifting introduced in the
previous section to the case Rm = Rd,d,s by considering an equation that is satisfied if
(E,µ) is concentrated on the graph of u with E taking the values of the Hessian ∇2u.
An equation with this property is the second-order continuity equation

−∇2
xu− divz E + div2

zH = 0, (6.86)

for an additional auxiliary variable H, a measure whose values are fourth-order tensors
in Rd,d,s,s. The equation is to be understood in the following weak sense:

Definition 6.22. We say that the triple (E,µ,H) ∈M(Ω×Γ,Rd,d,s×R×Rd,d,s,s) solves
the second-order continuity equation if, for every φ ∈ C2

c (Ω̊× Γ,Rd,d), we have

−
∫

Ω×Γ
div2

x φdµ+

∫
Ω×Γ
〈∇zφ, dE〉+

∫
Ω×Γ
〈∇2

zφ, dH〉 = 0. (6.87)
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

Analogously to the previous subsection, this agrees with p = ∇2u if (E,µ,H) is con-
centrated on the graph of u with E taking as values the Hessian ∇2u and H playing the
role of the tensor product ∇u⊗∇u as follows:

Proposition 6.23. Let u ∈ C2(Ω,Γ) and define µ ∈ M(Ω × Γ), E ∈ M(Ω × Γ,Rd,d,s)
and H ∈M(Ω× Γ,Rd,d,s,s) by

µ := δu, E = ∇2u · µ, H = (∇u⊗∇u) · µ, (6.88)

where the latter is to be understood in the sense that∫
Ω×Γ
〈Φ, dH〉 :=

d∑
i,j=1

∫
Ω
〈Φij(x, u(x))∂iu(x), ∂ju(x)〉 dx, (6.89)

whenever Φ ∈ C0(Ω × Γ,Rd,d,s,s). Then (E,µ,H) solves the second-order continuity
equation.

Proof. By the regularity assumption on u, the chain rule applies:

div2
x [φ(x, u(x))] = divx

[
divx φ(x, u(x)) +

d∑
k=1

〈∂zkφ(x, u(x)),∇uk(x)〉
]

(6.90)

= div2
x φ(x, u(x)) + 〈∇zφ(x, u(x)),∇2u(x)〉 (6.91)

+ 〈∇z divx(φ+ φT)(x, u(x)),∇u(x)〉 (6.92)

+
d∑

i,j=1

〈∇2
zφij(x, u(x))∂iu(x), ∂ju(x)〉 (6.93)

= ∆xφ(x, u(x)) + 〈∇zφ(x, u(x)),∇2u(x)〉 (6.94)

+ 〈divx

[
∇z(φ+ φT)(x, u(x))

]
,∇u(x)〉 (6.95)

−
d∑

i,j=1

〈∇2
zφij(x, u(x))∂iu(x), ∂ju(x)〉, (6.96)

for every φ ∈ C2(Ω × Γ,Rd,d). Now consider (6.87) and let φ ∈ C2
c (Ω̊ × Γ,Rd,d). Then,

after applying Gauss’ theorem once,∫
Ω

div2
x φ(x, u(x)) dx =

∫
Ω

div2
x [φ(x, u(x))] dx+

∫
Ω
〈∇zφ(x, u(x)),∇2u(x)〉 dx (6.97)

+

d∑
i,j=1

∫
Ω
〈∇2

zφij(x, u(x))∂iu(x), ∂ju(x)〉 dx. (6.98)
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The first term vanishes by the compact support of φ and, by the definitions of E and H,
the second and third terms equal

∫
Ω×Γ〈∇zφ(x, z), dE〉 and

∫
Ω×Γ〈∇

2
zφ(x, z), dH〉.

Uniqueness of solutions along the graph of a C2 function holds in the following sense
and a remark analogous to Rem. 6.20 applies:

Proposition 6.24. Let u ∈ C2(Ω,Γ) and µ = δu ∈ M(Ω × Γ) and suppose that the
vectorial measure (E,H) ∈ M(Ω × Γ,Rd,d,s × Rd,d,s,s) is such that (E,µ,H) solves the
second-order continuity equation.

1. If E is absolutely continuous with respect to µ, then it is as given in Prop. 6.23
almost everywhere on the support of µ.

2. If, in addition to the previous assumptions, H is symmetric in the last two compo-
nents and absolutely continuous with respect to µ, then H is as given in Prop. 6.23
almost everywhere on the support of µ.

Proof. Let E and H be given as in Prop. 6.23 and let (Ẽ, H̃) ∈M(Ω×Γ,Rd,d,s×Rd,d,s,s)
be a vector measure such that (Ẽ, µ, H̃) solves the second-order continuity equation.
Suppose that Ẽ = w · µ. Then, by the weak formulation of the second-order continuity
equation, ∫

Ω×Γ
〈∇zφ,w −∇2u〉 dµ+

∫
Ω×Γ
〈∇2

zφ, d(H̃ −H)〉 = 0, (6.99)

for each φ ∈ C2
c (Ω̊× Γ,Rd,d). Let ψ ∈ C2

c (Ω,Rd,d,s). Then φij(x, z) := (〈ψij(x), z〉)i,j is
in C2

c (Ω̊× Γ,Rd,d) with ∇zφ = ψ and ∇2
zφ = 0, so that∫

Ω
〈ψ(x), w(x, u(x))−∇2u(x)〉 dx = 0, (6.100)

by the definition of µ. Since ψ was arbitrary, we infer w = ∇2u almost everywhere on
the support of µ. This shows the first claim.

For the second claim, assume H̃ = A · µ and define φij(x, z) := 1
2(〈z, ψij(x)z〉)i,j for

some ψ ∈ C2
c (Ω,Rd,d,s,s) with ψT

ij = ψij . Then φ ∈ C2
c (Ω̊× Γ,Rd,d) and∫

Ω×Γ
〈ψ, d(H̃ −H)〉 =

∫
Ω
〈ψ(x, u(x)), A(x, u(x))− (∇u(x)⊗∇u(x))〉 dx = 0. (6.101)

Since ψ was arbitrary (but symmetric) and A is symmetric by assumption, we get A =

(∇u⊗∇u) almost everywhere on the support of µ.
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

Finally, for each µ ∈M(Ω× Γ), we define the lifted version of our original functional
(6.1) without augmentation and with L = ∇2 as

F(µ) := inf{Bf (E,µ) : (E,µ,H) solves (6.87) for H sym.}. (6.102)

with suitable choice of spaces for E, µ and H, see Defn. 6.22. Note that H remains
an auxiliary variable that is not included in the evaluation of Bf . In practice, we are
interested in minimizers of F which amounts to minimizing the convex and lower semi-
continuous functional Bf subject to the linear constraints (6.87). That’s why we omit a
study of lower semicontinuity and convexity of F . Furthermore, we leave a study of the
set of vector measures E and H tha satisfy the first-order continuity equation (6.87) for
a given measure µ ∈M(Ω × Γ) for future work. As in the first-order case (Prop. 6.21),
the central result for this subsection is the connection between the lifted functional F
and the original functional F , which is a consequence o Prop. 6.23 and Prop. 6.15:

Proposition 6.25. Let u ∈ C2(Ω,Γ) with F (u) < ∞ and suppose that f satisfies As-
sumption 6.14. Then

F(δu) = F (u) :=

∫
Ω
f(x, u(x),∇2u(x)) dx. (6.103)

Stating the dual formulation of F is more involved than in the first-order case as the
auxiliary variable H has hidden structure that translates into constraints on the dual
variables. We restrict ourselves to the case where f depends on the Laplacian because
there it will help in establishing the connection to the second-order lifting framework
proposed in Chap. 5.

6.3.3 The Laplacian Continuity Equation

As a special case of the previous subsection, we explicitly discuss the case where L = ∆

or, equivalently, where the integrand f only depends on the trace of each ∇2uk for
k = 1, . . . , s. In this setting, it suffices to consider the simplified second-order continuity
equation

−∆xµ− divz E + div2
zH = 0. (6.104)

The difference to (6.104) is in the differential operator ∆x (instead of ∇2) in the first
term and in the order of the tensor-valued measures E and H. The equation is to be
understood in the following weak sense:

Definition 6.26. We say that the triple (E,µ,H) ∈M(Ω×Γ,Rs×R×Rs,s) solves the
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Laplacian continuity equation if, for every φ ∈ C2
c (Ω̊× Γ), we have

−
∫

Ω×Γ
∆xφdµ+

∫
Ω×Γ
〈∇zφ, dE〉+

∫
Ω×Γ
〈∇2

zφ, dH〉 = 0. (6.105)

All of the following statements are proved analogously to the corresponding statements
in the previous subsection for L = ∇2:

Proposition 6.27. Let u ∈ C2(Ω,Γ) and define µ ∈M(Ω× Γ), E ∈M(Ω× Γ,Rs) and
H ∈M(Ω× Γ,Rs,s) by µ := δu, E = ∆u · µ and H =

∑
i(∂iu⊗ ∂iu) · µ, i.e.,

∫
Ω×Γ
〈Φ, dH〉 :=

d∑
i=1

∫
Ω
〈Φ(x, u(x))∂iu(x), ∂iu(x)〉 dx, (6.106)

whenever Φ ∈ C0(Ω× Γ,Rs,s). Then (E,µ,H) solves the Laplacian continuity equation.

Proposition 6.28. Let u ∈ C2(Ω,Γ) and µ = δu ∈ M(Ω × Γ) and suppose that the
vectorial measure (E,H) ∈M(Ω×Γ,Rs×Rs,s) is such that (E,µ,H) solves the Laplacian
continuity equation.

1. If E is absolutely continuous with respect to µ, then it is as given in Prop. 6.27
almost everywhere on the support of µ.

2. If, in addition to the previous assumptions, H is symmetric and absolutely contin-
uous with respect to µ, then H is as given in Prop. 6.27 almost everywhere on the
support of µ.

Finally, for each µ ∈M(Ω× Γ), we define the lifted version of our original functional
(6.1) without augmentation and with L = ∆ as

F(µ) := inf{Bf (E,µ) : (E,µ,H) solves (6.105) for H sym. pos. semidef.}. (6.107)

Note that we added the assumption of positive semidefiniteness on H because this is
satisfied if µ = δu. As in the previous cases, we establish the following connection with
the original functional (6.1):

Proposition 6.29. Let u ∈ C2(Ω,Γ) with F (u) < ∞ and suppose that f satisfies As-
sumption 6.14. Then

F(δu) = F (u) :=

∫
Ω
f(x, u(x),∆u(x)) dx. (6.108)
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

We conclude this subsection with a formal derivation of a dual formulation for F that
will help in understanding the relationship to the literature on measure-valued models.
By the method of Lagrange multipliers applied to the weak Laplacian continuity equation
and by the dual formulation (6.7) of Bf , we have

F(µ) = inf
E,H

sup
φ∈Kf ,p

[∫
Ω×Γ

(−∆xp+ φλ) dµ+

∫
Ω×Γ
〈∇zp+ φξ, dE〉+

∫
Ω×Γ
〈∇2

zp, dH〉
]
,

(6.109)
where (E,H) ∈ M(Ω × Γ,Rs × Rs,s) with H symmetric and positive semidefinite and
p ∈ C2

c (Ω̊ × Γ,Rd). Formally swapping infimum and supremum enforces φξ = −∇zp
as well as positive semidefiniteness of ∇2

zp almost everywhere and, setting q := φλ, we
obtain the dual formulation:

FD(µ) = sup

{∫
Ω×Γ

(−∆xp+ q) dµ : p ∈ C2
c (Ω̊× Γ,Rd), ∇2

zp pos. semidef.

and (−∇zp, q) ∈ Kf
}
.

(6.110)

Again, as in the first-order case, the equation FD(µ) = F(µ) holds only in a formal sense
and is hard to justify in general in our non-compact infinite-dimensional setting.

6.4 Connection to Previous Functional Lifting Models

From Props. 6.21, 6.25 and 6.29, we deduce that problem (6.1) (depending on L) is
equivalent to the lifted problem

minimize F(µ)

subject to µ = δu,
(6.111)

where u is assumed to be as smooth as is required by L. In contrast to the minimization
of F , this is a convex problem, but the admissible set of measures µ = δu in (6.111) is
non-convex. As a convex relaxation of this set, we propose to consider weakly measurable
functions µ ∈ L∞w (Ω,P(Γ)) in the sense of Defn. 6.1.

In the following subsections, we will demonstrate that our lifting approach is a gener-
alization of a large class of functional lifting approaches from the literature.
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6.4.1 Calibration Method-Based Functional Lifting

The functional lifting approach presented in [Poc+10] is based on the so-called calibration
method It only applies to the first-order (i.e., L = ∇ in (6.1)) scalar-valued case Γ = R
and comes in a dual formulation of the form

Fcalib(v) = sup
φ∈Kcalib

∫
Ω×R
〈φ,Dv〉 (6.112)

for each v ∈ BV(Ω× R), Ω ⊂ Rd and

Kcalib := {φ = (φξ, φλ) ∈ C0(Ω× R,Rd+1) : (6.113)

f∗(x, z, φξ(x, z)) ≤ φλ(x, z) ∀(x, z) ∈ Ω× R}. (6.114)

After setting U := Ω×R, the set Kcalib agrees with our definition of Kf as given in (6.8)
up to a change of sign in φλ.

As noted in Sect. 6.1, the central concept of the calibration-based lifting is to minimize
Fcalib over the set

{1u : u ∈W 1,1(Ω)}, 1u(x, z) :=

1 if u(x) > z,

0 otherwise.
(6.115)

The resulting constraint minimization problem is equivalent to minimizing the original
functional (6.1) over the space W 1,1(Ω). The lifted problem is then defined on the
convexified admissible set{

v ∈ BV(Ω× R, [0, 1]) : lim
z→∞

v(x, z) = 0, lim
z→−∞

v(x, z) = 1

}
. (6.116)

We observe that the functional Fcalib is actually not a functional in v, but in Dv. As v
is a function of bounded variation on Ω×R, Dv is a vector-valued measure on U := Ω×R
and we can easily state the relationship with our functional (6.7) as

Fcalib(v) = Bf (D−v), (6.117)

where D−v is Dv with the last component multiplied by (−1) to address the change of
sign in Kcalib compared to Kf . Furthermore, we obtain the following central result from
[Poc+10] as a corollary of our Thm. 6.5.

Corollary 6.30 ([Poc+10, Theorem 3.2]). Suppose that Ω ⊂ Rd is open and f satisfies
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6 Measure-valued Liftings Motivated from Dynamical Optimal Transport

the assumptions in Thm. 6.5. Then, for each u ∈W 1,1(Ω),∫
Ω
f(x, u(x),∇u(x)) dx = sup

φ∈Kcalib

∫
Ω×R
〈φ,D1u〉. (6.118)

Proof. We set v := 1u. Then D−v ∈ M(Ω × R,Rd+1). Moreover, the set U := Ω × R
is locally compact by [Wil70, Theorem 18.6] so that the assumptions in Thm. 6.5 are
satisfied. As discussed above, the right-hand side in (6.118) is Bf (D−v) so that we infer
from Thm. 6.5

sup
φ∈Kcalib

∫
Ω×R
〈φ,Dv〉 =

∫
Ω×R

h(x, z, (dD−v/d‖D−v‖)(x, z)) ‖D−v‖(dx, dz). (6.119)

On the other hand, since u ∈ W 1,1(Ω), we know that Dv is concentrated on the graph
of u with vectorial density (∇u,−1). From the definition of h, we get

h(x, z, (dD−v/d‖D−v‖)(x, z)) = h(x, z, (∇u(x), 1)) = f(x, z,∇u(x)). (6.120)

Integrating this over the graph (x, z) = (x, u(x)) of u we conclude

sup
φ∈Kcalib

∫
Ω×R
〈φ,Dv〉 =

∫
Ω×R

h(x, z, (∇u(x), 1)) ‖D−v‖(dx, dz) (6.121)

=

∫
Ω
f(x, u(x),∇u(x)) dx, (6.122)

which is the claimed statement (6.118).

While the lifted functional in the calibration-based lifting is equivalent to the functional
in our proposed lifting (as pointed out above), the convexified admissible set (6.4) as used
in the calibration-based lifting is slightly smaller than the set L∞w (Ω,P(R)) that we use for
our lifting. For every function v in (6.116), its derivative measure Dv is in L∞w (Ω,P(R))

by the established slicing theory for functions of bounded variation [AFP00, Lemma
3.106]. However, for the converse inclusion (i.e., for each µ ∈ L∞w (Ω,P(R)) there exists a
function v in (6.4) such that Dv = µ), more regularity in Ω is needed instead of just weak
measurability. Intuitively, additional regularity of µ in Ω is imposed by the continuity
equation constraint ∇xµ + divz E = 0. We leave a more extensive discussion for future
work.
Concluding, the calibration method-based framework and our framework are mathe-

matically equivalent in some respects and very similar or supposedly equivalent in others.
In practice, with the discretizations from [Poc+10] and [MC17], we found the calibration
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method-based model to be a reformulation of our proposed lifting framework. However,
our proposed framework has the advantage that it generalizes to vectorial and higher-
order problems while the calibration method-based framework uses a notation that is
restricted to scalar and first-order problems.

6.4.2 Currents-Based Functional Lifting

The lifting strategy [WC16; MC19] for vectorial first-order problems (i.e., L = ∇ in
(6.1)) with so-called polyconvex integrands is based on the theory of currents [GMS98a;
GMS98b]. We will demonstrate that the functional lifting approach based on currents is
equivalent to our proposed framework if the integrand is convex (which implies polycon-
vexity). Moreover, as noted in [MC19], the finite element-based description of functional
lifting introduced in [MC17] is a reformulation of the currents-based framework for con-
vex integrands and, hence, the same considerations apply to it. For a full discussion of
the concept of currents and the associated multilinear algebra we refer to [MC19]. We
will use the following definition of polyconvexity:

Definition 6.31 ([Dac08, Definition 5.1 (iii)]). For s, d ∈ N we write s ∧ d := min{s, d}
and

τ(s, d) :=
s∧d∑
n=1

σ(n), where σ(n) :=

(
d

n

)(
s

n

)
=

d!s!

(n!)2(d− n)!(s− n)!
. (6.123)

A function f : Rd,s → R is said to be polyconvex if there exists g : Rτ(s,d) → R con-
vex such that f(ξ) = g(M(ξ)) where M : Rd,s → Rτ(s,d) maps a matrix onto all of its
subdeterminants (minors), i.e.,

M(ξ) := (ξ, adj2 ξ, . . . , adjs∧d ξ). (6.124)

Here, we denote by adjn ξ the vector of all n × n minors of the matrix ξ ∈ Rd,s for
2 ≤ n ≤ s ∧ d := min{s, d}. The function g is called a polyconvex extension of f .

Every convex function f is polyconvex with a polyconvex extension given by the func-
tion that ignores all s-minors for s > 1 and agrees with f otherwise (the trivial polyconvex
extension). However, note that the polyconvex extension of a polyconvex function f fails
to be unique in general, even if f happens to be convex. An example for this case is the
Dirichlet integrand

f(ξ) :=
1

2
‖ξ‖2F =

1

2

d∑
i=1

s∑
j=1

ξ2
ij . (6.125)
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as discussed in [GMS98b, Section 1.2.1] and [GMS98b, Section 1.2.4, Prop. 9].

For a current of finite mass and compact support T ∈M(Ω× Γ,Rτ(d,s)+1) (a vectorial
measure with values in Rτ(d,s)+1 in our nomenclature), the lifted functional in [MC19,
Eq. (30)] is given by

Fcurr(T ) := sup
ω∈Kcurr

〈T, ω〉, (6.126)

where

Kcurr :=
{
ω ∈ C0(Ω× Γ,Rτ(d,s)+1) : ω0(x, z) + g∗(x, z, ω0̄(x, z)) ≤ 0

}
. (6.127)

Here, g(x, z, ·) is the chosen polyconvex extension of the integrand with respect to the
last component f(x, z, ·), and ω0 ∈ R denotes the last component of ω ∈ Rτ(d,s)+1 while
ω0̄ ∈ Rτ(d,s) is the vector consisting of the first τ(d, s) components of ω = (ω0̄, ω0). As
a lifting strategy for problems with Neumann boundary conditions, the lifted functional
Fcurr is minimized in [MC19, Eq. (34)] over the following set of admissible currents

C :=
{
T ∈M(Ω× Γ,Rτ(d,s)+1) : π1#T = JΩK, supp ∂T ⊂ (∂Ω)× Γ

}
. (6.128)

The marginal constraint π1#T = JΩK translates in our nomenclature to the requirement
that T is a measure-valued function T : Ω→M(Γ,Rτ(d,s)+1) with the property that the
last component is a probability measure on Γ for almost every x ∈ Ω. And the boundary
constraint supp ∂T ⊂ (∂Ω)×Γ is a way of writing that T is a weak solution to the partial
differential equation ∂T = 0 when tested with functions ω ∈ C1

c (Ω̊ × Γ,Rτ(d,s)+1) with
compact support in Ω̊×Γ. The first-order differential operator ∂ is the boundary operator
from differential geometry that is defined via the exterior derivative of differential k-forms
[MC19, Eq. (20)] and cannot be easily written down without introducing a lot of notation
from exterior algebra, which we prefer to avoid in this work.

The functional lifting framework in [MC19] depends on the choice of polyconvex exten-
sion g for the integrand f through the set Kcurr in (6.127). Without going into the details
about the definitions of ∂T and JΩK, we now demonstrate that, in fact, the functional
lifting framework in [MC19] exactly agrees with our proposed framework for first-order
functionals for the case of a convex integrand with its trivial polyconvex extension. If f
is convex and g is the trivial polyconvex extension of f , then g∗(x, z, ω0̄) takes the value
+∞ whenever ω0̄ does not vanish in all but the first ds components. This means that all
but the first ds components of the functions ω0̄ in Kcurr are enforced to be 0 and it means
that, in this case, the functional Fcurr in (6.126) does only depend on the first ds and the
last component of T ∈ M(Ω × Γ,Rτ(d,s)+1) and actually satisfies Fcurr(T ) = Bf (E,µ),
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where E ∈ M(Ω × Γ,Rd,s) denotes the first ds and µ ∈ M(Ω × Γ) the last component
of T . On the other hand, if T ∈M(Ω× Γ,Rτ(d,s)+1) vanishes in all but the first ds and
the last component, the partial differential equation ∂T = 0 reduces to our first-order
continuity equation ∇xµ+ divz E = 0 as in Defn. 6.17.

In summary, the framework in [MC19] is applicable to a larger class of integrands
(polyconvex integrands) than our framework, but our framework incorporates second-
order variational models, whereas [MC19] is limited to first-order terms.

6.4.3 First-Order Functional Lifting for Manifold-Valued Problems

A functional lifting strategy for manifold-valued imaging problems with convex first-order
regularization terms is described in Chap. 4. The variational models considered there are
equivalent to the problem (6.1) discussed in this chapter with the choice L := ∇ and Γ a
submanifold of Rs. The functional lifting strategy for manifold-valued imaging problems
consists of minimizing, for v : Ω→ P(M), the lifted functional (see (4.8) and (4.9))

Fmfd(v) := sup

{∫
Ω
〈− divx p(x, ·) + q(x, ·), v(x)〉 dx : (∇zp, q) ∈ Kf

}
, (6.129)

where Kf is exactly the constraint set (6.8) used in the current chapter. Because the
focus of Chap. 4 is on a heuristic generalization of previous lifting strategies and a new
discretization strategy, the function space for p is not specified in (6.129). Apart from
this, and up to a change of sign in the dual variable p, the lifting strategy in Chap. 4 is
equivalent to the dual version (6.85) of our proposed functional in the first-order case:

FD(µ) = sup

{∫
Ω×Γ

(divx p+ q) dµ : p ∈ C1
c (Ω̊× Γ,Rd) and (−∇zp, q) ∈ Kf

}
. (6.130)

The interpretation of the manifold-valued lifting strategy as a special case of our frame-
work allows to generalize the ideas in Chap. 4 to second-order models. However, a
discretization of second-order derivatives on manifolds is more involved and we leave this
for future work.

6.4.4 Second-Order Functional Lifting with Laplacian

The functional lifting framework introduced in Chap. 5 for the lifting of variational
problems with Laplacian regularization is equivalent to the dual formulation (6.110)
of our proposed framework. More precisely, in Chap. 5, the original problem (6.1) is
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approximated for L = ∆ with the minimization of the lifted functional (5.5), given by

Flapl(µ) := sup
(p,q)∈Klapl

∫
Ω×Γ

(∆xp+ q) dµ, (6.131)

where, as in (5.5),

Klapl = {(p, q) : p ∈ C2
c (Ω× Γ), q ∈ L1(Ω× Γ),

z 7→ p(x, z) concave and (∇zp, q) ∈ Kf},
(6.132)

On the other hand, the dual formulation (6.110) of our proposed framework with Lapla-
cian second-order terms is

FD(µ) = sup

{∫
Ω×Γ

(−∆xp+ q) dµ : p ∈ C2
c (Ω̊× Γ,Rd), ∇2

zp pos. semidef.

and (−∇zp, q) ∈ Kf
}
.

(6.133)

The definiteness constraint on the Hessian of the dual variable p in (6.133) corresponds
to the concavity constraint in (6.132). Because the focus of Chap. 5 is on a heuristic
generalization of previous lifting strategies to second-order models, the choice of function
spaces for p and q are not discussed. Apart from this, and up to a change of sign in the
dual variable p, the lifting strategy in Chap. 5 is equivalent to the dual version (6.133)
of our proposed functional.

While the connection Flapl(δu) ≤ F (u) between the lifted and the original functional
could only be established as an inequality in Prop. 5.1, we proved in Prop. 6.29 that
this connection holds as an equality for our proposed primal formulation F . Note that
Prop. 6.29 does not easily imply the equality Flapl(δu) = F (u) since we did not show
strong duality (F = FD).

The framework proposed in the current chapter clarifies some mathematical details
of the functional lifting model for problems with Laplacian regularization introduced in
Chap. 5. Our framework allows to generalize the ideas in Chap. 5 to arbitrary second-
order regularizers. However, a discretization of the full Hessian second-order derivatives
in the finite element framework used in this work (see Sect. 2.7) is more involved and we
leave this for future work.
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6.4.5 Total Variation Regularization of ODFs

Finally, we mention that our proposed measure-valued lifting framework bears a striking
similarity to the framework for total variation regularization of measure-valued (more
precisely: orientation distribution functions from diffusion-weighted MRI) images intro-
duced in Chap. 3. In (3.55), the following total variation functional for measure-valued
functions µ : Ω→ P(Γ) is introduced:

TVKR(µ) := sup

{∫
Ω
〈− div p(x), µ(x)〉 dx : p ∈ C1

c (Ω, [Lip0(Γ)]d),

‖p(x)‖[Lip0(Γ)]d ≤ 1

}
.

(6.134)

On the other hand, consider the dual formulation (6.85) of our proposed lifted functional
for the integrand f(x, z, ξ) := ‖ξ‖F . Noting that f∗(x, z, ξ) = δ‖ξ‖F≤1, the dual constraint
set Kf simplifies a lot so that we can omit the dual variable q in (6.85) and obtain:

FD(µ) = sup

{∫
Ω×Γ

divx p dµ : p ∈ C1
c (Ω̊× Γ,Rd) and ‖∇zp‖∞ ≤ 1

}
. (6.135)

The constraint ‖∇zp‖∞ ≤ 1 in (6.135) corresponds to the Lipschitz seminorm constraint
in (6.134). Hence, the functional FD differs from TVKR only in the choice of the dual
function space C1

c (Ω, [Lip0(Γ)]d) instead of C1
c (Ω̊× Γ,Rd). We leave a rigorous analysis

of this correspondence for future work.
Summing up, our proposed framework not only defines a high-dimensional convex

approximation of a non-convex problem. It also defines a meaningful notion of regularity
for measure-valued functions. This is no surprise given its connection to functionals
from dynamical optimal transport where the regularity of curves with values in spaces of
measures is the object of study. Beyond the total variation functional used in Chap. 3, our
framework can serve as a blueprint for new regularizers in the restoration of orientation
distribution functions and similar measure-valued imaging problems.

6.5 Conclusion and Outlook

We proposed a functional lifting framework that is based on measure-valued functions and
motivated by the Benamou-Brenier theory of dynamical optimal transport. The lifted
functional is a convex energy on the space of vectorial measures and provably agrees
with the original non-convex functional on the lifted versions of images for both first-
order and second-order variational models. We provided a primal and dual formulation
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for an augmented version of the lifted functional and showed that the two formulations
agree. Under suitable assumptions on the integrand, we could prove that the lifted
functional enforces absolute continuity of the vectorial measures with respect to their last
component. This property allowed to view one part of the vectorial measure as defining
the support and the other part as defining the derivative part. For first- and second-
order derivatives, we proposed weak continuity equations that enforce this relationship
in vectorial measures.
The proposed framework allows to view a large class of recent functional lifting strate-

gies under a unified mathematical theory of measure-valued functions. This includes
calibration-based and currents-based lifting approaches, but also recent second-order
(Laplacian) lifting strategies. In the second-order case, our model improves the un-
derstanding of the relationship between the lifted and the original functional compared
to previous considerations in the literature.
While the well-known properties in the scalar first-order case translate from the cali-

bration-based lifting method, the following properties remain an open question in the
vectorial or higher-order case:

• Does the minimal value of the lifted functional F agree with the minimum of the
original functional F?

• Is every minimizer of F a superposition of minimizers of F in a suitable sense?

• Given a minimizer of F , is there an explicit or efficient way that provably computes
a minimizer of the original functional F?

In any case, our proposed framework manages to unite notationally diverse functional
lifting approaches in a single consistent mathematical setting with the help of notions
from dynamical optimal transport and functional analysis, and its modular structure will
hopefully inspire interesting further developments in the future.
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Summary With this thesis, we hope to have established a broad and unifying perspec-
tive on recent functional lifting frameworks that will inspire more applications, improved
implementations and a better understanding of the limitations and theoretical properties
in the future. While our perspective was driven by applications throughout Chaps. 3–5,
we aimed at bringing together the different approaches in a final theoretical superstruc-
ture for measure-valued models in Chap. 6.

Motivated by the mathematical perspective on Q-ball data as images taking values in a
space of probability measures, our proposed total variation functional provides a generic
way of measuring the spatial regularity of diffusion-weighted MRI signals. We discussed
some of its geometric properties, such as isotropy, in theory and demonstrated its scale-
space behavior in practice. While numerical performance is still limited by the non-
smooth high-dimensional structure compared to state-of-the-art methods, applications
to phantom and real-world datasets indicate that the proposed regularization strategy is
able to remove noise while preserving structural information, such as edges (Chap. 3).

We proposed a measure-valued functional lifting approach for the convex optimization
of a large class of image processing problems where the data satisfies geometric, peri-
odical or symmetry constraints, so-called manifold-valued images. It allows to reliably
handle arbitrary pointwise data discrepancy terms and many different convex regulariza-
tion terms by employing an efficient finite element method on the underlying manifold
(Chap. 4).

In order to apply the functional lifting idea to classical variational formulations of image
registration, we generalized it to energy functionals that take higher-order derivatives into
account. The numerical cost of the proposed generalization is comparable to state-of-
the-art first-order functional lifting methods. While we demonstrated its limitations in
a synthetic example with symmetries, the proposed method performs well in real-world
image registration tasks (Chap. 5).

We presented a concept that unifies a large class of recent functional lifting strategies
using notions from dynamical optimal transport. At the heart of this concept stands
the lifting of an augmented functional that can be formulated for variational models
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of arbitrary order. By combining it with suitable continuity equation constraints, we
demonstrated how it can be used for the functional lifting of non-convex first- and second-
order variational problems. We hope that the framework’s modular structure will inspire
higher-order and other generalizations in the future (Chap. 6).

Future directions of research Our proposed perspective on functional lifting strate-
gies in the language of measure-valued image processing opens up several directions for
interesting further developments:

• Histogram propagation. When the distribution (or histogram) of traffic density,
temperature or wind direction over a fixed period of time is measured for given ge-
ographical locations, e.g., by weather stations, a natural problem is the estimation
of distributions in the areas away from the sample locations. This problem, some-
times called histogram propagation, is a classical image inpainting or interpolation
problem and has been demonstrated [Sol+14] to benefit from optimal transport
metrics. In the future, our proposed model for the restoration of Q-ball images can
be adapted to the problem of histogram propagation.

• Efficient optimization and implementation. Even though the convex struc-
ture of the lifted problems allows to use state-of-the-art efficient and highly paral-
lelizable convex optimization algorithms, the high-dimensionality and non-smooth-
ness of the lifted setting limits the numerical performance and practical appli-
cability, in particular in real-time applications. On the other hand, our proposed
implementations are not optimized for efficiency and there are many starting points
for improvement. For instance:

– Our proposed finite element-based discretization can be improved by making
use of more advanced [Her+19; Ben+19] or adaptive [PR00; BJ08; HR14]
finite element methods.

– The connection to (dynamical) optimal transport introduced in Chap. 6 sug-
gests the adaptation of efficient optimization strategy from the context of
numerical optimal transport, such as entropy [Cut13; Bra+17; Cla+19] or
quadratic [LMM19] regularization.

• Projection or interpretation of lifted solutions. Minimizers of the convexi-
fied and lifted functional are measure-valued functions in general, that require some
post-processing in order to be interpreted in the context of the original non-convex
problem. In the scalar-valued first-order case, each solution of the lifted problem
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is provably related to at least one global minimizer of the original functional. For
higher-order or vectorial problems, it remains an open problem whether each mini-
mizer of the lifted functional contains usable information about at least one solution
of the original problem. Until a definite answer to this question is available, there
is plenty of room for efficient rounding or projection strategies that might produce
approximate solutions to the original problem from solutions in the lifted setting.

• Generalizations to more differential operators. The modular structure of
our proposed model allows to decouple the lifting of the objective functional from
the lifting of the features involved. While we only considered generic first- and
second-order derivatives as features so far, models with higher-order, non-local or
non-linear differential operators in their convex component and couplings of first-
and second-order terms, such as with the total generalized variation [BKP10], or
roto-translational features [Dui+19; CP19] are conceivable.

• Non-local data terms. Our proposed generalization of the functional lifting ap-
proach to models with second-order regularization is an important first step in mak-
ing the functional lifting strategy applicable to modern image registration problems.
However, popular image registration frameworks use non-pointwise features, such
as Normalized Gradient Fields (NGF) in the highly non-convex data discrepancy
term. This requires the study of models with first- and second-order derivatives
where the dependency on the first-order term is allowed to be non-convex.

The numerous and diverse directions for further investigation and wider applications
presented above once again demonstrate the appeal and modularity of our proposed
functional lifting framework. Bearing in mind the framework’s compelling properties
that were discussed in this thesis, we think that it is justified to face the additional
challenges that appear when using measure-valued variational models.

151





Bibliography

[ABD03] G. Alberti, G. Bouchitté, and G. Dal Maso. “The calibration method for
the Mumford-Shah functional and free-discontinuity problems”. In: Calc Var
Partial Differ Equ 16.3 (2003), pp. 299–333.

[ABM06] H. Attouch, G. Buttazzo, and G. Michaille. Variational analysis in Sobolev
and BV spaces. Applications to PDEs and optimization. Vol. 6. SIAM, 2006.

[Abs+16] P.-A. Absil, P.-Y. Gousenbourger, P. Striewski, and B. Wirth. “Differen-
tiable Piecewise-Bézier Surfaces on Riemannian Manifolds”. In: SIAM J
Imaging Sci 9 (2016), pp. 1788–1828.

[AFP00] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and
free discontinuity problems. Clarendon Press, 2000.

[AGS04] L. Ambrosio, N. Gigli, and G. Savaré. “Gradient flows with metric and
differentiable structures, and applications to the Wasserstein space”. In: Atti
Accad Naz Lincei Rend Cl Sci Fis Mat Natur 15.3–4 (2004), pp. 327–343.

[AGS08] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and
in the space of probability measures. 2nd ed. Birkhäuser, 2008.

[Ahr+13] C. Ahrens, J. Nealy, F. Pérez, and S. van der Walt. “Sparse reproducing
kernels for modeling fiber crossings in diffusion weighted imaging”. In: Proc
ISBI 2013. 2013, pp. 688–691.

[AK06] G. Aubert and P. Kornprobst. Mathematical problems in image processing:
partial differential equations and the calculus of variations. Springer, 2006.

[ALS09] I. Aganj, C. Lenglet, and G. Sapiro. “ODF Reconstruction in Q-Ball Imaging
with Solid Angle Consideration”. In: Proc ISBI 2009. 2009, pp. 1398–1401.

[Amb03] L. Ambrosio. “Lecture Notes on Optimal Transport Problems”. In: Mathe-
matical Aspects of Evolving Interfaces. Ed. by L. Ambrosio, K. Deckelnick,
G. Dziuk, M. Mimura, V. A. Solonnikov, and H. M. Soner. Springer, 2003,
pp. 1–52.

153



Bibliography

[Amb90] L. Ambrosio. “Metric space valued functions of bounded variation”. In: Ann
Sc Norm Super Pisa, Cl Sci, IV Ser 17.3 (1990), pp. 439–478.

[AMS09] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on ma-
trix manifolds. Princeton University Press, 2009.

[Åst+17] F. Åström, S. Petra, B. Schmitzer, and C. Schnörr. “Image Labeling by
Assignment”. In: J Math Imaging Vis 58.2 (2017), pp. 211–238.

[AT90] L. Ambrosio and V. M. Tortorelli. “Approximation of functionals depending
on jumps by elliptic functionals via Γ-convergence”. In: Commun Pure Appl
Math 43.8 (1990), pp. 999–1036.

[Bač+16] M. Bačák, R. Bergmann, G. Steidl, and A. Weinmann. “A Second Order
Nonsmooth Variational Model for Restoring Manifold-Valued Images”. In:
SIAM J Sci Comput 38.1 (2016), A567–A597.

[Bač14] M. Bačák. Convex Analysis and Optimization in Hadamard Spaces. De
Gruyter, 2014.

[Bac19] F. Bach. “Submodular functions: from discrete to continuous domains”. In:
Math Program Series A 175.1–2 (2019), pp. 419–459.

[Bae+14] E. Bae, J. Yuan, X.-C. Tai, and Y. Boykov. “A Fast Continuous Max-Flow
Approach to Non-convex Multi-labeling Problems”. In: Efficient Algorithms
for Global Optimization Methods in Computer Vision. Ed. by A. Bruhn, T.
Pock, and X.-C. Tai. Springer, 2014, pp. 134–154.

[Bal89] J. M. Ball. “A version of the fundamental theorem for young measures”. In:
PDEs and Continuum Models of Phase Transitions. Ed. by M. Rascle, D.
Serre, and M. Slemrod. Springer, 1989, pp. 207–215.

[Bau+16] M. Baust, A. Weinmann, M. Wieczorek, T. Lasser, M. Storath, and N.
Navab. “Combined Tensor Fitting and TV Regularization in Diffusion Ten-
sor Imaging Based on a Riemannian Manifold Approach”. In: IEEE Trans
Med Imaging 35 (2016), pp. 1972–1989.

[BB00] J.-D. Benamou and Y. Brenier. “A computational fluid mechanics solution
to the Monge-Kantorovich mass transfer problem”. In: Numer Math 84.3
(2000), pp. 375–393.

[BC92] D. Bleecker and G. Csordas. Basic partial differential equations. Van Nos-
trand Reinhold, 1992.

154



Bibliography

[BDH96] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. “The quickhull algorithm
for convex hulls”. In: ACM Trans Math Softw 22.4 (1996), pp. 469–483.

[Bec+12] S. Becker, K. Tabelow, H. Voss, A. Anwander, R. Heidemann, and J. Polzehl.
“Position-orientation adaptive smoothing of diffusion weighted magnetic res-
onance data (POAS)”. In: Med Image Anal 16.6 (2012), pp. 1142–1155.

[Ben+19] J. Benn, S. Marsland, R. I. McLachlan, K. Modin, and O. Verdier. “Currents
and Finite Elements as Tools for Shape Space”. In: J Math Imaging Vis 61.8
(2019), pp. 1197–1220.

[Ber+17] F. Bernard, F. R. Schmidt, J. Thunberg, and D. Cremers. “A Combinatorial
Solution to Non-Rigid 3D Shape-to-Image Matching”. In: Proc ICCV 2017.
2017, pp. 1436–1445.

[Ber+18a] R. Bergmann, J. H. Fitschen, J. Persch, and G. Steidl. “Priors with Coupled
First and Second Order Differences for Manifold-Valued Image Processing”.
In: J Math Imaging Vis 60 (2018), pp. 1459–1481.

[Ber+18b] R. Bergmann, F. Laus, J. Persch, and G. Steidl. Recent Advances in Denois-
ing of Manifold-Valued Images. Tech. rep. arXiv:1812.08540. arXiv, 2018.

[BF18] G. Bouchitté and I. Fragalà. “A Duality Theory for Non-convex Problems
in the Calculus of Variations”. In: Arch Rational Mech Anal 229.1 (2018),
pp. 361–415.

[BF19] K. Bredies and S. Fanzon. An optimal transport approach for solving dy-
namic Inverse Probl in spaces of measures. Tech. rep. arXiv:1901.10162.
arXiv, 2019.

[BFS12] M. Burger, M. Franek, and C.-B. Schönlieb. “Regularized regression and
density estimation based on optimal transport”. In: Appl Math Res Express
2012.2 (2012), pp. 209–253.

[BHS11] F. Bachmann, R. Hielscher, and H. Schaeben. “Grain detection from 2d and
3d EBSD data - Specification of the MTEX algorithm”. In: Ultramicroscopy
111.12 (2011), pp. 1720–1733.

[BJ08] W. Bangerth and A. Joshi. “Adaptive finite element methods for the solution
of inverse problems in optical tomography”. In: Inverse Probl 24.3 (2008),
p. 034011.

[BKP10] K. Bredies, K. Kunisch, and T. Pock. “Total generalized variation”. In: SIAM
J Imaging Sci 3.3 (2010), pp. 492–526.

155



Bibliography

[BKR11] A. Blake, P. Kohli, and C. Rother, eds. Markov random fields for vision and
image processing. MIT Press, 2011.

[BL11] K. Bredies and D. Lorenz. Mathematische Bildverarbeitung. Einführung in
Grundlagen und moderne Theorie. Vieweg+Teubner, 2011.

[BL15] C. Brauer and D. Lorenz. “Cartoon-Texture-Noise Decomposition with Trans-
port Norms”. In: Scale Space and Variational Methods in Computer Vision.
Ed. by J.-F. Aujol, M. Nikolova, and N. Papadakis. Springer, 2015, pp. 142–
153.

[BL18] K. Bredies and D. Lorenz. Mathematical image processing. Translated from
the German. Birkhäuser, 2018.

[BML94] P. J. Basser, J. Mattiello, and D. LeBihan. “MR diffusion tensor spec-
troscopy and imaging”. In: Biophys J 66.1 (1994), pp. 259–267.

[Bou04] N. Bourbaki. Integration. Springer, 2004.

[BPS16] R. Bergmann, J. Persch, and G. Steidl. “A Parallel Douglas-Rachford Algo-
rithm for Minimizing ROF-like Functionals on Images with Values in Sym-
metric Hadamard Manifolds”. In: SIAM J Imaging Sci 9 (2016), pp. 901–
937.

[Bra+17] C. Brauer, C. Clason, D. Lorenz, and B. Wirth. A Sinkhorn-Newton method
for entropic optimal transport. Tech. rep. arXiv:1710.06635. arXiv, 2017.

[Bre+18] K. Bredies, M. Holler, M. Storath, and A. Weinmann. “Total Generalized
Variation for Manifold-Valued Data”. In: SIAM J Imaging Sci 11 (2018),
pp. 1785–1848.

[Bre+19] K. Bredies, M. Carioni, S. Fanzon, and F. Romero. On the extremal points of
the ball of the Benamou-Brenier energy. Tech. rep. arXiv:1907.11589. arXiv,
2019.

[Bre03] Y. Brenier. “Extended Monge-Kantorovich Theory”. In: Optimal Trans-
portation and Applications. Ed. by L. Ambrosio, L. A. Caffarelli, Y. Brenier,
G. Buttazzo, C. Villani, and S. Salsa. Springer, 2003, pp. 91–121.

[BT09] E. Bae and X.-C. Tai. “Graph Cut Optimization for the Piecewise Constant
Level Set Method Applied to Multiphase Image Segmentation”. In: Scale
Space and Variational Methods in Computer Vision. Ed. by X.-C. Tai, K.
Mørken, M. Lysaker, and K.-A. Lie. Springer, 2009, pp. 1–13.

156



Bibliography

[BT15] E. Bae and X.-C. Tai. “Efficient Global Minimization Methods for Image
Segmentation Models with Four Regions”. In: J Math Imaging Vis 51.1
(2015), pp. 71–97.

[BT18] R. Bergmann and D. Tenbrinck. “A Graph Framework for Manifold-Valued
Data”. In: SIAM J Imaging Sci 11 (2018), pp. 325–360.

[BV04] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univer-
sity Press, 2004.

[BV88] G. Bouchitté and M. Valadier. “Integral representation of convex functionals
on a space of measures”. In: J Funct Anal 80.2 (1988), pp. 398–420.

[BVZ01] Y. Boykov, O. Veksler, and R. Zabih. “Fast approximate energy minimiza-
tion via graph cuts”. In: IEEE Trans Pattern Anal Mach Intell 23.11 (2001),
pp. 1222–1239.

[BWM18] K. Brehmer, B. Wacker, and J. Modersitzki. “A Novel Similarity Measure
for Image Sequences”. In: Biomedical Image Registration. Ed. by S. Klein,
M. Staring, S. Durrleman, and S. Sommer. Springer, 2018, pp. 47–56.

[Cal91] P. T. Callaghan. Principles of Nuclear Magnetic Resonance Microscopy.
Clarendon Press, 1991.

[Can+15] E. J. Canales-Rodríguez et al. “Spherical Deconvolution of Multichannel
Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regu-
larization”. In: PLOS ONE 10.10 (2015). Ed. by A. Leemans, Article ID
e0138910.

[Car00] N. L. Carothers. Real Analysis. Cambridge University Press, 2000.

[CCP12] A. Chambolle, D. Cremers, and T. Pock. “A convex approach to minimal
partitions”. In: SIAM J Imaging Sci 5.4 (2012), pp. 1113–1158.

[CE05] T. F. Chan and S. Esedoglu. “Aspects of Total variation regularized L1

function approximation”. In: SIAM J Appl Math 65.5 (2005), pp. 1817–
1837.

[CEN06] T. F. Chan, S. Esedoglu, and M. Nikolova. “Algorithms for Finding Global
Minimizers of Image Segmentation and Denoising Models”. In: SIAM J Appl
Math 66.5 (2006), pp. 1632–1648.

[Cha+09] R. Chartrand, B. Wohlberg, K. R. Vixie, and E. M. Bollt. “A Gradient
Descent Solution to the Monge-Kantorovich Problem”. In: Appl Math Sci
3.22 (2009), pp. 1071–1080.

157



Bibliography

[Cha+10] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock. “An in-
troduction to total variation for image analysis”. In: Theoretical foundations
and numerical methods for sparse recovery 9 (2010), pp. 263–340.

[Cha01] A. Chambolle. “Convex Representation for Lower Semicontinuous Envelopes
of Functionals in L1”. In: J Convex Anal 8.1 (2001), pp. 149–170.

[Che+04] C. Chefd’Hotel, D. Tschumperlé, R. Deriche, and O. D. Faugeras. “Regu-
larizing Flows for Constrained Matrix-Valued Images”. In: J Math Imaging
Vis 20 (2004), pp. 147–162.

[Chi+15] G. S. Chilla, C. H. Tan, C. Xu, and C. L. Poh. “Diffusion weighted magnetic
resonance imaging and its recent trend—a survey”. In: Quant Imaging Med
Surg 5.3 (2015), pp. 407–422.
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