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Abstract We develop a general mathematical frame-
work for variational problems where the unknown func-
tion takes values in the space of probability measures on
some metric space. We study weak and strong topolo-
gies and define a total variation seminorm for functions
taking values in a Banach space. The seminorm pe-
nalizes jumps and is rotationally invariant under cer-
tain conditions. We prove existence of a minimizer for
a class of variational problems based on this formula-
tion of total variation, and provide an example where
uniqueness fails to hold. Employing the Kantorovich-
Rubinstein transport norm from the theory of optimal
transport, we propose a variational approach for the
restoration of orientation distribution function (ODF)-
valued images, as commonly used in Diffusion MRI. We
demonstrate that the approach is numerically feasible
on several data sets.

Keywords Variational methods · Total variation ·
Measure theory · Optimal transport · Diffusion MRI ·
Manifold-Valued Imaging

1 Introduction

In this work, we are concerned with variational prob-
lems in which the unknown function u : Ω → P(S2)
maps from an open and bounded set Ω ⊆ R3, the image
domain, into the set of Borel probability measures P(S2)
on the two-dimensional unit sphere S2 (or, more gen-
erally, on some metric space): each value ux := u(x) ∈
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P(S2) is a Borel probability measure on S2, and can be
viewed as a distribution of directions in R3.

Such measures µ ∈ P(S2), in particular when rep-
resented using density functions, are known as orien-
tation distribution functions (ODFs). We will keep to
the term due to its popularity, although we will be
mostly concerned with measures instead of functions
on S2. Accordingly, an ODF-valued image is a function
u : Ω → P(S2). ODF-valued images appear in recon-
struction schemes for diffusion-weighted magnetic res-
onance imaging (MRI), such as Q-ball imaging (QBI)
[75] and constrained spherical deconvolution (CSD) [74].

Applications in Diffusion MRI. In diffusion-weighted
(DW) magnetic resonance imaging (MRI), the diffu-
sivity of water in biological tissues is measured non-
invasively. In medical applications where tissues exhibit
fibrous microstructures, such as muscle fibers or axons
in cerebral white matter, the diffusivity contains valu-
able information about the fiber architecture. For DW
measurements, six or more full 3D MRI volumes are
acquired with varying magnetic field gradients that are
able to sense diffusion.

Under the assumption of anisotropic Gaussian diffu-
sion, positive definite matrices (tensors) can be used to
describe the diffusion in each voxel. This model, known
as diffusion tensor imaging (DTI) [7], requires few mea-
surements while giving a good estimate of the main
diffusion direction in the case of well-aligned fiber di-
rections. However, crossing and branching of fibers at
a scale smaller than the voxel size, also called intra-
voxel orientational heterogeneity (IVOH), often occurs
in human cerebral white matter due to the relatively
large (millimeter-scale) voxel size of DW-MRI data.
Therefore, DTI data is insufficient for accurate fiber
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Fig. 1: Top left: 2-D fiber phantom as described in Sect. 4.1.2. Bottom left: Peak directions on a 15 × 15 grid,
derived from the phantom and used for the generation of synthetic HARDI data. Center: The diffusion tensor
(DTI) reconstruction approximates diffusion directions in a parametric way using tensors, visualized as ellipsoids.
Right: The QBI-CSA ODF reconstruction represents fiber orientation using probability measures at each point,
which allows to accurately recover fiber crossings in the center region.

tract mapping in regions with complex fiber crossings
(Fig. 1).

More refined approaches are based on high angu-
lar resolution diffusion imaging (HARDI) [76] measure-
ments that allow for more accurate restoration of IVOH
by increasing the number of applied magnetic field gra-
dients. Reconstruction schemes for HARDI data yield
orientation distribution functions (ODFs) instead of ten-
sors. In Q-ball imaging (QBI) [75], an ODF is inter-
preted to be the marginal probability of diffusion in
a given direction [1]. In contrast, ODFs in constrained
spherical deconvolution (CSD) approaches [74], also de-
noted fiber ODFs, estimate the density of fibers per di-
rection for each voxel of the volume.

In all of these approaches, ODFs are modelled as
antipodally symmetric functions on the sphere which
could be modelled just as well on the projective space
(which is defined to be a sphere where antipodal points
are identified). However, most approaches parametrize
ODFs using symmetric spherical harmonics basis func-
tions which avoids any numerical overhead. Moreover,
novel approaches [25,31,66,45] allow for asymmetric
ODFs to account for intravoxel geometry. Therefore,
we stick to modelling ODFs on a sphere even though
our model could be easily adapted to models on the
projective space.

Variational models for orientation distributions. As a
common denominator, in the above applications, recon-

structing orientation distributions rather than a sin-
gle orientation at each point allows to recover direc-
tional information of structures – such as vessels or
nerve fibers – that may overlap or have crossings: For
a given set of directions A ⊂ S2, the integral

∫
A
dux(z)

describes the fraction of fibers crossing the point x ∈ Ω
that are oriented in any of the given directions v ∈ A.

However, modeling ODFs as probability measures
in a non-parametric way is surprisingly difficult. In an
earlier conference publication [78], we proposed a new
formulation of the classical total variation seminorm
(TV) [4,14] for nonparametric Q-ball imaging that al-
lows to formulate the variational restoration model

inf
u:Ω→P(S2)

∫
Ω

ρ(x, ux) dx+ λTVW1(u), (1)

with various pointwise data fidelity terms

ρ : Ω × P(S2)→ [0,∞). (2)

This involved in particular a non-parametric concept of
total variation for ODF-valued functions that is mathe-
matically robust and computationally feasible: The idea
is to build upon the TV-formulations developed in the
context of functional lifting [52]

TVW1
(u) := sup

{∫
Ω

〈− div p(x, ·), ux〉 dx :

p ∈ C1
c (Ω × S2;R3), p(x, ·) ∈ Lip1(S2;R3)

}
,

(3)
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where 〈g, µ〉 :=
∫
S2 g(z) dµ(z) whenever µ is a measure

on S2 and g is a real- or vector-valued function on S2.
One distinguishing feature of this approach is that

it is applicable to arbitrary Borel probability measures.
In contrast, existing mathematical frameworks for QBI
and CSD generally follow the standard literature on
the physics of MRI [11, p. 330] in assuming ODFs to be
given by a probability density function in L1(S2), often
with an explicit parametrization.

As an example of one such approach, we point to
the fiber continuity regularizer proposed in [67] which is
defined for ODF-valued functions u where, for each x ∈
Ω, the measure ux can be represented by a probability
density function z 7→ ux(z) on S2:

RFC(u) :=

∫
Ω

∫
S2
(z · ∇xux(z))2 dz dx (4)

Clearly, a rigorous generalization of this functional to
measure-valued functions for arbitrary Borel probabil-
ity measures is not straightforward.

While practical, the probability density-based ap-
proach raises some modeling questions, which lead to
deeper mathematical issues. In particular, comparing
probability densities using the popular Lp-norm-based
data fidelity terms – in particular the squared L2-norm
– does not incorporate the structure naturally carried
by probability densities such as nonnegativity and unit
total mass, and ignores metric information about S2.

To illustrate the last point, assume that two prob-
ability measures are given in terms of density func-
tions f, g ∈ Lp(S2) satisfying supp(f) ∩ supp(g) = ∅,
i.e., having disjoint support on S2. Then ‖f − g‖Lp =

‖f‖Lp + ‖g‖Lp , irrespective of the size and relative po-
sition of the supporting sets of f and g on S2.

One would prefer to use statistical metrics such as
optimal transport metrics [77] that properly take into
account distances on the underlying set S2 (Fig. 2).
However, replacing the Lp-norm with such a metric
in density-based variational imaging formulations will
generally lead to ill-posed minimization problems, as
the minimum might not be attained in Lp(S2), but pos-
sibly in P(S2) instead.

Therefore, it is interesting to investigate whether
one can derive a mathematical basis for variational im-
age processing with ODF-valued functions without mak-
ing assumptions about the parametrization of ODFs nor
assuming ODFs to be given by density functions.

1.1 Contribution

Building on the preliminary results published in the
conference publication [78], we derive a rigorous math-

ematical framework (Sect. 2 and Appendices) for a gen-
eralization of the total variation seminorm formulated
in (3) to Banach space-valued1 and, as a special case,
ODF-valued functions (Sect. 2.1).

Building on this framework, we show existence of
minimizers to (1) (Thm. 1) and discuss properties of TV
such as rotational invariance (Prop. 2) and the behavior
on cartoon-like jump functions (Prop. 1).

We demonstrate that our framework can be numer-
ically implemented (Sect. 3) as a primal-dual saddle-
point problem involving only convex functions. Applica-
tions to synthetic and real-world data sets show signifi-
cant reduction of noise as well as qualitatively convinc-
ing results when combined with existing ODF-based
imaging approaches, including Q-ball and CSD (Sect. 4).

Details about the functional-analytic and measure-
theoretic background of our theory are given in Ap-
pendix A. There, well-definedness of the TV-seminorm
and of variational problems of the form (1) is estab-
lished by carefully considering measurability of the func-
tions involved (Lemmas 1 and 2). Furthermore, a func-
tional-analytic explanation for the dual structure that
is inherent in (3) is given.

1.2 Related Models

The high angular resolution of HARDI results in a large
amount of noise compared with DTI. Moreover, most
QBI and CSD models reconstruct the ODFs in each
voxel separately. Consequently, HARDI data is a par-
ticularly interesting target for post-processing in terms
of denoising and regularization in the sense of contex-
tual processing. Some techniques apply a total variation
or diffusive regularization to the HARDI signal before
ODF reconstruction [53,47,28,9] and others regularize
in a post-processing step [25,29,80].

1.2.1 Variational Regularization of DW-MRI Data

A Mumford-Shah model for edge-preserving restoration
of Q-ball data was introduced in [80]. There, jumps
were penalized using the Fisher-Rao metric which de-
pends on a parametrization of ODFs as discrete prob-
ability distribution functions on sampling points of the
sphere. Furthermore, the Fisher-Rao metric does not
take the metric structure of S2 into consideration and
is not amenable to biological interpretations [60]. Our
formulation avoids any parametrization-induced bias.

1 Here and throughout the paper, we use “Banach space-
valued” as a synonym for “taking values in a Banach space”
even though we acknowledge the ambiguity carried by this
expression. Similarly, “metric space-valued” is used in [3] and
“manifold-valued” in [8].



4 Thomas Vogt, Jan Lellmann

0 25 50 75 100 125 150 175
0

1

2

0 25 50 75 100 125 150 175
0

2

4

0 25 50 75 100 125 150 175
0.0

0.5

1.0

1.5

0 25 50 75 100 125 150 175
0

1

2

0 25 50 75 100 125 150 175
0

2

4

0 25 50 75 100 125 150 175
0.0

0.5

1.0

1.5

Fig. 2: Horizontal axis: Angle of main diffusion direction relative to the reference diffusion profile in the bottom
left corner. Vertical axis: Distances of the ODFs in the bottom row to the reference ODF in the bottom left corner
(L1-distances in the top row and W 1-distance in the second row). L1-distances do not reflect the linear change
in direction, whereas the W 1-distance exhibits an almost-linear profile. Lp-distances for other values of p (such as
p = 2) show a behavior similar to L1-distances.

Recent approaches directly incorporate a regularizer
into the reconstruction scheme: Spatial TV-based regu-
larization for Q-ball imaging has been proposed in [61].
However, the TV formulation proposed therein again
makes use of the underlying parametrization of ODFs
by spherical harmonics basis functions. Similarly, DTI-
based models such as the second-order model for regu-
larizing general manifold-valued data [8] make use of an
explicit approximation using positive semidefinite ma-
trices, which the proposed model avoids.

The application of spatial regularization to CSD re-
construction is known to significantly enhance the re-
sults [23]. However, total variation [12] and other regu-
larizers [41] are based on a representation of ODFs by
square-integrable probability density functions instead
of the mathematically more general probability mea-
sures that we base our method on.

1.2.2 Regularization of DW-MRI by Linear Diffusion

In another approach, the orientational part of ODF-
valued images is included in the image domain, so that
images are identified with functions U : R3 × S2 → R
that allow for contextual processing via PDE-based mod-
els on the space of positions and orientation or, more
precisely, on the group SE(3) of 3D rigid motions. This
technique comes from the theory of stochastic processes
on the coupled space R3×S2. In this context, it has been
applied to the problems of contour completion [59] and
contour enhancement [28,29]. Its practical relevance in
clinical applications has been demonstrated [65].

This approach has been used to enhance the qual-
ity of CSD as a prior in a variational formulation [67]
or in a post-processing step [64] that also includes ad-
ditional angular regularization. Due to the linearity of
the underlying linear PDE, convolution-based explicit
solution formulas are available [28,63]. Implemented ef-

ficiently [55,54], they outperform our more computa-
tionally demanding model, which is not tied to the spe-
cific application of DW-MRI, but allows arbitrary met-
ric spaces. Furthermore, nonlinear Perona and Malik
extensions to this technique have been studied [20] that
do not allow for explicit solutions.

As an important distinction, in these approaches,
spatial location and orientation are coupled in the reg-
ularization. Since our model starts from the more gen-
eral setting of measure-valued functions on an arbi-
trary metric space (instead of only S2), it does not cur-
rently realize an equivalent coupling. An extension to
anisotropic total variation for measure-valued functions
might close this gap in the future.

In contrast to these diffusion-based methods, our
approach is able to preserve edges by design, even though
the coupling of positions and orientations is able to
make up for this shortcoming at least in part since edges
in DW-MRI are, most of the time, oriented in parallel
to the direction of diffusion. Furthermore, the diffusion-
based methods are formulated for square-integrable den-
sity functions, excluding point masses. Our method avoids
this limitation by operating on mathematically more
general probability measures.

1.2.3 Other Related Theoretical Work

Variants of the Kantorovich-Rubinstein formulation of
the Wasserstein distance that appears in our framework
have been applied in [51] and, more recently, in [33,
32] to the problems of real-, RGB- and manifold-valued
image denoising.

Total variation regularization for functions on the
space of positions and orientations was recently intro-
duced in [16] based on [18]. Similarly, the work and
toolbox in [69] is concerned with the implementation of
so-called orientation fields in 3D image processing.
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ADirichlet energy for measure-valued functions based
on Wasserstein metrics was recently developed in the
context of harmonic mappings in [49] which can be in-
terpreted as a diffusive (L2) version of our proposed
(L1) regularizer.

Our work is based on the conference publication [78],
where a non-parametric Wasserstein-total variation reg-
ularizer for Q-ball data is proposed. We embed this for-
mulation of TV into a significantly more general defini-
tion of TV for Banach space-valued functions.

In the literature, Banach space-valued functions of
bounded variation mostly appear as a special case of
metric space-valued functions of bounded variation (BV)
as introduced in [3]. Apart from that, the case of one-
dimensional domains attracts some attention [27] and
the case of Banach space-valued BV-functions defined
on a metric space is studied in [57].

In contrast to these approaches, we give a defini-
tion of Banach space-valued BV functions that live on
a finite-dimensional domain. In analogy with the real-
valued case, we formulate the TV seminorm by duality,
inspired by the functional-analytic framework from the
theory of functional lifting [42] as used in the theory of
Young-measures [6].

Due to the functional-analytic approach, our model
does not depend on the specific parametrization of the
ODFs and can be combined with the QBI and CSD
frameworks for ODF reconstruction from HARDI data,
either in a post-processing step or during reconstruc-
tion. Combined with suitable data fidelity terms such as
least-squares or Wasserstein distances, it allows for an
efficient implementation using state-of-the-art primal-
dual methods.

2 A Mathematical Framework for
Measure-Valued Functions

Our work is motivated by the study of ODF-valued
functions u : Ω → P(S2) for Ω ⊂ R3 open and bounded.
However, from an abstract viewpoint, the unit sphere
S2 ⊂ R3 equipped with the metric induced by the Rie-
mannian manifold structure [50] – i.e., the distance be-
tween two points is the arc length of the great circle
segment through the two points – is simply a particu-
lar example of a compact metric space.

As it turns out, most of the analysis only relies on
this property. Therefore, in the following we generalize
the setting of ODF-valued functions to the study of
functions taking values in the space of Borel probability
measures on an arbitrary compact metric space (instead
of S2).

More precisely, throughout this section, let

1. Ω ⊂ Rd be an open and bounded set, and let
2. (X, d) be a compact metric space, e.g., a compact

Riemannian manifold equipped with the commonly-
used metric induced by the geodesic distance (such
as X = S2).

Boundedness of Ω and compactness of X are not re-
quired by all of the statements below. However, as we
are ultimately interested in the case of X = S2 and
rectangular image domains, we impose these restric-
tions. Apart from DW-MRI, one natural application
of this generalized setting are two-dimensional ODFs
where d = 2 and X = S1 which is similar to the setting
introduced in [16] for the edge enhancement of color or
grayscale images.

The goal of this section is a mathematically well-
defined formulation of TV as given in (3) that exhibits
all the properties that the classical total variation semi-
norm is known for: anisotropy (Prop. 2), preservation
of edges and compatibility with piecewise-constant sig-
nals (Prop. 1). Furthermore, for variational problems as
in (1), we give criteria for the existence of minimizers
(Theorem 1) and discuss (non-)uniqueness (Prop. 3).

A well-defined formulation of TV as given in (3) re-
quires a careful inspection of topological and functional
analytic concepts from optimal transport and general
measure theory. For details, we refer the reader to the
elaborate Appendix A. Here, we only introduce the def-
initions and notation needed for the statement of the
central results.

2.1 Definition of TV

We first give a definition of TV for Banach space-valued
functions (i.e., functions that take values in a Banach
space), which a definition of TV for measure-valued
functions will turn out to be a special case of.

For weakly measurable (see Appendix A.1) func-
tions u : Ω → V with values in a Banach space V (later,
we will replace V by a space of measures), we define,
extending the formulation of TVW1

introduced in [78],

TVV (u) := sup

{∫
Ω

〈− div p(x), u(x)〉 dx :

p ∈ C1
c (Ω, (V

∗)d), ∀x ∈ Ω : ‖p(x)‖(V ∗)d ≤ 1

}
.

(5)

By V ∗, we denote the (topological) dual space of V ,
i.e., V ∗ is the set of bounded linear operators from V

to R. The criterion p ∈ C1
c (Ω, (V

∗)d) means that p is a
compactly supported function on Ω ⊂ Rd with values in
the Banach space (V ∗)d and the directional derivatives
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∂ip : Ω → (V ∗)d, 1 ≤ i ≤ d, (in Euclidean coordinates)
lie in Cc(Ω, (V ∗)d). We write

div p(x) :=

d∑
i=1

∂ipi(x). (6)

Lemma 1 ensures that the integrals in (5) are well-
defined and Appendix D discusses the choice of the
product norm ‖ · ‖(V ∗)d .

Measure-valued functions. Now we want to apply this
definition to measure-valued functions u : Ω → P(X),
where P(X) is the set of Borel probability measures
supported on X.

The space P(X) equipped with theWasserstein met-
ric W1 from the theory of optimal transport is isomet-
rically embedded into the Banach space V = KR(X)

(the Kantorovich-Rubinstein space) whose dual space is
the space V ∗ = Lip0(X) of Lipschitz-continuous func-
tions on X that vanish at an (arbitrary but fixed) point
x0 ∈ X. This setting is introduced in detail in Ap-
pendix A.2. Then, for u : Ω → P(X), definition (5)
comes back to (3) or, more precisely,

TVKR(u) := sup

{∫
Ω

〈− div p(x), u(x)〉 dx :

p ∈ C1
c (Ω, [Lip0(X)]d), ‖p(x)‖[Lip0(X)]d ≤ 1

}
,

(7)

where the definition of the product norm ‖ · ‖[Lip0(X)]d

is discussed in Appendix D.3.

2.2 Properties of TV

In this section, we show that the properties that the
classical total variation seminorm is known for continue
to hold for definition (5) in the case of Banach space-
valued functions.

Cartoon functions. A reasonable demand is that the
new formulation should behave similarly to the classical
total variation on cartoon-like jump functions u : Ω →
V ,

u(x) :=

{
u+, x ∈ U,
u−, x ∈ Ω \ U,

(8)

for some fixed measurable set U ⊂ Ω with smooth
boundary ∂U , and u+, u− ∈ V . The classical total vari-
ation assigns to such functions a penalty of

Hd−1(∂U) · ‖u+ − u−‖V , (9)

where the Hausdorff measure Hd−1(∂U) describes the
length or area of the jump set. The following proposi-
tion, which generalizes [78, Prop. 1], provides conditions
on the norm ‖ · ‖(V ∗)d which guarantee this behavior.

Proposition 1 Assume that U is compactly contained
in Ω with C1-boundary ∂U . Let u+, u− ∈ V and let
u : Ω → V be defined as in (8). If the norm ‖ · ‖(V ∗)d
in (5) satisfies∣∣∣∑d

i=1 xi〈pi, v〉
∣∣∣ ≤ ‖x‖2‖p‖(V ∗)d‖v‖V , (10)

‖(x1q, . . . , xdq)‖(V ∗)d ≤ ‖x‖2‖q‖V ∗ (11)

whenever q ∈ V ∗, p ∈ (V ∗)d, v ∈ V , and x ∈ Rd, then

TVV (u) = Hd−1(∂U) · ‖u+ − u−‖V . (12)

Proof See Appendix B. ut

Rotational invariance. Property (12) is inherently ro-
tationally invariant: we have TVV (u) = TVV (ũ) when-
ever ũ(x) := u(Rx) for some R ∈ SO(d) and u as in
(8), with the domain Ω rotated accordingly. The reason
is that the jump size is the same everywhere along the
edge ∂U . More generally, we have the following propo-
sition:

Proposition 2 Assume that ‖ · ‖(V ∗)d satisfies the ro-
tational invariance property

‖p‖(V ∗)d = ‖Rp‖(V ∗)d ∀p ∈ (V ∗)d, R ∈ SO(d), (13)

where Rp ∈ (V ∗)d is defined via

(Rp)i =

d∑
j=1

Rijpj ∈ V ∗. (14)

Then TVV is rotationally invariant, i.e., TVV (u) =

TVV (ũ) whenever u ∈ L∞w (Ω, V ) and ũ(x) := u(Rx)

for some R ∈ SO(d).

Proof (Prop. 2) See Appendix C. ut

2.3 TVKR as a Regularizer in Variational Problems

This section shows that, in the case of measure-valued
functions u : Ω → P(X), the functional TVKR exhibits
a regularizing property, i.e., it establishes existence of
minimizers.

For λ ∈ [0,∞) and ρ : Ω ×P(X)→ [0,∞) fixed, we
consider the functional

Tρ,λ(u) :=

∫
Ω

ρ(x, u(x)) dx+ λTVKR(u). (15)
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for u : Ω → P(X). Lemma 2 in Appendix F makes sure
that the integrals in (15) are well-defined.

Then, minimizers of the energy (15) exist in the fol-
lowing sense:

Theorem 1 Let Ω ⊂ Rd be open and bounded, let
(X, d) be a compact metric space and assume that ρ
satisfies the assumptions from Lemma 2. Then the vari-
ational problem

inf
u∈L∞w (Ω,P(X))

Tρ,λ(u) (16)

with the energy

Tρ,λ(u) :=

∫
Ω

ρ(x, u(x)) dx+ λTVKR(u). (17)

as in (15) admits a (not necessarily unique) solution.

Proof See Appendix F. ut

Non-uniqueness of minimizers of (15) is clear for
pathological choices such as ρ ≡ 0. However, there are
non-trivial cases where uniqueness fails to hold:

Proposition 3 Let X = {0, 1} be the metric space
consisting of two discrete points of distance 1 and define
ρ(x, µ) :=W1(f(x), µ) where

f(x) :=

{
δ1, x ∈ Ω \ U,
δ0, x ∈ U,

(18)

for a non-empty subset U ⊂ Ω with C1 boundary. As-
sume the coupled norm (D.22) on [Lip0(X)]d in the def-
inition (7) of TVKR.

Then there is a one-to-one correspondence between
feasible solutions u of problem (16) and feasible solu-
tions ũ of the classical L1-TV functional

inf
ũ∈L1(Ω,[0,1])

T̃λ(u), T̃λ(u) := ‖1U − ũ‖L1 + λTV(ũ)

(19)

via the mapping

u(x) = ũ(x)δ0 + (1− ũ(x))δ1. (20)

Under this mapping T̃λ(ũ) = Tρ,λ(u) holds, so that the
problems (16) and (19) are equivalent.

Furthermore, there exists λ > 0 for which the mini-
mizer of Tρ,λ is not unique.

Proof See Appendix E. ut

2.4 Application to ODF-Valued Images

For ODF-valued images, we consider the special case
X = S2 equipped with the metric induced by the stan-
dard Riemannian manifold structure on S2, and Ω ⊂
R3.

Let f ∈ L∞w (Ω,P(S2)) be an ODF-valued image
and denote by W1 the Wasserstein metric from the
theory of optimal transport (see equation (A.8) in Ap-
pendix A.2). Then the function

ρ(x, µ) :=W1(f(x), µ), x ∈ Ω, µ ∈ P(S2), (21)

satisfies the assumptions in Lemma 2 and hence Theo-
rem 1 (see Appendix F).

For denoising of an ODF-valued function f in a
postprocessing step after ODF reconstruction, similar
to [78] we propose to solve the variational minimization
problem

inf
u:Ω→P(S2)

∫
Ω

W1(f(x), u(x)) dx+ λTVKR(u) (22)

using the definition of TVKR(u) in (7).
The following statement shows that this in fact pe-

nalizes jumps in u by the Wasserstein distance as de-
sired, correctly taking the metric structure of S2 into
account.

Corollary 1 Assume that U is compactly contained in
Ω with C1-boundary ∂U . Let the function u : Ω → P(S2)
be defined as in (8) for some u+, u− ∈ P(S2). Choosing
the norm (D.22) (or (D.1) with s = 2) on the product
space Lip(S2)d, we have

TVKR(u) = Hd−1(∂U) ·W1(u
+, u−). (23)

The corollary was proven directly in [78, Prop. 1]. In
the functional-analytic framework established above, it
now follows as a simple corollary to Proposition 1.

Moreover, beyond the theoretical results given in
[78], we now have a rigorous framework that ensures
measurability of the integrands in (22), which is crucial
for well-definedness. Furthermore, Theorem 1 on the
existence of minimizers provides an important step in
proving well-posedness of the variational model (22).

3 Numerical Scheme

As in [78], we closely follow the discretization scheme
from [52] in order to formulate the problem in a saddle-
point form that is amenable to standard primal-dual
algorithms [15,62,37,39,38].
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yj
zk

mk

Fig. 3: Discretization of the unit sphere S2. Measures
are discretized via their average on the subsets mk.
Functions are discretized on the points zk (dot mark-
ers), their gradients are discretized on the yj (square
markers). Gradients are computed from points in a
neighborhood Nj of yj . The neighborhood relation is
depicted with dashed lines. The discretization points
were obtained by recursively subdividing the 20 trian-
gular faces of an icosahedron and projecting the vertices
to the surface of the sphere after each subdivision.

3.1 Discretization

We assume a d-dimensional image domain Ω, d = 2, 3,
that is discretized using n points x1, . . . , xn ∈ Ω. Dif-
ferentiation in Ω is done on a staggered grid with Neu-
mann boundary conditions such that the dual operator
to the differential operator D is the negative divergence
with vanishing boundary values.

The framework presented in Section 2 applies to ar-
bitrary compact metric spaces X. However, for an effi-
cient implementation of the Lipschitz constraint in (7),
we will assume an s-dimensional manifoldX =M. This
includes the case of ODF-valued images (X =M = S2,
s = 2). For future generalizations to other manifolds,
we give the discretization in terms of a general manifold
X =M even though this means neglecting the reason-
able parametrization of S2 using spherical harmonics in
the case of DW-MRI. Moreover, note that the following
discretization does not apply to arbitrary metric spaces
X.

Now, let M be decomposed (Fig. 3) into l disjoint
measurable (not necessarily open or closed) sets

m1, . . . ,ml ⊂M (24)

with
⋃
km

k =M and volumes b1, . . . , bl ∈ R with re-
spect to the Lebesgue measure onM. A measure-valued
function u : Ω → P(M) is discretized as its average
u ∈ Rn,l on the volume mk, i.e.,

uik := uxi(mk)/bk. (25)

Functions p ∈ C1
c (Ω,Lip(X,Rd)) as they appear for

example in our proposed formulation of TV in (5) are
identified with functions p : Ω × M → Rd and dis-
cretized as p ∈ Rn,l,d via pikt := pt(x

i, zk) for a fixed
choice of discretization points

∀k = 1, . . . , l : zk ∈ mk ⊂M. (26)

The dual pairing of p with u is discretized as

〈u, p〉b :=
∑
i,k

bku
i
kp
i
k. (27)

3.1.1 Implementation of the Lipschitz Constraint

The Lipschitz constraint in the definition (A.8) of W1

and in the definition (7) of TVKR is implemented as a
norm constraint on the gradient. Namely, for a function
p :M→ R, which we discretize as p ∈ Rl, pk := p(zk),
we discretize gradients on a staggered grid of m points

y1, . . . , ym ∈M, (28)

such that each of the yj has r neighboring points among
the zk (Fig. 3):

∀j = 1, . . . ,m : Nj ⊂ {1, . . . , l}, #Nj = r. (29)

The gradient g ∈ Rm,s, gj := Dp(yj), is then defined as
the vector in the tangent space at yj that, together with
a suitable choice of the unknown value c := p(yj), best
explains the known values of p at the zk by a first-order
Taylor expansion

p(zk) ≈ p(yj) + 〈gj , vjk〉, k ∈ Nj , (30)

where vjk := exp−1yj (z
k) ∈ TyjM is the Riemannian

inverse exponential mapping of the neighboring point
zk to the tangent space at yj . More precisely,

gj := argmin
g∈TyjM

min
c∈R

∑
k∈Nj

(
c+ 〈g, vjk〉 − p(zk)

)2
. (31)

Writing the vjk into a matrix M j ∈ Rr,s and encoding
the neighboring relations as a sparse indexing matrix
P j ∈ Rr,l, we obtain the explicit solution for the value
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c and gradient gj at the point yj from the first-order
optimality conditions of (31):

c = p(yj) =
1

r
(eTP jp− eTM jgj), (32)

(M j)TEM jgj = (M j)TEP jp, (33)

where e := (1, . . . , 1) ∈ Rr and E := (I − 1
r ee

T ). The
value c does not appear in the linear equations for gj

and is not needed in our model, therefore we can ignore
the first line. The second line, with Aj := (M j)TEM j ∈
Rs,s and Bj := (M j)TE ∈ Rs,r, can be concisely writ-
ten as

Ajgj = BjP jp, for each j ∈ {1, . . . ,m}. (34)

Following our discussion about the choice of norm in
Appendix D, the (Lipschitz) norm constraint ‖gj‖ ≤ 1

can be implemented using the Frobenius norm or the
spectral norm, both being rotationally invariant and
both acting as desired on cartoon-like jump functions
(cf. Prop. 1).

3.1.2 Discretized W1-TV Model

Based on the above discretization, we can formulate
saddle-point forms for (22) that allow to apply a primal-
dual first-order method such as [15]. In the following,
the measure-valued input or reference image is given
by f ∈ Rl,n and the dimensions of the primal and dual
variables are

u ∈ Rl,n, p ∈ Rl,d,n, g ∈ Rn,m,s,d, (35)

p0 ∈ Rl,n, g0 ∈ Rn,m,s, (36)

where gij ≈ Dzp(x
i, yj) and gj0 ≈ Dp0(yj).

Using a W1 data term, the saddle point form of the
overall problem reads

min
u

max
p,g

W1(u, f) + 〈Du, p〉b (37)

s.t. ui ≥ 0, 〈ui, b〉 = 1, ∀i, (38)

Ajgijt = BjP jpit ∀i, j, t, (39)

‖gij‖ ≤ λ ∀i, j (40)

or, applying the Kantorovich-Rubinstein duality (A.8)
to the data term,

min
u

max
p,g,p0,g0

〈u− f, p0〉b + 〈Du, p〉b (41)

s.t. ui ≥ 0, 〈ui, b〉 = 1 ∀i, (42)

Ajgijt = BjP jpit, ‖gij‖ ≤ λ ∀i, j, t, (43)

Ajgij0 = BjP jpi0, ‖g
ij
0 ‖ ≤ 1 ∀i, j. (44)

3.1.3 Discretized L2-TV Model

For comparison, we also implemented the Rudin-Osher-
Fatemi (ROF) model

inf
u:Ω→P(S2)

∫
Ω

∫
S2
(fx(z)− ux(z))2 dz dx+ λTV(u) (45)

using TV = TVKR. The quadratic data term can be
implemented using the saddle point form

min
u

max
p,g

〈u− f, u− f〉b + 〈Du, p〉b (46)

s.t. ui ≥ 0, 〈ui, b〉 = 1, (47)

Ajgijt = BjP jpit, ‖gij‖ ≤ λ ∀i, j, t. (48)

From a functional-analytic viewpoint, this approach re-
quires to assume that ux can be represented by an L2

density, suffers from well-posedness issues, and ignores
the metric structure on S2 as mentioned in the intro-
duction. Nevertheless we include it for comparison, as
the L2 norm is a common choice and the discretized
model is a straightforward modification of the W1-TV
model.

3.2 Implementation Using a Primal-Dual Algorithm

Based on the saddle-point forms (41) and (46), we ap-
plied the primal-dual first-order method proposed in
[15] with the adaptive step sizes from [39]. We also eval-
uated the diagonal preconditioning proposed in [62].
However, we found that while it led to rapid conver-
gence in some cases, the method frequently became un-
acceptably slow before reaching the desired accuracy.
The adaptive step size strategy exhibited a more ro-
bust overall convergence.

The equality constraints in (41) and (46) were in-
cluded into the objective function by introducing suit-
able Lagrange multipliers. As far as the norm constraint
on g0 is concerned, the spectral and Frobenius norms
agree, since the gradient of p0 is one-dimensional. For
the norm constraint on the Jacobian g of p, we found
the spectral and Frobenius norm to give visually indis-
tinguishable results.

Furthermore, since M = S2 and therefore s = 2 in
the ODF-valued case, explicit formulas for the orthog-
onal projections on the spectral norm balls that appear
in the proximal steps are available [36]. The experi-
ments below were calculated using spectral norm con-
straints, as in our experience this choice led to slightly
faster convergence.
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4 Results

We implemented our model in Python 3.5 using the li-
braries NumPy 1.13, PyCUDA 2017.1 and CUDA 8.0.
The examples were computed on an Intel Xeon X5670
2.93GHz with 24 GB of main memory and an NVIDIA
GeForce GTX 480 graphics card with 1,5 GB of dedi-
cated video memory. For each step in the primal-dual
algorithm, a set of kernels was launched on the GPU,
while the primal-dual gap was computed and termina-
tion criteria were tested every 5 000 iterations on the
CPU.

For the following experiments, we applied our mod-
els presented in Sections 3.1.2 (W1-TV) and 3.1.3 (L2-
TV) to ODF-valued images reconstructed from HARDI
data using the reconstruction methods that are pro-
vided by the Dipy project [34]:

– For voxel-wise QBI reconstruction within constant
solid angle (CSA-ODF) [1], we used CsaOdfModel
from dipy.reconst.shm with spherical harmonics
functions up to order 6.

– For voxel-wise CSD reconstruction as proposed in
[73], we used ConstrainedSphericalDeconvModel
as provided with dipy.reconst.csdeconv.

The response function that is needed for CSD recon-
struction was determined using the recursive calibration
method [72] as implemented in recursive_response,
which is also part of dipy.reconst.csdeconv. We gen-
erated the ODF plots using VTK-based sphere_funcs
from dipy.viz.fvtk.

It is equally possibly to use other methods for Q-ball
reconstruction for the preprocessing step, or even inte-
grate the proposed TV-regularizer directly into the re-
construction process. Furthermore, our method is com-
patible with different numerical representations of ODFs,
including sphere discretization [35], spherical harmonics
[1], spherical wavelets [46], ridgelets [56] or similar basis
functions [43,2], as it does not make any assumptions on
regularity or symmetry of the ODFs. We leave a com-
prehensive benchmark to future work, as the main goal
of this work is to investigate the mathematical founda-
tions.

4.1 Synthetic Data

4.1.1 L2-TV vs. W1-TV

We demonstrate the different behaviors of the L2-TV
model compared to theW1-TV model with the help of a
one-dimensional synthetic image (Fig. 4) generated us-
ing the multi-tensor simulation method multi_tensor

from dipy.sims.voxel which is based on [71] and [26,
p. 42]; see also [78].

By choosing very high regularization parameters λ,
we enforce the models to produce constant results. The
L2-based data term prefers a blurred mixture of dif-
fusion directions, essentially averaging the probability
measures. The W1 data term tends to concentrate the
mass close to the median of the diffusion directions on
the unit sphere, properly taking into account the metric
structure of S2.

4.1.2 Scale-space Behavior

To demonstrate the scale space behavior of our varia-
tional models, we implemented a 2-D phantom of two
crossing fibre bundles as depicted in Fig. 1, inspired
by [61]. From this phantom we computed the peak di-
rections of fiber orientations on a 15 × 15 grid. This
was used to generate synthetic HARDI data simulating
a DW-MRI measurement with 162 gradients and a b-
value of 3 000, again using the multi-tensor simulation
framework from dipy.sims.voxel.

We then applied our models to the CSA-ODF re-
construction of this data set for increasing values of
the regularization parameter λ in order to demonstrate
the scale-space behaviors of the different data terms
(Fig. 5).

As both models use the proposed TV regularizer,
edges are preserved. However, just as classical ROF
models tend to reduce jump sizes across edges, and lose
contrast, the L2-TV model results in the background
and foreground regions becoming gradually more sim-
ilar as regularization strength increases. The W1-TV
model preserves the unimodal ODFs in the background
regions and demonstrates a behavior more akin to ro-
bust L1-TV models [30], with structures disappearing
abruptly rather than gradually depending on their scale.

4.1.3 Denoising

We applied our model to the CSA-ODF reconstruc-
tion of a slice (NumPy coordinates [12:27,22,21:36])
from the synthetic HARDI data set with added noise
at SNR = 10, provided in the ISBI 2013 HARDI re-
construction challenge. We evaluated the angular pre-
cision of the estimated fiber compartments using the
script (compute_local_metrics.py) provided on the
challenge homepage [24].

The script computes the mean µ and standard de-
viation σ of the angular error between the estimated
fiber directions inside the voxels and the ground truth
as also provided on the challenge page (Fig. 6).
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Fig. 4: Top: 1D image of synthetic unimodal ODFs where the angle of the main diffusion direction varies linearly
from left to right. This is used as input image for the center and bottom row. Center: Solution of L2-TV model
with λ = 5. Bottom: Solution of W1-TV model with λ = 10. In both cases, the regularization parameter λ was
chosen sufficiently large to enforce a constant result. The quadratic data term mixes all diffusion directions into
one blurred ODF, whereas the Wasserstein data term produces a tight ODF that is concentrated close to the
median diffusion direction.

The noisy input image exhibits a mean angular er-
ror of µ = 34.52 degrees (σ = 19.00). The reconstruc-
tions using W1-TV (µ = 17.73, σ = 17.25) and L2-TV
(µ = 17.82, σ = 18.79) clearly improve the angular er-
ror and give visually convincing results: The noise is
effectively reduced and a clear trace of fibres becomes
visible (Fig. 7). In these experiments, the regularizing
parameter λ was chosen optimally in order to minimize
the mean angular error to the ground truth.

4.2 Human Brain HARDI Data

One slice (NumPy coordinates [20:50, 55:85, 38])
of HARDI data from the human brain data set [68] was
used to demonstrate the applicability of our method to
real-world problems and to images reconstructed using
CSD (Fig. 8). Run times of the W1-TV and L2-TV
model are approximately 35 minutes (105 iterations)
and 20 minutes (6 · 104 iterations).

As a stopping criterion, we require the primal-dual
gap to fall below 10−5, which corresponds to a deviation
from the global minimum of less than 0.001%, and is
a rather challenging precision for the first-order meth-
ods used. The regularization parameter λ was manually
chosen based on visual inspection.

Overall, contrast between regions of isotropic and
anisotropic diffusion is enhanced. In regions where a
clear diffusion direction is already visible before spatial
regularization, W1-TV tends to conserve this informa-
tion better than L2-TV.

5 Conclusion and Outlook

Our mathematical framework for ODF- and, more gen-
eral, measure-valued images allows to perform total vari-

ation-based regularization of measure-valued data with-
out assuming a specific parametrization of ODFs, while
correctly taking the metric on S2 into account. The
proposed model penalizes jumps in cartoon-like images
proportional to the jump size measured on the underly-
ing normed space, in our case the Kantorovich-Rubin-
stein space, which is built on the Wasserstein-1-metric.
Moreover, the full variational problem was shown to
have a solution and can be implemented using off-the-
shelf numerical methods.

With the first-order primal-dual algorithm chosen
in this paper, solving the underlying optimization prob-
lem for DW-MRI regularization is computationally de-
manding due to the high dimensionality of the problem.
However, numerical performance was not a priority in
this work and can be improved. For example, optimal
transport norms are known to be efficiently computable
using Sinkhorn’s algorithm [21].

A particularly interesting direction for future re-
search concerns extending the approach to simultane-
ous reconstruction and regularization, with an addi-
tional (non-) linear operator in the data fidelity term [1].
For example, one could consider an integrand of the
form ρ(x, u(x)) := d(S(x), Au(x)) for some measure-
ments S on a metric space (H, d) and a forward opera-
tor A mapping an ODF u(x) ∈ P(S2) to H.

Furthermore, modifications of our total variation
seminorm that take into account the coupling of po-
sitions and orientations according to the physical inter-
pretation of ODFs in DW-MRI could close the gap to
state-of-the-art approaches such as [28,63].

The model does not require symmetry of the ODFs,
and therefore could be adapted to novel asymmetric
ODF approaches [25,31,66,45]. Finally, it is easily ex-
tendable to images with values in the probability space
over a different manifold, or even a metric space, as they
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appear for example in statistical models of computer vi-
sion [70] and in recent lifting approaches [58,48,5] for
combinatorial and non-convex optimization problems.

Appendix A: Background from Functional Anal-
ysis and Measure Theory

In this appendix, we present the theoretical background
for a rigorous understanding of the notation and defi-
nitions underlying the notion of TV as proposed in (5)
and (7). Subsection A.1 is concerned with Banach-space
valued functions and subsection A.2 focuses on the spe-
cial case of measure-valued functions.

A.1 Banach Space-Valued Functions of Bounded
Variation

This subsection introduces a function space on which
the formulation of TV as given in (5) is well-defined.

Let (V, ‖·‖V ) be a real Banach space with (topolog-
ical) dual space V ∗, i.e., V ∗ is the set of bounded linear
operators from V to R. The dual pairing is denoted by
〈p, v〉 := p(v) whenever p ∈ V ∗ and v ∈ V .

We say that u : Ω → V is weakly measurable if x 7→
〈p, u(x)〉 is measurable for each p ∈ V ∗ and say that
u ∈ L∞w (Ω, V ) if u is weakly measurable and essentially
bounded in V , i.e.,

‖u‖∞,V := ess supx∈Ω ‖u(x)‖V <∞. (A.1)

Note that the essential supremum is well-defined even
for non-measurable functions as long as the measure is
complete. In our case, we assume the Lebesgue measure
on Ω which is complete.

The following Lemma ensures that the integrand in
(5) is measurable.

Lemma 1 Assume that u : Ω → V is weakly measur-
able and p : Ω → V ∗ is weakly* continuous, i.e., for
each v ∈ V , the map x 7→ 〈p(x), v〉 is continuous. Then
the map x 7→ 〈p(x), u(x)〉 is measurable.

Proof Define f : Ω ×Ω → R via

f(x, ξ) := 〈p(x), u(ξ)〉. (A.2)

Then f is continuous in the first and measurable in the
second variable. In the calculus of variations, functions
with this property are called Carathéodory functions
and have the property that x 7→ f(x, g(x)) is measur-
able whenever g : Ω → Ω is measurable, which is proven
by approximation of g as the pointwise limit of simple
functions [22, Prop. 3.7]. In our case we can simply set
g(x) := x, which is measurable, and the assertion fol-
lows. ut

A.2 Wasserstein Metrics and the KR Norm

This subsection is concerned with the definition of the
space of measures KR(X) and the isometric embed-
ding P(X) ⊂ KR(X) underlying the formulation of TV
given in (7).

ByM(X) and P(X) ⊂M(X), we denote the sets of
signed Radon measures and Borel probability measures
supported on X. M(X) is a vector space [40, p. 360]
and a Banach space if equipped with the norm

‖µ‖M :=

∫
X

d|µ|, (A.3)

so that a function u : Ω → P(X) ⊂ M(X) is Banach
space-valued (i.e., u takes values in a Banach space). If
we define C(X) as the space of continuous functions on
X with norm ‖f‖C := supx∈X |f(x)|, under the above
assumptions on X, M(X) can be identified with the
(topological) dual space of C(X) with dual pairing

〈µ, p〉 :=
∫
X

p dµ, (A.4)

whenever µ ∈ M(X) and p ∈ C(X), as proven in [40,
p. 364]. Hence, P(X) is a bounded subset of a dual
space.

We will now see that additionally, P(X) can be re-
garded as subset of a Banach space which is a predual
space (in the sense that its dual space can be identified
with a “meaningful” function space) and which metrizes
the weak* topology ofM(X) on P(X) by the optimal
transport metrics we are interested in.

For q ≥ 1, the Wasserstein metrics Wq on P(X) are
defined via

Wq(µ, µ
′) :=

(
inf

γ∈Γ (µ,µ′)

∫
X×X

d(x, y)q dγ(x, y)

)1/q

,

(A.5)

where

Γ (µ, µ′) := {γ ∈ P(X ×X) : π1γ = µ, π2γ = µ′} .
(A.6)

Here, πiγ denotes the i-th marginal of the measure γ
on the product space X ×X, i.e., π1γ(A) := γ(A×X)

and π2γ(B) := γ(X ×B) whenever A,B ⊂ X.
Now, let Lip(X,Rd) be the space of Lipschitz con-

tinuous functions onX with values in Rd and Lip(X) :=

Lip(X,R1). Furthermore, denote the Lipschitz semi-
norm by [·]Lip so that [f ]Lip is the Lipschitz constant
of f . Note that, if we fix some arbitrary x0 ∈ X, the
seminorm [·]Lip is actually a norm on the set

Lip0(X,Rd) := {p ∈ Lip(X,Rd) : p(x0) = 0}. (A.7)
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Fig. 5: Numerical solutions of the proposed variational models (see Sections 3.1.2 and 3.1.3) applied to the phantom
(Fig. 1) for increasing values of the regularization parameter λ. Left column: Solutions of L2-TV model for λ =

0.11, 0.22, 0.33. Right column: Solutions of W1-TV model for λ = 0.9, 1.8, 2.7. As is known from classical ROF
models, the L2 data term produces a gradual transition/loss of contrast towards the constant image, while the W1

data term stabilizes contrast along the edges.
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Fig. 6: Slice of size 15 × 15 from the data provided for the ISBI 2013 HARDI reconstruction challenge [24]. Left:
Peak directions of the ground truth. Right: Q-ball image reconstructed from the noisy (SNR = 10) synthetic
HARDI data, without spatial regularization. The low SNR makes it hard to visually recognize the fiber directions.

Fig. 7: Restored Q-ball images reconstructed from the noisy input data in Fig. 6. Left: Result of the L2-TV model
(λ = 0.3). Right: Result of the W1-TV model (λ = 1.1). The noise is reduced substantially so that fiber traces are
clearly visible in both cases. The W1-TV model generates less diffuse distributions.
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Fig. 8: ODF image of the corpus callosum, recon-
structed with CSD from HARDI data of the human
brain [68]. Top: Noisy input. Middle: Restored using
L2-TV model (λ = 0.6). Bottom: Restored using W1-
TV model (λ = 1.1). The results do not show much
difference: Both models enhance contrast between re-
gions of isotropic and anisotropic diffusion while the
anisotropy of ODFs is conserved.

The famous Kantorovich-Rubinstein duality [44] states
that, for q = 1, the Wasserstein metric is actually in-
duced by a norm, namely W1(µ, µ

′) = ‖µ − µ′‖KR,
where

‖ν‖KR := sup

{∫
X

p dν : p ∈ Lip0(X), [p]Lip ≤ 1

}
,

(A.8)

whenever ν ∈ M0(X) := {µ ∈ M :
∫
X
dµ = 0}. The

completion KR(X) ofM0(X) with respect to ‖ · ‖KR is
a predual space of (Lip0(X), [·]Lip) [79, Thm. 2.2.2 and
Cor. 2.3.5].2 Hence, after subtracting a point mass at
x0, the set P(X)− δx0 is a subset of the Banach space
KR(X), the predual of Lip0(X).

Consequently, the embeddings

P(X) ↪→ (KR(X), ‖ · ‖KR), (A.9)
P(X) ↪→ (M(X), ‖ · ‖M) (A.10)

define two different topologies on P(X). The first em-
bedding space (M(X), ‖ · ‖M) is isometrically isomor-
phic to the dual of C(X). The second embedding space
(KR(X), ‖ · ‖KR) is known to be a metrization of the
weak*-topology on the bounded subset P(X) of the
dual spaceM(X) = C(X)∗ [77, Thm. 6.9].

Importantly, while (P(X), ‖ · ‖M) is not separable
unless X is discrete, (P(X), ‖ · ‖KR) is in fact compact,
in particular complete and separable [77, Thm. 6.18]
which is crucial in our result on the existence of mini-
mizers (Theorem 1).

Appendix B: Proof of TV-Behavior for Cartoon-
Like Functions

Proof (Prop. 1) Let p : Ω → (V ∗)d satisfy the con-
straints in (5) and denote by ν the outer unit normal
of ∂U . The set Ω is bounded, p and its derivatives are
continuous and u ∈ L∞w (Ω, V ) since the range of u is
finite and U , Ω are measurable. Therefore all of the fol-
lowing integrals converge absolutely. Due to linearity of
the divergence,

〈div p(x), u±〉 = div(〈p(·), u±〉), (B.1)

〈p(x), u±〉 := (〈p1(x), u±〉, . . . , 〈pd(x), u±〉) ∈ Rd.
(B.2)

2 The normed space (M0(X), ‖ · ‖KR) is not complete un-
less X is a finite set [79, Prop. 2.3.2]. Instead, the completion
of (M0(X), ‖ · ‖KR) that we denote here by KR(X) is iso-
metrically isomorphic to the Arens-Eells space AE(X).
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Using this property and applying Gauss’ theorem, we
compute

∫
Ω

〈−div p(x), u(x)〉 dx

= −
∫
Ω\U

div(〈p(x), u−〉) dx−
∫
U

div(〈p(x), u+〉) dx

Gauss
=

∫
∂U

d∑
i=1

〈νi(x)pi(x), u+ − u−〉 dHd−1(x)

≤ Hd−1(∂U) · ‖u+ − u−‖V .
(B.3)

For the last inequality, we used our first assumption on
‖ ·‖(V ∗)d together with the norm constraint for p in (5).
Taking the supremum over p as in (5), we arrive at

TVV (u) ≤ Hd−1(∂U) · ‖u+ − u−‖V . (B.4)

For the reverse inequality, let p̃ ∈ V ∗ be arbitrary
with the property ‖p̃‖V ∗ ≤ 1 and φ ∈ C1

c (Ω,Rd) satis-
fying ‖φ(x)‖2 ≤ 1. Now, by (11), the function

p(x) := (φ1(x)p̃, . . . , φd(x)p̃) ∈ (V ∗)d (B.5)

has the properties required in (5). Hence,

TVV (u) ≥
∫
Ω

〈− div p(x), u(x)〉 dx (B.6)

= −
∫
Ω

div φ(x) dx · 〈p̃, u+ − u−〉. (B.7)

Taking the supremum over all φ ∈ C1
c (Ω,Rd) satisfying

‖φ(x)‖2 ≤ 1, we obtain

TVV (u) ≥ Per(U,Ω) · 〈p̃, u+ − u−〉, (B.8)

where Per(U,Ω) is the perimeter of U in Ω. In the the-
ory of Caccioppoli sets (or sets of finite perimeter), the
perimeter is known to agree with Hd−1(∂U) for sets
with C1 boundary [4, p. 143].

Now, taking the supremum over all p̃ ∈ V ∗ with
‖p̃‖V ∗ ≤ 1 and using the fact that the canonical em-
bedding of a Banach space into its bidual is isometric,
i.e.,

‖u‖V = sup
‖p‖V ∗≤1

〈p, u〉, (B.9)

we arrive at the desired reverse inequality which con-
cludes the proof. ut

Appendix C: Proof of Rotational Invariance

Proof (Prop. 2) Let R ∈ SO(d) and define

RTΩ := {RTx : x ∈ Ω}, p̃(y) := RT p(Ry). (C.1)

In (5), the norm constraint on p(x) is equivalent to
the norm constraint on p̃(y) by condition (13). Now,
consider the integral transform∫
Ω

〈− div p(x), u(x)〉 dx =

∫
RTΩ

〈− div p(Ry), ũ(y)〉 dy

(C.2)

=

∫
RTΩ

〈− div p̃(y), ũ(y)〉 dy.

(C.3)

where, using RTR = I,

div p̃(y) =

d∑
i=1

∂ip̃i(y) =

d∑
i=1

d∑
j=1

Rji∂i [pj(Ry)] (C.4)

=

d∑
i=1

d∑
j=1

d∑
k=1

RjiRki∂kpj(Ry) (C.5)

=

d∑
j=1

d∑
k=1

∂kpj(Ry)

d∑
i=1

RjiRki (C.6)

=

d∑
j=1

∂jpj(Ry) = div p(Ry), (C.7)

which implies TVV (u) = TVV (ũ). ut

Appendix D: Discussion of Product Norms

There is one subtlety about formulation (5) of the to-
tal variation: The choice of norm for the product space
(V ∗)d affects the properties of our total variation semi-
norm.

D.1 Product Norms as Required in Prop. 1

The following proposition gives some examples for norms
that satisfy or fail to satisfy the conditions (10) and (11)
in Prop. 1 about cartoon-like functions.

Proposition 4 The following norms for p ∈ (V ∗)d

satisfy (10) and (11) for any normed space V :

1. For s = 2:

‖p‖(V ∗)d,s :=

(
d∑
i=1

‖pi‖sV ∗

)1/s

. (D.1)
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2. Writing p(v) := (〈p1, v〉, . . . , 〈pd, v〉) ∈ Rd, v ∈ V ,

‖p‖L(V,Rd) := sup
‖v‖V ≤1

‖p(v)‖2 (D.2)

On the other hand, for any 1 ≤ s < 2 and s > 2, there is
a normed space V such that at least one of the properties
(10), (11) is not satisfied by the corresponding product
norm (D.1).

Remark 1 In the finite-dimensional Euclidean case V =

Rn with norm ‖ · ‖2, we have (V ∗)d = Rd,n, thus p is
matrix-valued and ‖ · ‖L(V,Rd) agrees with the spectral
norm ‖ · ‖σ. The norm defined in (D.1) is the Frobenius
norm ‖ · ‖F for s = 2.

Proof (Prop. 4) By Cauchy-Schwarz,∣∣∣∑d
i=1xi〈pi, v〉

∣∣∣ ≤ ‖x‖2 (∑d
i=1 |〈pi, v〉|

2
)1/2

(D.3)

≤ ‖x‖2
(∑d

i=1‖pi‖2V ∗‖v‖2V
)1/2

(D.4)

≤ ‖x‖2‖v‖V
(∑d

i=1‖pi‖2V ∗
)1/2

, (D.5)

whenever p ∈ (V ∗)d, v ∈ V , and x ∈ Rd. Similarly, for
each q ∈ V ∗,(∑d

i=1‖xiq‖2V ∗
)1/2

= ‖x‖2‖q‖V ∗ . (D.6)

Hence, for s = 2, the properties (10) and (11) are sat-
isfied by the product norm (D.1).

For the operator norm (D.2), consider∣∣∣∑d
i=1xi〈pi, v〉

∣∣∣ ≤ ‖x‖2 (∑d
i=1 |〈pi, v〉|

2
)1/2

(D.7)

= ‖x‖2‖p(v)‖2 (D.8)
≤ ‖x‖2‖p‖L(V,Rd)‖v‖V , (D.9)

which is property (10). On the other hand, (11) follows
from

‖(x1q, . . . , xdq)‖L(V,Rd) = sup
‖v‖V ≤1

(∑d
i=1|xiq(v)|2

)1/2
(D.10)

= ‖x‖2 sup
‖v‖V ≤1

|q(v)| (D.11)

= ‖x‖2‖q‖V ∗ . (D.12)

Now, for s > 2, property (10) fails for d = 2, V =

V ∗ = R, p = x = (1, 1) and v = 1 since∣∣∣∣∣
d∑
i=1

xi〈pi, v〉

∣∣∣∣∣ = 2 > 21/2 · 21/s = ‖x‖2‖p‖(V ∗)d,s‖v‖V .

(D.13)

For 1 ≤ s < 2, consider d = 2, V ∗ = R, q = 1 and
x = (1, 1), then

‖(x1q, . . . , xdq)‖(V ∗)d,s = 21/s > 21/2 = ‖x‖2‖q‖V ∗ ,
(D.14)

which contradicts property (11). ut

D.2 Rotationally Symmetric Product Norms

For V = (Rn, ‖·‖2), property (13) in Prop. 2 is satisfied
by the Frobenius norm as well as the spectral norms
on (V ∗)d = Rd,n. In general, the following proposition
holds:

Proposition 5 For any normed space V , the rotational
invariance property (13) is satisfied by the operator norm
(D.2). For any s ∈ [1,∞), there is a normed space V
such that property (13) does not hold for the product
norm (D.1).

Proof By definition of the operator norm and rotational
invariance of the Euclidean norm ‖ · ‖2,

‖Rp‖L(V,Rd) = sup
‖v‖V ≤1

‖Rp(v)‖2 (D.15)

= sup
‖v‖V ≤1

‖p(v)‖2 = ‖p‖L(V,Rd). (D.16)

For the product norms (D.1), without loss of gen-
erality, we consider the case d = 2, V := (R2, ‖ · ‖1),
p1 = (1, 0), p2 = (0, 1) and

R :=

(
1/2 −

√
3/2√

3/2 1/2

)
∈ SO(2). (D.17)

Then V ∗ := (R2, ‖ · ‖∞) and

‖p‖(V ∗)d,s =
(∑2

i=1‖pi‖s∞
)1/s

= 21/s (D.18)

whereas

(Rp)1 = (1/2,−
√
3/2), (Rp)2 = (

√
3/2, 1/2), (D.19)

‖Rp‖(V ∗)d,s =
(∑2

i=1(
√
3/2)s

)1/s
(D.20)

= 21/s ·
√
3/2 6= 21/s = ‖p‖(V ∗)d,s, (D.21)

for any 1 ≤ s <∞. ut
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D.3 Product Norms on Lip0(X)

We conclude our discussion about product norms on
(V ∗)d with the special case of V = KR(X): For p ∈
[Lip0(X)]d, the most natural choice is

[p]Lip(X,Rd) := sup
z 6=z′

‖p(z)− p(z′)‖22
d(z, z′)

, (D.22)

which is automatically rotationally invariant. On the
other hand, the product norm defined in (D.1) (with

s = 2), namely
√∑d

i=1[pi]
2
Lip, is not rotationally in-

variant for general metric spaces X. However, in the
special case X ⊂ (Rn, ‖ · ‖2) and p ∈ C1(X,Rd), the
norms (D.22) and (D.1) coincide with supz∈X ‖Dp(z)‖σ
(spectral norm of the Jacobian) and supz∈X ‖Dp(z)‖F
(Frobenius norm of the Jacobian) respectively, both sat-
isfying rotational invariance.

Appendix E: Proof of Non-Uniqueness

Proof (Prop. 3) Let u ∈ L∞w (Ω,P(X)). With the given
choice of X, there exists a measurable function ũ : Ω →
[0, 1] such that

u(x) = ũ(x)δ0 + (1− ũ(x))δ1. (E.1)

The measurability of ũ is equivalent to the weak mea-
surability of u by definition:

〈p, u(x)〉 = ũ(x) · p0 + (1− ũ(x)) · p1 (E.2)
= ũ(x) · (p0 − p1) + p1. (E.3)

The constraint

p ∈ C1
c (Ω, [Lip0(X)]d), [p(x)]Lip(X,Rd) ≤ 1 (E.4)

from the definition of TVKR in (7) translates to

p0, p1 ∈ Cc(Ω,Rd), ‖p0(x)− p1(x)‖2 ≤ 1. (E.5)

Furthermore,

〈−div p(x), u(x)〉 (E.6)
= −div p0(x) · ũ(x)− div p1(x) · (1− ũ(x)) (E.7)
= −div(p0 − p1)(x) · ũ(x)− div p1(x). (E.8)

By the compact support of p1, the last term vanishes
when integrated over Ω. Consequently,

TVKR(u) = sup

{∫
Ω

−div(p0 − p1)(x) · ũ(x) dx :

(E.9)

p0, p1 ∈ Cc(Ω,Rd), ‖(p0 − p1)(x)‖2 ≤ 1

}
(E.10)

= sup

{∫
Ω

−div p(x) · ũ(x) dx : (E.11)

p ∈ Cc(Ω,Rd), ‖p(x)‖2 ≤ 1

}
(E.12)

= TV(ũ). (E.13)

and therefore

Tρ,λ(u) =

∫
Ω\U
ũ(x) dx+

∫
U

(1− ũ(x)) dx+ λTV(ũ)

(E.14)

=

∫
Ω

|1U (x)− ũ(x)| dx+ λTV(ũ) (E.15)

= ‖1U − ũ‖L1 + λTV(ũ). (E.16)

Thus we have shown that the functional Tρ,λ is equiva-
lent to the classical L1-TV functional with the indica-
tor function 1U as input data and evaluated at ũ which
is known to have non-unique minimizers for a certain
choice of λ [17]. ut

Appendix F: Proof of Existence

F.1 Well-Defined Energy Funtional

In order for the functional defined in (15) to be well-
defined, the mapping x 7→ ρ(x, u(x)) needs to be mea-
surable. In the following Lemma, we show that this is
the case under mild conditions on ρ.

Lemma 2 Let ρ : Ω × P(X) → [0,∞) be a globally
bounded function that is measurable in the first and con-
vex in the second variable, i.e., x 7→ ρ(x, µ) is measur-
able for each µ ∈ P(X), and µ 7→ ρ(x, µ) is convex for
each x ∈ Ω. Then the map x→ ρ(x, u(x)) is measurable
for every u ∈ L∞w (Ω,P(X)).

Remark 2 As will become clear from the proof, the con-
vexity condition can be replaced by the assumption that
ρ be continuous with respect to (P(X),W1) in the sec-
ond variable. However, in order to ensure weak* lower
semi-continuity of the functional (15), we will require
convexity of ρ in the existence proof (Thm. 1) anyway.
Therefore, for simplicity we also stick to the (stronger)
convexity condition in Lemma 2.
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Remark 3 One example of a function satisfying the as-
sumptions in Lemma 2 is given by

ρ(x, µ) :=W1(f(x), µ), x ∈ Ω, µ ∈ P(S2). (F.1)

Indeed, boundedness follows from the boundedness of
the Wasserstein metric in the case of an underlying
bounded metric spaces (here S2). Convexity in the sec-
ond argument follows from the fact that the Wasserstein
metric is induced by a norm (A.8).

Proof (Lemma 2) The metric space (P(X),W1) is com-
pact, hence separable. By Pettis’ measurability theorem
[10, Chapter VI, §1, No. 5, Prop. 12], weak and strong
measurability coincide for separably-valued functions,
so that u is actually strongly measurable as a func-
tion with values in (P(X),W1). Note, however, that
this does not imply strong measurability with respect
to the norm topology of (M(X), ‖ · ‖M) in general!

As bounded convex functions are locally Lipschitz
continuous [19, Thm. 2.34], ρ is continuous in the sec-
ond variable with respect to W1. As in the proof of
Lemma 1, we now note that ρ is a Carathéodory func-
tion, for which compositions with measurable functions
such as x 7→ ρ(x, u(x)) are known to be measurable. ut

F.2 The Notion of Weakly* Measurable Functions

Before we can go on with the proof of existence of min-
imizers to (15), we introduce the notion of weak* mea-
surability because this will play a crucial role in the
proof.

Analogously with the notion of weak measurability
and with L∞w (Ω,KR(X)) introduced above, we say that
a measure-valued function u : Ω →M(X) is weakly* mea-
surable if the mapping

x 7→
∫
X

f(z) dux(z) (F.2)

is measurable for each f ∈ C(X). L∞w∗(Ω,M(X)) is
defined accordingly as the space of weakly* measurable
functions.

For functions u : Ω → P(X)mapping onto the space
of probability measures, there is an immediate connec-
tion between weak* measurability and weak measura-
bility: u is weakly measurable if the mapping

x 7→
∫
X

p(z) dux(z) (F.3)

is measurable whenever p ∈ Lip0(X). However, since,
by the Stone-Weierstrass theorem, the Lipschitz func-
tions Lip(X) are dense in (C(X), ‖ · ‖∞) [13, p. 198],

both notions of measurability coincide for probability
measure-valued functions u : Ω → P(X), so that

L∞w (Ω,P(X)) = L∞w∗(Ω,P(X)). (F.4)

However, as this equivalence does not hold for the
larger spaces L∞w∗(Ω,M(X)) and L∞w (Ω,M(X)), it will
be crucial to keep track of the difference between weak
and weak* measurability in the existence proof.

F.3 Proof of Existence

Proof (Theorem 1) The proof is guided by the direct
method from the calculus of variations. The first part
is inspired by the proof of the Fundamental Theorem
for Young measures as formulated and proven in [6].

Let uk : Ω → P(X), k ∈ N, be a minimizing se-
quence for Tρ,λ, i.e.,

Tρ,λ(u
k)→ inf

u
Tρ,λ(u) as k →∞. (F.5)

As M(X) is the dual space of C(X), L∞w∗(Ω,M(X))

with the norm defined in (A.1) is dual to the Banach
space L1(Ω,C(X)) of Bochner integrable functions on
Ω with values in C(X) [42, p. 93]. Now, P(X) as a
subset of M(X) is bounded so that our sequence uk

is bounded in L∞w∗(Ω,M(X)) (here we use again that
L∞w∗(Ω,P(X)) = L∞w (Ω,P(X))).

Note that we get boundedness of our minimizing
sequence “for free”, without any assumptions on the
coercivity of Tρ,λ! Hence we can apply the Banach-
Alaoglu theorem, which states that there exist u∞ ∈
L∞w∗(Ω,M(X)) and a subsequence, also denoted by uk,
such that

uk
∗
⇀ u∞ in L∞w∗(Ω,M(X)). (F.6)

Using the notation in (A.4), this means by definition∫
Ω

〈uk(x), p(x)〉 dx→
∫
Ω

〈u∞(x), p(x)〉 dx (F.7)

∀p ∈ L1(Ω,C(X)).

(F.8)

We now show that u∞(x) ∈ P(X) almost every-
where, i.e., u∞ is a nonnegative measure of unit mass:
The convergence (F.7) holds in particular for the choice
p(x, s) := φ(x)f(s), where φ ∈ L1(Ω) and f ∈ C(X).
For nonnegative functions φ and f , we have∫
Ω

φ(x)〈uk(x), f〉 dx ≥ 0 (F.9)

for all k, which implies∫
Ω

φ(x)〈u∞(x), f〉 dx ≥ 0. (F.10)
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Since this holds for all nonnegative φ and f , we deduce
that u∞(x) is a nonnegative measure for almost every
x ∈ Ω. The choice f(s) ≡ 1 in (F.7) shows that u∞ has
unit mass almost everywhere.

Therefore u∞(x) ∈ P(X) almost everywhere and we
have shown that u∞ lies in the feasible set L∞w (Ω,P(X)).
It remains to show that u∞ is in fact a minimizer.

In order to do so, we prove weak* lower semi-con-
tinuity of Tρ,λ. We consider the two integral terms in
the definition (15) of Tρ,λ separately. For the TVKR
term, for any p ∈ C1

c (Ω,Lip(X,Rd)), we have div p ∈
L1(Ω,C(X)) so that

lim
k→∞

∫
Ω

〈div uk(x), p(x)〉 dx =

∫
Ω

〈div u∞(x), p(x)〉 dx.

(F.11)

Taking the supremum over all p with [p(x)][Lip(X)]d ≤ 1

almost everywhere, we deduce lower semi-continuity of
the regularizer:

TVKR(u
∞) ≤ lim inf

k→∞
TVKR(u

k). (F.12)

The data fidelity term u 7→
∫
Ω
ρ(x, u(x)) dx is convex

and bounded on the closed convex subset L∞w (Ω,P(X))

of the space L∞w∗(Ω,M(X)). It is also continuous, as
convex and bounded functions on normed spaces are
locally Lipschitz-continuous. This implies weak* lower
semi-continuity on L∞w (Ω,P(X)).

Therefore, the objective function Tρ,λ is weakly*
lower semi-continuous, and we obtain

Tρ,λ(u
∞) ≤ lim inf

k→∞
Tρ,λ(u

k) (F.13)

for the minimizing sequence (uk), which concludes the
proof. ut
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