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Abstract This paper presents a generic approach to
highly efficient image registration in two and three di-
mensions. Both monomodal and multimodal registration
problems are considered. We focus on the important class
of affine-linear transformations in a derivative-based op-
timization framework.

Our main contribution is an explicit formulation of
the objective function gradient and Hessian approxima-
tion that allows for very efficient, parallel derivative cal-
culation with virtually no memory requirements. The
flexible parallelism of our concept allows for direct im-
plementation on various hardware platforms. Derivative
calculations are fully matrix-free and operate directly on
the input data, thereby reducing the auxiliary space re-
quirements from O(n) to O(1).

The proposed approach is implemented on multicore
CPU and GPU. Our GPU code outperforms a conven-
tional matrix-based CPU implementation by more than
two orders of magnitude, thus enabling usage in real-
time scenarios. The computational properties of our ap-
proach are extensively evaluated, thereby demonstrating
the performance gain for a variety of real-life medical
applications.
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1 Introduction

The task of image registration consists in computing the
spatial correspondence between two or more images. It
is ubiquitous in medical imaging: Whenever images from
different modalities such as computed tomography (CT)
and magnetic resonance imaging (MRI) or from different
points in time need to be combined, spatial alignment of
these images is required to fuse their information, i.e.
an image registration problem has to be solved. A large
amount of research has been devoted to the study of
image registration algorithms in the last two decades,
for an overview see the survey articles [5, 27, 51, 42]
and references therein. Clinical applications are mani-
fold and include improved reconstruction of nuclear im-
ages by cardiac and respiratory gating with subsequent
registration [14], navigation support during surgical in-
terventions [25], and three-dimensional reconstructions
of histological serial sections [4], see Figure 1.

In many clinical use cases, the execution time of im-
age registration algorithms is crucial. A clinical work-
flow can be greatly impeded if the staff has to wait for
registration results, and some applications as e.g. tu-
mor motion tracking for radiation treatment even require
real-time capability [48]. Generally, due to the increas-
ing number of clinically available image modalities with
continually increasing image resolution, the demand for
fast and efficient image registration solutions is likely to
grow even further.

Consequently, various approaches have been proposed
in the literature to reduce the computational costs of
medical image registration algorithms. These can be clas-
sified into approaches that target the algorithmic struc-
ture of the chosen image registration model [17, 18, 13,
45] or use a particular hardware platform such as Graph-
ics Processing Units (GPUs), Digital Signal Processors
(DSPs) or Field Programmable Gate Arrays (FPGAs)
for implementation [21, 2, 7].

In particular, the advent of general purpose program-
ming frameworks [32, 44] for mainstream GPUs has trig-
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Fig. 1 Illustration of a 3D reconstruction of histological se-
rial sections – ultra-thin slices created using specialized equip-
ment and acquired with high resolution optical microscopes.
Since the orientations of each slice on the microscope may
vary, image registration is needed to correct the alignment
and to reconstruct a three-dimensional representation of the
sliced tissue sample. Image courtesy Johannes Lotz, Fraun-
hofer MEVIS, Lübeck.

gered a large number of publications that report on par-
allel implementations of various medical image process-
ing algorithms including image registration, cf. [41, 39].
GPUs are very powerful computational units with com-
parably low costs [39], but require algorithms that can be
executed in a massively parallel fashion to unlock their
full potential. For many registration methods, a paral-
lel formulation of the entire algorithm is unfortunately
not straightforward [39]. For certain components such as
transformation or interpolation, however, an exploitation
of specific GPU features such as hardware-based linear
interpolation [43] or texture caching for optimized access
to neighboring voxels requires only few modifications and
can already lead to massive performance boosts [40].

In this paper, we present a general algorithmic con-
cept to efficient image registration that is directly suit-
able for implementation on both multi-core CPU and
GPU. We employ a classical optimization-based image
registration approach [29] using the Gauss-Newton algo-
rithm. The key contribution of our paper is an explicit
matrix-free formulation of the objective function gradi-
ent and Hessian approximation that allows for very ef-
ficient, parallel derivative calculation with virtually no
memory requirements. We focus on the important class
of affine-linear transformations that allow for rotation,
translation, shearing and scaling and are widely used in
practical image registration applications, see e.g. [37, 12,

36]. Moreover, almost all deformable image registration
schemes rely on an affine-linear registration step for ini-
tialization [29, 30]. The costs for derivative calculation
by far dominate the overall computational costs of affine-
linear image registration and motivate the optimization
of this particular step.

We study two distance measures, the Sum of Squared
Differences (SSD) and the Normalized Gradient Fields
(NGF, [16]), which serve as representatives for mono-
modal and multimodal image registration problems. In
addition, the applicability of the proposed concept to
alternative distance measures is discussed. The under-
lying idea of our approach has initially been presented
in the conference paper [35] for the CPU. It has sub-
sequently been successfully used for implementations of
two-dimensional rigid and affine image registration algo-
rithms on multicore DSPs [2] and GPUs [46] and was in
a modified form applied to non-linear registration prob-
lems, see [22, 24]. In this work, the derivation of the new
approach is explained in much greater detail together
with an extended evaluation of its computational prop-
erties. Additionally, the GPU implementation is also pre-
sented for the three-dimensional case.

On the CPU, the new concept leads to a speed-up
of more than one order of magnitude when compared
to conventional matrix-based code. A further speed-up
of another order of magnitude is gained by implement-
ing the approach on the GPU. For both SSD and NGF,
the registration performance scales well with increasing
number of computational cores on a multi-core CPU. In
contrast to the conventional matrix-based approach, the
auxiliary space requirements for derivative computation
are reduced from O(n) to O(1).

The paper is organized as follows. In Section 2, the
employed optimization-based image registration concept
is explained. Special focus is laid on the derivative calcu-
lations and the derivation of fully matrix-free computa-
tion rules. The realization on multi-core CPU and GPU
is discussed afterwards. In Section 3, the potential of the
proposed approach is extensively studied on both CPU
and GPU. Real-world examples from different medical
image registration problems underline the tremendous
speed gain of the new concept. The paper proceeds with
a discussion of the results in Section 4 and concludes with
Section 5. The rather technical calculation of matrix-free
computation rules for three-dimensional image registra-
tion are given in Appendix A.

2 Methods

The task of image registration is to compute the spa-
tial correspondence between two or more images. Fol-
lowing [28], we denote the first image as reference im-
age R and the second image as template image T . We
model images as functions R : Rd → R and T : Rd → R,
d = 2, 3, with compact support in domains ΩR ⊆ Rd and
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ΩT ⊆ Rd, respectively. With these definitions, a function
y : ΩR → Rd is sought that maps points from the refer-
ence image domain ΩR onto corresponding locations in
the template image domain ΩT .

As discussed in the introduction, we focus on the
important class of affine-linear transformations for y.
An affine-linear transformation y is given by a matrix
A ∈ Rd×d and a vector b ∈ Rd, such that y(x) = Ax+ b.
For convenience, we collect the coefficients of A and b
in a vector w ∈ R6(d−1), d = 2, 3, and denote the corre-
sponding transformation by yw. We express spatial corre-
spondence by a so-called distance measure D measuring
image similarity, cf. [28]. In accordance to common prac-
tice in affine-linear image registration, we do not per-
form explicit regularization though the problem is in-
herently ill-posed, see [29] for extended discussion. Set-
ting T (yw) := T ◦ yw as the concatenation of functions,
affine-linear image registration is modeled as optimiza-
tion problem

min
w
D (R, T (yw)) . (1)

The choice of the distance measure D is fundamental for
the registration algorithm, and various options have been
proposed in the literature, see [27, 51, 42] and references
therein for an overview. In this paper, we focus on the
Sum of the Squared Differences (SSD) and the Normal-
ized Gradient Fields (NGF) distance measures. The SSD
distance measure is very versatile and has been success-
fully used in numerous applications, see e.g. [14, 20, 38].
Its basic assumption states that corresponding locations
are characterized by common image intensity. In mul-
timodal registration problems, however, this generally
does not hold, and also some monomodal medical im-
age registration tasks may violate this assumption, e.g.
due to density changes on CT scans related to inflow
of air in the lungs [30]. For such registration problems,
we therefore consider the edge-based NGF distance mea-
sure [16] which is designed for multimodal image regis-
tration and exhibits favorable computational properties,
see e.g. [34, 36, 25] for exemplary successful applications.
In addition, the suitability of the proposed concept for
arbitrary distance measures will be discussed.

For the numerical solution of the image registration
problem (1), we employ the so-called discretize-optimize
approach [15, 29]. The images are first discretized using
regular grids, yielding a finite dimensional, continuous
optimization problem. This enables the usage of Newton-
type optimization schemes featuring super-linear conver-
gence [3] for which well-established stopping criteria are
available [31]. We choose the Gauss-Newton algorithm [3]
that has been used in different image registration ap-
plications with great success [47, 14]. It is specifically
designed for non-linear least squares problems as those
occurring in image registration [3, 29]. We employ a mul-
tiresolution strategy ranging from coarse to fine, cf. [29].

The minimization of a discretized version of (1) with
the Gauss-Newton algorithm requires the computation of

the gradient and an approximation to the Hessian ma-
trix of the objective function at each iteration step. Con-
ventionally, the objective function associated with the
image registration task is viewed as a concatenation of
several functions that represent modules of the registra-
tion framework such as the interpolation scheme, trans-
formation model and distance measure [29]. The deriva-
tive calculation is then performed individually for these
functions, the final objective function derivatives are ob-
tained by exploiting the chain rule for differentiation. As
this computational approach entails the computation of
several Jacobian matrices, we call it matrix-based.

The main advantage of the matrix-based approach
lies in its great flexibility: All key components of the
registration model can easily be exchanged and recom-
bined without any changes to the overall scheme. From
a computational point of view, however, the approach
comes with a number of disadvantages both with re-
gard to memory requirements and execution time. The
individual Jacobian matrices have to be stored in mem-
ory, requiring memory for coefficients in an amount that
linearly depends on the image size. Additionally, sparse
matrix index administration requires further memory re-
sources. The comparably large coefficient buffers are tra-
versed repeatedly, thereby reducing cache efficiency, and
the sparse matrix structures also challenge effective par-
allelization, see e.g. [6].

Fortunately, all these computational drawbacks can
be eliminated by using a fully matrix-free approach for
derivative calculation. The key idea is to break up the
concept of first computing individual Jacobians for the
various building blocks and then multiplying them to
get the final objective function derivatives. Instead, the
structure of the occurring matrices is beforehand ana-
lyzed in detail and subsequently exploited to arrive at a
joint, explicit formulation of objective function gradient
and Hessian approximation that does not contain any
Jacobian matrices. The structure of the involved Jaco-
bians is a priori exactly known for the SSD and NGF
distance measures: only the coefficients depend on the
actual images and the current transformation, not the
sparsity patterns themselves. The matrices mostly ex-
hibit diagonal bands and block structures, thus reducing
the complexity of explicit calculation rules. Our matrix-
free formulation directly allows for parallel computation
with an up to pixelwise level of parallelism, reduces the
auxiliary space requirements for derivative computation
from O(n) to O(1) and leads to a tremendous overall
speed-up of the entire registration algorithm.

In the following, we will first outline the employed
optimization-based registration setting. Particular weight
is laid on a fine-grained description of the objective func-
tion derivatives as these will be targeted by our reformu-
lation. Hereupon, our alternative matrix-free computa-
tion scheme will be presented. The description is first
given for the SSD distance measure and afterwards gen-
eralized to the more involved computations for NGF.
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2.1 Sum of Squared Differences (SSD)

Our description of the registration framework and the
derivative computations follows [29, 2]. We start by dis-
cussing the two-dimensional case. The calculations for
three-dimensional images are along the same lines, but
rather lengthy and technical, and are therefore given
in full detail in Appendix A.1. For any transformation
y : ΩR → R2, the Sum of Squared Differences (SSD)
distance measure [28] is given by

DSSD(R, T ; y) :=
1

2

∫
ΩR

(T (y(x))−R(x))
2

dx.

Let yw : R2 → R2, x 7→ Ax + b denote an affine-linear
transformation with parameters w = (w1, . . . , w6) and

A :=

(
w1 w2

w4 w5

)
, b :=

(
w3

w6

)
.

Setting DSSD(w) := DSSD(R, T ; yw) yields the formula-
tion of affine-linear image registration with SSD as min-
imization problem

min
w
DSSD(w). (2)

Note that DSSD : R6 → R. In order to compute a numer-
ical solution to the minimization problem (2), the contin-
uous formulation is discretized. We assume the domain
ΩR to be rectangular and decompose it into n cells of
equal size with center points xi, i = 1, . . . , n, arranged
in lexicographical ordering. Using the midpoint quadra-
ture rule for numerical integration, a discretized version
of (2) is given by

min
w

DSSD(w) :=
h̄

2

n∑
i=1

(T (yw(xi))−R(xi))
2
,

where h̄ denotes the area of each cell. As the transformed
coordinates yw(xi) will in general not coincide with tem-
plate image cell-centered points, multilinear interpola-
tion is used to evaluate the discrete template image at
arbitrary coordinates. Since medical images typically ex-
hibit zero background values, we apply Dirichlet zero
boundary conditions.

The function DSSD can be decomposed into a con-
catenation of vector-valued functions involving all n sam-
pling points xi at once, allowing for a direct calculation
of the objective function derivatives. Let (xi)j denote the
j-th component of xi ∈ R2. For transformation parame-
ters w ∈ R6, we first define the vector

vi :=


(Ax1 + b)i
(Ax2 + b)i

...
(Axn + b)i

 ∈ Rn, i = 1, 2,

and use it to construct the function

y : R6 → R2n, w 7→
(
v1
v2

)
(3)

which maps the parameters w to a vector of all n de-
formed sampling points, i.e. of 2n elements. Additionally,
using yi = (yi, yi+n)>, we define

T : R2n → Rn,

 y1
...
y2n

 7→
T (y1)

...
T (yn)

 , (4)

i.e. T evaluates the template image at every single of
the n deformed points, thereby creating a vector of the
n deformed template image intensities. Setting Ri :=
R(xi), we continue by formulating

r : Rn → Rn,

T1...
Tn

 7→
T1 −R1

...
Tn −Rn


as the vector-valued residual function and finally

ψ : Rn → R,

r1...
rn

 7→ h̄

2

n∑
i=1

r2i

as the sum of all squared residual elements. Now, the
discrete objective function DSSD can be written as a con-
catenation of four functions:

DSSD : R6 y−→ R2n T−→ Rn r−→ Rn ψ−→ R. (5)

2.1.1 Matrix-Based Differentiation

The benefit of the formulation (5) lies in a straightfor-
ward calculation of the analytical objective function gra-
dient and the Gauss-Newton approximation to the Hes-
sian [31, 11] using the chain rule as

∇DSSD(w) =
∂ψ

∂r

∂r

∂T

∂T

∂y

∂y

∂w
(6)

and

∇2DSSD(w) ≈ dr>d2ψdr (7)

using

dr :=
∂r

∂T

∂T

∂y

∂y

∂w
∈ Rn×6. (8)

For convenience, we define the gradient as a row vec-
tor and denote the Gauss-Newton approximation to the
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Hessian by HSSD. The first two individual derivatives in
(6) are given by

∂ψ

∂r
[r] = h̄(r1, . . . , rn) and (9)

∂r

∂T
[T ] = In,

with In ∈ Rn×n as the identity matrix. This implies that
the derivative of the residual function r can be omitted
from the computations in the case of SSD. For the Nor-
malized Gradient Fields distance measure, this is how-
ever not the case as will be discussed in Section 2.2.

Using the notation ∂i for the partial derivative with
respect to the i-th component and defining the n-by-n
matrix ∂iT [y] as

∂iT [y] :=

∂iT (y1)
. . .

∂iT (yn)


for i = 1, 2, it holds that

∂T

∂y
[y] =

(
∂1T ∂2T

)
∈ Rn×2n. (10)

Finally, the derivative of the function y, which maps
the parameters w to a transformed grid, is given by

∂y

∂w
[w] = I2 ⊗X ∈ R2n×6 (11)

with the Kronecker product ⊗ and the grid matrix X
defined as

X :=


(x1)1 (x1)2 1
(x2)1 (x2)2 1

...
...

...
(xn)1 (xn)2 1

 ∈ Rn×3,

thus completing the analysis of the gradient components
from (6). See also Figure 2 for a schematic illustration of
the derivative structure of the objective function gradi-
ent. The computation of the Gauss-Newton approxima-
tion to the Hessian (7) is finalized by noting d2ψ = h̄.

2.1.2 Matrix-Free Derivative Calculation

Based on the derivative presentation in the previous sec-
tion, we now describe the first contribution of this paper,
the formulation of explicit matrix-free computation rules
for the objective function derivatives with SSD. The key
component for efficient computation of the gradient (6)
and the Hessian approximation (7) is the matrix product
∂T
∂y

∂y
∂w that occurs in both terms. Using (10) and (11), it

follows that(
∂T

∂y

∂y

∂w

)
i,j

=

{
∂1T (yi)Xi,j 1 ≤ j ≤ 3

∂2T (yi)Xi,j−3 4 ≤ j ≤ 6
. (12)

∂ψ
∂r︷ ︸︸ ︷ ∂T

∂y︷ ︸︸ ︷ ∂y
∂w︷ ︸︸ ︷

∇DSSD = (• • • • • •)


• •
• •
• •
• •
• •
• •





• • •
• • •
• • •
• • •
• • •
• • •

• • •
• • •
• • •
• • •
• • •
• • •


Fig. 2 Schematic view of the sparse matrix structure of the
objective function gradient∇DSSD for affine-linear image reg-
istration with the SSD distance measure.

Since using (9)(
∂ψ

∂r

)
i

= Tw(xi)−R(xi)

with Tw(xi) := T (ϕw(xi)), a short calculation yields the
explicit formula

∇DSSD(w) = h̄

n∑
i=1

(Tw(xi)−R(xi))


∂1Tw(xi)(xi)1
∂1Tw(xi)(xi)2
∂1Tw(xi)
∂2Tw(xi)(xi)1
∂2Tw(xi)(xi)2
∂2Tw(xi)


>

(13)

for the objective function gradient. Note that each of the
n summands can be computed independently, directly
permitting a fully parallel computation with one final
parallel reduction step. No sparse matrices are required
any more, all coefficients can be directly computed from
reference image, template image and transformation pa-
rameters w.

The Gauss-Newton approximation to the Hessian for
the SSD distance measure is given by

HSSD = dr>d2ψdr

= h̄

(
∂T

∂y

∂y

∂w

)>(
∂T

∂y

∂y

∂w

)
∈ R6×6.

By utilizing (12), it can be computed in the same fashion
as the objective function gradient. Setting

lk :=

(∂T∂y ∂y
∂w

)
k,i
·
(
∂T
∂y

∂y
∂w

)
k,j


1≤i,j≤6

, (14)

it directly follows that

HSSD(w) = h̄

n∑
k=1

lk.
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Analogous to the gradient computation, the coefficient
matrices can be computed independently, also allowing
for a fully parallel computation with one final reduction
step. Hence, the derivation of matrix-free computation
rules for the SSD distance measure is complete. In the
following, it will be shown how the above concept can be
applied to the more involved derivative computations of
the NGF distance measure.

2.2 Normalized Gradient Fields (NGF)

The Normalized Gradient Fields (NGF) distance mea-
sure [16] was proposed as an alternative to the computa-
tionally expensive Mutual Information [8, 49] for multi-
modal image registration tasks. In particular, NGF uti-
lizes edge information and is designed to be well suited
for numerical optimization [16, 29]. We discuss the two-
dimensional case, the rather technical extension to three
dimensions is given in Appendix A.2. We study a slightly
modified variant DNGF := DNGF(R, T ; y) given by

DNGF :=
1

2

∫
ΩR

1−
(
〈∇R(x),∇T (y(x))〉%,τ
‖∇R(x)‖% ‖∇T (y(x))‖τ

)2

dx

with 〈a, b〉α,β :=
∑2

i=1 aibi + αβ, a, b ∈ R2, ‖a‖ε :=√∑2
i=1 a

2
i + ε2, cf. [35]. The edge parameters %, τ > 0

allow to distinguish between image edges and noise. In
contrast to the original approach [16], the above formula-
tion features separate edge parameters for reference and
template image. Setting DNGF(w) := DNGF(R, T ; yw),
affine-linear image registration with the NGF distance
measure translates to the minimization problem

min
w
DNGF(w). (15)

For numerical optimization, the continuous formulation
in (15) needs to be discretized. Given a reference image
of size n1 × n2 and an index i, i = 1, . . . , n, let i′, j′ ∈
N, 1 ≤ i′ ≤ n1, 1 ≤ j′ ≤ n2 such that i = i′ + j′n1. We
define neighboring indices in x and y direction as

i−x = max(i′ − 1, 1) + j′n1,

i+x = min(i′ + 1, n1) + j′n1,

i−y = i′ + max(j′ − 1, 1)n1,

i+y = i′ + min(j′ + 1, n2)n1.

(16)

Note that Neumann zero boundary conditions are used
in order not to introduce artificial edges at the domain
border. We further define functions

gi :Rn → R2, T 7→
( 1

2h1
(−Ti−x + Ti+x)

1
2h2

(−Ti−y + Ti+y )

)
and

si :R2 → R, a 7→ 〈gi(R), a〉+ %τ.

These functions are denoted gi and si to indicate gradi-
ent and scalar product type operations at the position i,
respectively. Further setting

nε :R2 → R, a 7→
√
a21 + a22 + ε2,

the discretized version of the minimization problem (15)
is given by

min
w

DNGF(w) :=
h̄

2

n∑
i=1

1−
(

si(gi(Tw))

n%(gi(R)) nτ (gi(Tw))

)2

with Tw ∈ Rn as the deformed discrete template image,
i.e. (Tw)i = T (yw(xi)).

2.2.1 Matrix-Based Differentiation

Analogously to the SSD distance measure, the objective
function is now decomposed into smaller parts for the
computation of the derivatives. Let y and T as in (3)
and (4). We define the residual function r : Rn → Rn by
setting the i-th component function ri : Rn → R to

ri : T 7→ si(gi(T ))

n%(gi(R)) nτ (gi(T ))
. (17)

Finally, the reduction function ψ : Rn → R is given by

ψ(r) =
h̄

2

n∑
i=1

1− r2i .

Just as in the SSD case, the discretized objective func-
tion for affine-linear registration with the NGF distance
measure can now be written as a concatenation of four
functions:

DNGF : R6 y−→ R2n T−→ Rn r−→ Rn ψ−→ R.

The derivatives of T and y have already been computed
in (10) and (11). For the reduction function ψ, the deriva-
tive is given by

∂ψ

∂r
= −h̄r> ∈ R1×n. (18)

The calculation of the residual function derivative ∂r
∂T

is performed by differentiating the component functions
ri, i = 1, . . . , n, using the quotient rule. The functions
ri from (17) are composed of the functions si, gi and nε
whose derivatives are given by

∂si
∂a

= gi(R)> ∈ R1×2,

i−y i−x i i+x i+y

∂gi
∂T

=

(
· · · 0 · · · − 1

2h1
0 1

2h1
· · · 0 · · ·

· · · − 1
2h2
· · · 0 0 0 · · · 1

2h2
· · ·

)
∈ R2×n
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and

∂nε
∂a

=
1

nε(a)
a> ∈ R1×2.

Applying the chain rule in both numerator and denomi-
nator of ri yields

∂ri
∂T

=



...
1

2h2

[
−gi(R)2

n%(gi(R))nτ (gi(T )) + si(gi(T ))gi(T )2
n%(gi(R))nτ (gi(T ))3

]
...

1
2h1

[
−gi(R)1

n%(gi(R))nτ (gi(T )) + si(gi(T ))gi(T )1
n%(gi(R))nτ (gi(T ))3

]
0

1
2h1

[
gi(R)1

n%(gi(R))nτ (gi(T )) −
si(gi(T ))gi(T )1

n%(gi(R))nτ (gi(T ))3

]
...

1
2h2

[
gi(R)2

n%(gi(R))nτ (gi(T )) −
si(gi(T ))gi(T )2

n%(gi(R))nτ (gi(T ))3

]
...



>

(19)

with the entries at positions i−y, i−x, i+x, and i+y (in
that order) as defined in (16). Note that these positions
may coincide, in which case the values are added. Finally,
the Gauss-Newton approximation HNGF to the Hessian
is given by

HNGF(w) := dr>d2ψdr ≈ ∇2DNGF(w)

with dr defined as in (8) and d2ψ = −h̄. This finalizes
the NGF derivative calculations, see also Figure 3 for
an illustration of the sparse matrix pattern of the NGF
residual function derivative in two and three dimensions,
cf. Appendix A.2 for the three-dimensional case.

2.2.2 Matrix-Free Derivative Calculation

The second contribution of this paper, the derivation of
fully matrix-free formulas for gradient and Hessian ap-
proximation for the NGF distance measure, is performed
similarly as for SSD. The main difference lies in the resid-
ual derivative matrix ∂r

∂T , which exhibits a banded struc-
ture (see (19) and Figure 3) as opposed to being the
identity in the case of SSD. This leads to substantially
more involved formulas. The final result, however, ex-
hibits the same favorable computational properties as in
the case of SSD. In particular, it can be computed in
parallel with up to pixelwise parallelization level, and
the computation does not require additional memory.

Setting ri := si(gi(T ))
n%(gi(R)) nτ (gi(T )) and dri := ∂ri

∂T
∂T
∂y

∂y
∂w ,

it holds with (18) that

∇DNGF(w) = −h̄
n∑
i=1

ridri. (20)
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Fig. 3 Schematic view of the sparse matrix structure of ∂r

∂T

for the NGF distance measure in two (left) and three dimen-
sions (right). The residual matrix exhibits a banded struc-
ture with five diagonals (3D: seven) containing non-zero val-
ues. These correspond to the pixels themselves (main diago-
nal, black color), the neighbors in x direction (diagonals ±1,
red color), the neighbors in y direction (diagonals ±n1, blue
color) and in the 3D case also the neighbors in z direction
(diagonals ±n1n2, yellow color), cf. also Appendix A.2.

As ri ∈ R are just scalars, it suffices to derive a matrix-
free description of the vectors dri ∈ R6 to arrive at a
matrix-free formulation of the entire objective function
gradient. Let 1 ≤ i ≤ n and define indices i−y, i−x, i+x,

and i+y as in (16). Further, let ∂ri[j] :=
(
∂ri
∂T [T ]

)
j
. Since

the product ∂T
∂y

∂y
∂w has already been discussed in (12),

we are able to exploit the description in (19) and define

coefficients dj,ki ∈ R as

dj,ki := ∂ri[i−y]∂jT (yi−y )Xi−y,k

+∂ri[i−x]∂jT (yi−x)Xi−x,k

+∂ri[i+x]∂jT (yi+x)Xi+x,k

+∂ri[i+y]∂jT (yi+y )Xi+y,k

for i = 1, . . . , n, j = 1, 2, and k = 1, 2, 3. This leads to
the formulation of dri as

dri =
(
d1,1i , d1,2i , d1,3i , d2,1i , d2,2i , d2,3i

)>
, (21)

which implies that the objective function gradient (20)
is given by

∇DNGF(w) = −h̄
n∑
i=1

si(gi(T ))

n%(gi(R)) nτ (gi(T ))


dri[1]
dri[2]

...
dri[6]


>

.

(22)
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A matrix-free formulation of the Gauss-Newton approx-
imation to the Hessian is derived analogously. Since

HNGF(w) =

(
∂r

∂T

∂T

∂y

∂y

∂w

)>
d2ψ

(
∂r

∂T

∂T

∂y

∂y

∂w

)

=
(
dr>1 . . . dr>n

)
d2ψ

dr1
...

drn

 ,

the calculation of the Hessian approximation can directly
be performed with the matrix-free representation of dri
from (21). By defining matrices lk ∈ R6×6 as

lk :=

drk[i] · drk[j]


1≤i,j≤6

, (23)

the matrix-free formulation for the Gauss-Newton ap-
proximation to the Hessian is given by

HNGF(w) = h̄

n∑
k=1

lk.

This finalizes the derivation of matrix-free calculation
rules for objective function gradient and Gauss-Newton
approximation to the Hessian also for the Normalized
Gradient Fields distance measure. The extension to the
three-dimensional case is given in Appendix A.2.

2.2.3 Alternative Distance Measures

The proposed matrix-free computational approach is not
restricted to the SSD and NGF distance measures, which
were exemplarily discussed as representatives for mono-
modal and multimodal image registration. In the em-
ployed optimization-based concept, the choice of the dis-
tance measure D is completely independent of the trans-
formation model and the interpolation scheme, in other
words from the functions y and T . Hence, the matrix-
free formulation of the matrix product ∂T

∂y
∂y
∂w from (12)

can be utilized for arbitrary distance measures.
The suitability of the distance measure for a matrix-

free computational approach depends on the derivative
structure. Trivially, every matrix-based computation can
in principle be performed in a matrix-free manner – if
the matrices can be built up, all coefficients must be
known, which implies that also a matrix-free operation
involving these coefficients can be implemented. From a
computational point of view, however, this is not always
reasonable. Two properties of the SSD and NGF distance
measures come in very beneficially: the structure of the
residual derivative ∂r

∂T is independent of the images, and
it is banded with only very few nonzero entries. In the
case of SSD, the residual derivative is even the identity
and can thus be omitted from the actual computations.
If a distance measure exhibits a similar structure with

few matrix bands or any other comparably simple struc-
ture, it can thus be considered suitable for the chosen
approach.

Unfortunately, the popular distance measure Mutual
Information [8, 49] does not fit directly into the matrix-
free approach. The general integration of Mutual In-
formation into the discretize-optimize framework using
Parzen-window estimators is described in [29]. Coarsely
speaking, the residual function r is replaced by a joint
density estimator ρ, and the outer function ψ computes
the Mutual Information from the density estimation. For
the Gauss-Newton scheme, the derivative ∂ρ of the joint
density estimator is required.

The sparsity pattern of ∂ρ, however, depends on the
image intensity distribution of the deformed template
image T (yw) and thus also on the current transforma-
tion parameters w. Hence, the pattern may change at
each iteration step, which prohibits the derivation of a
static matrix-free computation rule as in the case of SSD
and NGF. Depending on the image intensity distribu-
tion, the matrix ∂ρ may in addition be rather dense and
will generally not exhibit a favorable structure such as
block or band patterns. Hence, it cannot be considered
suitable for efficient matrix-free implementation. How-
ever, a hybrid scheme using the matrix-free representa-
tion for ∂T

∂y
∂y
∂w and matrices for all other terms will still

substantially reduce the memory requirements. For an al-
ternative approach within a derivative-free optimization
framework using a modified version of Powell’s optimiza-
tion method [33], see [40].

2.3 Computational Properties

The computational properties of the proposed matrix-
free approach are now described at a general, implemen-
tation-independent level. Three major aspects are con-
sidered: Parallel computation, auxiliary space require-
ments for derivative calculation, and recalculations of co-
efficients of the Jacobian matrices during the matrix-free
computation.

2.3.1 Parallel Computation

A major advantage of the new approach is the fully par-
allel computation of the objective function derivatives.
The calculation rules for both gradient and Hessian ap-
proximation are essentially sums ranging over the refer-
ence image discretization points. As the individual sum-
mands can be computed independently of each other, the
calculation can be performed with pixelwise level of par-
allelism, and the distribution of the summands to com-
putational units is completely at the disposal of the de-
veloper. Hence, both architectures with comparably few
computational cores such as the classic multicore CPU
and massively parallel platforms such as the GPU can di-
rectly be addressed. The derivative calculation is by far
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∂ψ
∂r

∂r
∂T

∂T
∂y

∂y
∂w Total

SSD, 2D n 0 2n 6n 9n
NGF, 2D n 4n 2n 6n 13n
SSD, 3D n 0 3n 12n 16n

NGF, 3D n 6n 3n 12n 20n

Table 1 Conventional matrix-based approach: auxiliary
space requirements of the individual derivatives needed for
computation of the objective function gradient and Hessian.
Note that the Hessian computation does not require the
derivative of ψ. The value n denotes the number of pixels
or voxels of the reference image.

the computationally most expensive operation in affine-
linear image registration. Hence, computing derivatives
in parallel is virtually equivalent to parallelizing the en-
tire image registration algorithm.

2.3.2 Auxiliary Space Requirements

The second benefit of the matrix-free approach is the
reduction in auxiliary space requirements for derivative
computation. For the matrix-based approach, let us as-
sume a sparse matrix format such as the compressed
sparse column format [9] is used for implementation.
The auxiliary space requirements for the computation
of gradient and Hessian approximation are given in Ta-
ble 1, neglecting possible additional storage requirements
for matrix index administration. For the SSD and the
NGF distance measure, the auxiliary space requirement
for computing the gradient and Hessian approximation
is O(n) in two and three dimensions, with n denoting
the number of discretization points (pixels/voxels) in the
reference image. For images of size 5123, e.g., this corre-
sponds to a memory consumption of 16.0 GiB for SSD
and 20.0 GiB for the NGF distance measure only for
storing the values occurring in the individual derivatives
at double precision. For the actual computation of the
matrix product and the sparse matrix administration,
additional memory may be required.

In the matrix-free case, the space requirements are
given by the calculation rules for the derivatives. Here,
the size of the summand vectors dri ∈ R6(d−1) for the
gradient and the summand matrices li ∈ R6(d−1)×6(d−1)

for the Hessian approximation is independent of the im-
age size. Thus, the memory requirements for both Hes-
sian and gradient computation are constant, implying a
reduction of the auxiliary space requirements from O(n)
to O(1) as compared to the matrix-based approach.

2.3.3 Matrix Coefficient Recalculations

The matrix-free approach intentionally refrains from stor-
ing matrix coefficients even if they may be needed multi-
ple times to reduce memory consumption and eliminate
data structures that hinder parallel execution. Naturally,

Algorithm ψ r T y

SSD, 2D, m-based n 0 2n 6n
SSD, 2D, m-free n 0 6n 6n
NGF, 2D, m-based n 5n 2n 6n
NGF, 2D, m-free n 24n 24n 24n

SSD, 3D, m-based n 0 3n 12n
SSD, 3D, m-free n 0 12n 12n
NGF, 3D, m-based n 7n 3n 12n
NGF, 3D, m-free n 72n 72n 72n

Table 2 Number of matrix coefficient calculations for ob-
jective function gradient computation with matrix-based and
matrix-free approach. For Hessian computation, the coeffi-
cients for ψ are not required. The value n denotes the number
of pixels or voxels of the reference image.

this may lead to recalculations of matrix coefficients.
This effect is now analyzed in more detail.

We first consider the computation of the objective
function gradient ∇D = ∂ψ

∂r
∂r
∂T

∂T
∂y

∂y
∂w . For the matrix-

based case, the gradient computation requires to calcu-
late each entry of the Jacobians of the four functions
ψ, r, T and y exactly once, with the total number of
coefficient calculations being determined by the matrix
sparsity patterns. In the matrix-free case, however, some
coefficients need to be recomputed multiple times. Using
the explicit gradient representations (13) for SSD (3D:
(35) in Appendix A.1) and (22) for NGF (3D: (42) in
Appendix A.2), the exact number of matrix coefficient
recomputations can directly be determined by counting
the occuring matrix entries. See Table 2 for results and
comparison to the matrix-based case.

The computation of the Hessian requires the matrix
entries of ∂r

∂T , ∂T
∂y and ∂y

∂w . Since the explicit formulas

(14) for the Hessian approximation for SSD (3D: (36)
in Appendix A.1) and (23) for NGF (3D: (43) in Ap-
pendix A.2) require exactly the same matrix entries from
∂r
∂T , ∂T

∂y and ∂y
∂w as in the case of the gradient, the num-

ber of matrix coefficient recalculations for the Hessian
can be deduced from Table 2 by ignoring the column
for ψ. While the matrix-free approach requires a higher
number of matrix coefficient calculations for objective
function gradient and Hessian approximation, the total
number is O(n) in both approaches.

2.4 Implementation Remarks

The matrix-free computation rules for the SSD and NGF
distance measure form the core of the proposed approach
to increased efficiency of affine-linear image registration.
For an actual implementation, several other character-
istics of the registration problem can be taken into ac-
count, further improving efficiency.
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2.4.1 General Observations

In the course of the optimization with the Gauss-Newton
algorithm, the Hessian approximation H and the objec-
tive function gradient ∇f always have to be computed
together for the solution of a linear equation system
Hp = −∇f , which yields the descent direction p. As the
term dr = ∂r

∂T
∂T
∂y

∂y
∂w occurs in both Hessian and gradient,

it can be used for both together, substantially reducing
the number of required floating point operations. It is
therefore recommended to combine the pixelwise formu-
las for gradient and Hessian and compute both in one
go. By exploiting the residual elements ri, this proce-
dure also yields the objective function value basically for
free, which is required for evaluation of standard stop-
ping criteria [31].

For the NGF distance measure, a symmetry in the
terms ∂ri

∂T can be exploited. Due to the employed fi-
nite difference scheme for image gradient calculation, it
holds that ∂ri[i−x] = −∂ri[i+x], analogous also for i−y
and i−z, respectively. Hence, half of the required calcu-
lations for the residual derivative can be substituted by
just negating the already computed coefficients.

Finally, as the Hessian approximation is symmetric
by definition, it suffices to only compute the upper tri-
angular part and mirror the results along the main di-
agonal. This reduces the number of variables for which
a parallel reduction needs to be performed, which is es-
pecially beneficial on the GPU platform with its large
number of concurrent threads that each need storage for
local result accumulation. In the 2D case, 28 reduction
variables are needed (one for function value, six for gra-
dient, 21 for the Hessian approximation), while the 3D
case required 91 variables (1+12+78).

2.4.2 GPU Implementation

We have implemented the entire registration algorithm
on the GPU using Nvidias Compute Unified Device Ar-
chitecture (CUDA). CUDA offers a C-like development
environment, is steadily updated and well documented.
Furthermore, due to its specific development for Nvidia
GPUs, it offers many high- and low-level features. Com-
pared to Khronos Group’s Open Computing Language
(OpenCL, [44]), CUDA typically supports most features
of new Nvidia GPUs and thus is faster in some cases
[26, 41].

Since the proposed matrix-free algorithm is fully pix-
elwise parallelizable and has very low memory require-
ments, the GPU represents an optimal platform for im-
plementation. Compared to CPUs, GPUs generally pro-
vide more computational power and thus can handle
more floating-point operations per second [32]. The thou-
sands of threads that can compute in parallel and the
different memory spaces, each with their own advan-
tages, give reason to expect very high computing per-
formance. For the given registration algorithm, the chal-

lenging part of the GPU implementation is the parallel
reduction step. Efficient ways need to be found to ac-
cumulate the various sums needed for the calculation of
function value, gradient and approximation to the Hes-
sian. In addition, the frequently occurring calculation of
interpolated image values and especially image deriva-
tives needs special attention.

The first problem, the parallel reduction step, is more
grave, because the reduction of sums is not fully paral-
lelizable, making it the main performance bottleneck on
the GPU. This issue is generally well studied, we followed
the ideas presented in [19, 50] closely. Extensive testing
showed that for our algorithm the best reduction ker-
nel is a combination of the various techniques presented
in [19]. Instead of simply using the kernel with the al-
legedly best theoretical performance, our code benefited
substantially from not unrolling the for loops.

The second problem, the calculation of image inten-
sities and derivatives, is tackled with hardware-based in-
terpolation as offered by the GPU. This feature is en-
abled by binding the images to so-called texture mem-
ory. Texture memory is cached on chip and can be ac-
cessed very fast. Moreover, the access is optimized for a
2D/3D read-out pattern and minimizes cache misses for
addresses close in 2D/3D.

Instead of calculating an interpolation from known
pixel values as common on the CPU, the interpolated
pixel values can directly be fetched from the texture
cache, thereby improving performance. Additionally, the
analytical derivative can be computed with only a few
texture fetches. In 2D, linear interpolation can be writ-
ten as

p = (1− r1)((1− r2)k00 + r2k01)

+ r1((1− r2)k10 + r2k11)
(24)

where k00 · · · k11 are known pixel values and ri = xi −
bxic , i = 1, 2, are remainders as illustrated in Figure 4.
On the GPU, the computation in (24) is replaced by one
single texture fetch p = f(x1, x2) where f represents the
texture fetch operation at coordinates (x1, x2).

The analytical derivative of (24) is given by

∂p

∂x1
= (1− r2)(k10 − k00) + r2(k11 − k01),

∂p

∂x2
= (1− r1)(k01 − k00) + r1(k11 − k10).

Using textures, the derivative can directly be computed
by the following four texture fetches:

∂p

∂x1
= f(1, x2)− f(0, x2),

∂p

∂x2
= f(x1, 1)− f(x1, 0).

Thus, the interpolated pixel value and derivatives can
be computed by just 9 operations (5 texture fetches, 2
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Fig. 4 Schematic representation of bilinear image interpola-
tion at coordinates (x1, x2).

subtractions, 2 memory writes). The conventional com-
putation needs 48 operations (24 mathematical opera-
tions, 22 memory reads, 2 memory writes), not counting
any preliminary calculations. Additionally, the four tex-
ture fetches needed for the derivative computation also
benefit from a specialized 2D read-out pattern optimized
for texture memory since they are close together in 2D.
For the 3D case, the number of operations is reduced
from 184 (104 memory reads, 76 mathematical opera-
tions, 4 memory writes) to 14 (7 texture fetches, 4 mem-
ory writes, 3 subtractions), thereby also making the code
easier to understand and less error-prone.

For more detailed technical information on optimiz-
ing GPU code for affine-linear image registration, the
reader is referred to [46].

3 Experiments

In this chapter, the computational properties of the pro-
posed matrix-free approach to more efficient affine-linear
image registration are analyzed in detail. A MATLAB
implementation of the conventional matrix-based ansatz
using the FAIR toolbox [29] serves as a reference. Al-
though MATLAB is optimized for fast matrix compu-
tations, the code in FAIR was developed for research
purposes and not explicitly designed for high comput-
ing performance. The achieved speed-up factors should
therefore not be overrated.

Our matrix-free concept was implemented on CPU
and GPU for the SSD and NGF distance measures in
two and three dimensions. The CPU code was written in
C++ and parallelized using OpenMP, conventional pro-
filing tools were used for code optimization. For all ex-
periments, the gcc 4.82 compiler was used. The GPU ver-
sion was implemented using Nvidia’s CUDA framework
in version 6.5. All computations in this chapter were
performed on a six-core Intel Xeon E5-2630 workstation

Function Size Serial Parallel Speed-up

SSD 2D
5122 0.014 s 0.002 s 7.25

40962 0.807 s 0.115 s 6.99

SSD 3D
643 0.034 s 0.006 s 5.52

2563 1.804 s 0.320 s 5.63

NGF 2D
5122 0.052 s 0.007 s 7.57

40962 3.485 s 0.482 s 7.22

NGF 3D
643 0.152 s 0.026 s 5.87

2563 9.762 s 1.505 s 6.49

Table 3 Runtimes for matrix-free SSD/NGF derivative cal-
culation on the CPU in 2D and 3D for different image
sizes. Gradient, Hessian approximation and objective func-
tion value were jointly computed. Timings were performed
on a six-core CPU using hyper-threading. Times are given in
seconds and averaged over ten executions.

equipped with 32 GB DDR3 RAM and running Ubuntu
Linux 14.04. The GPU is an Nvidia GeForce GTX 980
graphics card with Maxwell architecture and compute
capability 5.2. The theoretical peak performance and
bandwidth of the CPU is 134 GFLOPS and 42.6 GB/s,
respectively, compared to 4,612 GFLOPS and 224 GB/s
for the GPU. Note that all CUDA timings include data
transfer to the device and device initialization.

Our contribution targets parallel computation of the
objective function derivatives since they form the compu-
tationally most expensive step in the considered affine-
linear image registration setting. Consequently, our first
experiment consists in computing the objective function
gradient and Hessian approximation both serially (with-
out OpenMP) and in parallel using our C++ implemen-
tation. Moreover, the computations were executed with
a different number of active CPU cores to further exam-
ine scalability. The cores not required for a measurement
were deactivated on operating system level.

In the second experiment, the derivative computa-
tions were performed with all three implementations.
The goal of the experiment is to assess the possible speed-
up by replacing matrix-based code with a matrix-free
implementation, and further by using a GPU instead of
a multicore CPU. Both SSD and NGF implementations
were executed on images with different sizes.

Finally, the matrix-free scheme is embedded in a mul-
tilevel image registration to evaluate the benefits of the
proposed approach in a medical real-world scenario. We
consider two use cases: the registration of two-dimen-
sional histological serial sections with the SSD distance
measure and the multimodal registration of positron emis-
sion tomography (PET) and computed tomography (CT)
scans using NGF.

Histological serial tumor sections [4], see Figure 7, are
ultra-thin slices created using specialized equipment and
acquired with high-resolution optical microscopes. Image
registration is used to reconstruct a three-dimensional
representation of the sliced tissue sample. The orienta-
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Fig. 5 Runtimes for matrix-free SSD/NGF derivative cal-
culation for image size 2563 with varying number of active
CPU cores, evaluated on a 6-core CPU workstation. Hyper-
threading was disabled for this experiment.

tions of each slice on the microscope often vary and image
registration is needed to correct the alignment.

As a typical 3D example common in medical imag-
ing, a PET/CT registration has been performed similar
as in [35]. CT scans clearly depict the anatomy, while
PET scans can provide valuable functional information
about metabolic processes in the body, see e.g. [1]. By
registering images from both modalities into one coor-
dinate frame, the information can be fused, facilitating
image interpretation and diagnosis. PET and CT images
are shown in Figure 8.

3.1 Scalability on the CPU

The scalability of our implementation of the proposed
matrix-free derivative calculation was evaluated for com-
parably small (5122 in 2D, 643 in 3D) and for larger im-
ages (40962 in 2D, 2563 in 3D). Gradient and Hessian
approximation were computed both serially and in par-
allel. The computations were performed for both SSD
and NGF in two and three dimensions, results of the ex-
periments are given in Table 3. Executing the code with
all six CPU cores and hyper-threading enabled leads to
a speed-up of up to 7.57 for two-dimensional images and
up to 6.49 in 3D. Furthermore, the code also scales well
already for rather small images.

The scalability was further examined by using a dif-
ferent number of active CPU cores for computation. To
focus on the gain by activating additional physical cores,
hyper-threading was deactivated for this experiment. Ex-
ecution times were measured for SSD and NGF in three
dimensions and are shown in Figure 5. The speed-up in-
creases linearly, depending on the number of active cores,
and thus indicates excellent scalability on multicore sys-
tems. The same experiment with two dimensional images
yielded analogous results and is thus not depicted here.
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Fig. 6 Runtimes for NGF derivative calculation for differ-
ent image sizes in 3D. Note y-axis is scaled in third root of
runtime.

3.2 Comparison on Different Platforms

After the general scalability of the matrix-free schemes
was studied in the previous section, the new algorithms
for SSD and NGF are now executed on different plat-
forms and compared to the conventional matrix-based
approach. Gradient and Hessian approximation calcula-
tion were timed for SSD in 2D and for NGF with 3D im-
ages. These configurations were chosen according to the
considered medical image registration tasks, the align-
ment of two-dimensional histological serial sections and
the registration of three-dimensional PET and CT scans.
For this experiment, timings were measured using ran-
domly generated images of five different sizes for each
implementation. Results are shown in Table 4 and Fig-
ure 6.

While the different implementations still exhibit the
same time complexity and scale linearly depending on
the total number of voxels, the speed-up for the different
platforms can easily be seen. In general, the matrix-free
CPU code with OpenMP outperforms the matrix-based,
research-oriented MATLAB code for every image size.
The CUDA code however needs large enough images to
exceed the performance of the CPU code. This is due
to initialization of the CUDA device and data transfer,
which is included in the measurements. The CPU can
directly access data in the memory whereas the images
need to be transferred to the GPU before accessing them,
resulting in an unavoidable overhead.

As the SSD distance measure calculations require rel-
atively few arithmetic operations, the benefit of a GPU
implementation is not as high as for NGF. The CUDA
code performs the derivative computation for images of
size 40962 in 36 ms, resulting in a speed-up of 3.2 com-
pared to the OpenMP version. Again, a comparatively
large amount of time is spent for transferring data to
the device, explaining the low speed-up compared to the
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Function Size MATLAB OMP CUDA MATLAB
OMP

OMP
CUDA

MATLAB
CUDA

SSD 2D

2562 25.78 ms 0.51 ms 1.43 ms 50.5 0.4 18.0
5122 94.33 ms 2.05 ms 2.15 ms 46.0 1.0 43.9

10242 609.96 ms 7.10 ms 3.51 ms 85.9 2.0 173.8
20482 4027.8 ms 28.78 ms 10.49 ms 140.0 2.7 384.0
40962 12735 ms 115.61 ms 36.62 ms 110.2 3.2 347.8

NGF 3D

163 11.40 ms 1.99 ms 1.70 ms 5.7 1.2 6.7
323 42.79 ms 3.41 ms 1.98 ms 12.5 1.7 21.6
643 314.45 ms 25.98 ms 4.26 ms 12.1 6.1 73.8

1283 2765.9 ms 201.17 ms 18.23 ms 13.7 11.0 151.7
2563 21280 ms 1505.4 ms 126.88 ms 14.1 11.9 167.7

Table 4 Runtimes for SSD/NGF derivative calculation for different 2D and 3D image sizes. Times are given in milliseconds
and averaged over ten executions. The three rightmost columns show speed-up factors between the three implementations.

OpenMP code. The effect of using the matrix-free com-
putation scheme, however, is enormous and alone leads
to a speed-up of two orders of magnitude.

Compared to SSD, NGF is more complex and in-
volves more floating-point operations, promising a higher
speed-up for the GPU implementation. For images of size
2563, we were able to reduce the runtime for NGF deriva-
tive computation to merely 127 ms on the GPU from over
21 s using the MATLAB version and 1.5 s with OpenMP.
For these images, the OpenMP code for the CPU is 14.1
times faster than MATLAB code from FAIR [29]. Fur-
thermore, the CUDA implementation outperforms the
OpenMP code, increasing the total speed-up by 11.9 to
a total of 167.7. This underlines the tremendous speed
gain of our GPU code for the NGF distance measure.

The different speed-up characteristics for SSD and
NGF can be explained with the help of Table 2. For SSD,
the number of matrix coefficient recalculations only mod-
erately increases in the matrix-free case, while memory
accesses are massively reduced. This allows for a large
speed-up of more than two orders of magnitude when
switching from the matrix-based to the matrix-free im-
plementation on the CPU. When using the GPU plat-
form, however, the speed-up of at most 3.2 to the multi-
core CPU is comparably low and close to the difference
in memory throughput, indicating that at least parts of
the algorithm are memory bound and can thus not profit
from the increased computational power.

For NGF, the matrix-free approach leads to a much
larger increase in the number of matrix coefficient re-
computations. Since memory accesses are however dras-
tically reduced at the same time, a speed-up of about
one order of magnitude can still be realized on the CPU.
The GPU platform with its high computational power
is able to accelerate the algorithm by another order of
magnitude, suggesting at least parts of the algorithm are
compute bound.

Summarizing, by applying the matrix-free concept,
the calculation time was substantially decreased for both
SSD and NGF, while the auxiliary memory consumption
was at the same time reduced from O(n) to O(1).

Size MATLAB OMP CUDA

2562 1.220 s 0.010 s 0.013 s
5122 4.451 s 0.036 s 0.021 s

10242 12.837 s 0.094 s 0.028 s
20482 50.514 s 0.354 s 0.057 s
40962 159.25 s 1.734 s 0.184 s

Table 5 Runtimes of a complete registration in 2D with SSD
using the histological serial section images. Times are given
in seconds and are averaged over 10 executions.

Size MATLAB
OMP

OMP
CUDA

MATLAB
CUDA

2562 122.0 0.8 93.8
5122 123.6 1.7 212.0

10242 136.6 3.4 458.5
20482 142.7 6.2 886.2
40962 91.8 9.4 865.5

Table 6 Speed-up factors of a complete registration in 2D
with SSD using the histological serial section images, based
on Table 5.

3.3 Registration Performance

In the previous sections, it has been assured that the
proposed schemes for matrix-free computation of gradi-
ent and Hessian approximation exhibit favorable scala-
bility and increase performance. Excellent scalability was
shown for the OpenMP code on the CPU, in addition,
the GPU implementation featured superior computation
speed. Now, the derivative calculations are embedded
into a complete multilevel image registration algorithm
on all three platforms and used for the registration of
real-world medical images.

The registration results for the two-dimensional his-
tological serial sections are shown in Figure 7 and for the
three-dimensional PET-CT scans in Figure 8. All three
implementations of the registration algorithm yield visu-
ally satisfying results which are numerically identical.

However, the runtimes of the implementations differ
tremendously, see Tables 5 and 7 for absolute runtimes
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(a) (b) (c) (d)

Fig. 7 Registration of histological serial section images: reference (a) and template image (b); difference image before (c)
and after (d) registration.

(a) (b)

Fig. 8 PET-CT registration: reference (PET) and template (CT) image before (a) and after (b) registration in sagittal,
coronal and transversal view. The CT image is displayed in red.

Size MATLAB OMP CUDA

163 0.897 s 0.015 s 0.028 s
323 1.340 s 0.035 s 0.038 s
643 4.165 s 0.112 s 0.048 s

1283 28.140 s 0.634 s 0.077 s
2563 219.70 s 5.342 s 0.329 s

Table 7 Runtimes of a complete registration in 3D with
NGF using the PET-CT images. Times are given in seconds
and are averaged over 10 executions.

Size MATLAB
OMP

OMP
CUDA

MATLAB
CUDA

2562 59.8 0.5 32.0
5122 38.3 0.9 35.3

10242 37.2 2.3 86.8
20482 44.4 8.2 365.5
40962 41.1 16.2 667.8

Table 8 Speed-up factors of a complete registration in 3D
with NGF using the PET-CT images, based on Table 7.

and Tables 6 and 8 for speed-up factors. Employing our
CUDA implementation, we were able to perform a 2D
SSD registration of two serial sections of size 40962 in
184 ms. The code was considerably slower on the other
platforms with a runtime of 1.7 s for the OpenMP code
and over 2.5 min using MATLAB. This results in a to-
tal speed-up of 9.4 for the matrix-free GPU implementa-

tion compared to the OpenMP version. Compared to the
matrix-based approach, the application of the matrix-
free concept again leads to a speed-up of two orders of
magnitude.

Similar behavior can be seen for 3D image registra-
tion using the NGF distance measure. Here, the total
runtime for the largest image was decreased from over
3.5 min in MATLAB to 5.3 s using OpenMP. Once more,
the GPU based CUDA implementation is the fastest rou-
tine with a runtime of only 329 ms for an image size of
2563, resulting in a speed-up of 16.2 compared to the
OpenMP CPU version. In comparison to the research-
oriented, matrix-based implementation with FAIR, the
achieved speed-up of the CUDA code is > 600.

As stated before, FAIR is not particularly optimized
for performance in terms of execution speed, but repre-
sents a typical class of “research prototype” implementa-
tion level. Similar to this, the other platforms chosen for
comparison also represent typical classes of implemen-
tation levels: parallelized C++ code, representing typ-
ical multi-purpose product level implementations, and
GPU code representing highly specialized code for pow-
erful many-core architectures. Obviously, these three ex-
emplary platforms cannot cover the full range of possi-
ble targets, platforms and high-performance techniques.
However, representing typical use cases, the results may
give some insight onto expectable speed-ups for typical
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scenarios and show to which extent research code can
benefit from specialized implementations on massively
parallel platforms.

4 Discussion

All achieved speed-ups lie well within our expectations.
The theoretical peak performance and bandwidth, as
listed in Section 3, allow for a theoretical peak speed-
up of 34.4, if the entire algorithm is completely compute
bound. Yet, due to many parallel reductions that are in-
herently inefficient on many-core architectures and the
fact that many parts of the implementation are limited
by memory bandwidth, an inevitable performance loss
occurs, which impairs the overall speed-up. Furthermore,
the theoretical peak values are hardly ever realizable as
the numerical algorithm prevents an optimal processor
load.

The results obtained in Section 3 clearly emphasize
the high potential of applying high performance comput-
ing techniques to medical image registration. In compari-
son to the traditional matrix-based computation scheme,
our GPU implementation of the proposed approach yields
a speed-up of more than two orders of magnitude. To-
gether with the drastically decreased memory usage, the
matrix-free approach allows for usage of derivative-based
affine-linear image registration in new areas where strict
memory and runtime requirements must be met.

A potential drawback of the proposed approach is the
reduced flexibility in a practical implementation. In the
traditional matrix-based scheme, the components of the
registration such as distance measure, transformation
model or interpolation scheme are easily interchangeable
as they serve as independent building blocks, and their
derivatives are computed separately. In the matrix-free
case, the derivative computation is fused over all build-
ing blocks, thereby intentionally breaking up the mod-
ular structure to improve computational performance.
On the other hand, also in the matrix-free case existing
components such as interpolation and translation can be
reused if, e.g., only the distance measure is exchanged, cf.
Section 2.2.3. Concluding, it is fair to state that preserv-
ing maintainability and flexibility within the matrix-free
concept is significantly more challenging for the devel-
oper than it is in the matrix-based case.

While this paper exclusively covers affine-linear im-
age registration, the presented ideas can be utilized to
derive similar matrix-free computation rules also for non-
linear image registration algorithms. Initial results from
[22, 24] are very encouraging and enabled the successful
usage of non-linear image registration in a real-time 2D
vessel tracking application [10, 23]. Hence, there is every
reason to believe that the proposed approach has the po-
tential to yield substantial computational improvements
in a large number of different medical image registration
tasks.

5 Conclusions

In this paper, we have studied the efficiency of affine-
linear image registration. A classical optimization-based
registration approach was analyzed in detail for repre-
sentative distance measures suitable for monomodal and
multimodal image registration. The computationally by
far most expensive part, the calculation of objective func-
tion gradient and Gauss-Newton approximation to the
Hessian, was reformulated in a fully matrix-free manner.
The derived formulas allow for parallel computation with
excellent scalability, auxiliary space requirements of the
derivative calculations were reduced from O(n) to O(1).

With the proposed matrix-free approach and code
that uses the advantages offered by the GPU platform,
it is possible to achieve registration results in just a few
hundredths of a second for medium-sized medical im-
ages. Depending on the image size and required frames
per second, our approach can thus be used in a real-time
image registration setting, thereby opening up new ap-
plications in the clinic.
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21. Köhn A, Drexl J, Ritter F, König M, Peitgen HO
(2006) GPU accelerated image registration in two
and three dimensions. In: Bildverarbeitung für die
Medizin 2006, Springer, pp 261–265
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multigrid solver for applications in image processing.
Numerical Linear Algebra with Applications 15(2-
3):187–200

46. Tramnitzke F, Rühaak J, König L, Modersitzki J,
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A Extension to the Three-Dimensional Case

In this appendix, explicit matrix-free calculation rules will
be derived for affine-linear registration of three-dimensional
images with the SSD and NGF distance measures. Most def-
initions of the occuring functions are briefly repeated here to
improve readability.

A.1 Sum of Squared Differences (SSD)

For any y : ΩR → R3, the Sum of Squared Differences (SSD)
distance measure [28] is given by

DSSD(R, T ; y) :=
1

2

∫
ΩR

(T (y(x))−R(x))2 dx.

Let yw : R3 → R3, x 7→ Ax + b denote a three-dimensional
affine-linear transformation with w = (w1, . . . , w12) and

A :=

(
w1 w2 w3

w5 w6 w7

w9 w10 w11

)
, b :=

(
w4

w8

w12

)
.

Setting DSSD(w) := DSSD(R, T ; yw) yields the formulation
of affine-linear image registration with SSD as minimization
problem

min
w
DSSD(w) (25)

with DSSD : R12 → R. For discretization, the domain ΩR is
assumed to be cuboid and decomposed into n cells of equal
size with center points xi, i = 1, . . . , n, arranged in lexico-
graphical ordering. Using the midpoint quadrature rule for
numerical integration, a discretized version of (25) reads

min
w

DSSD(w) :=
h̄

2

n∑
i=1

(T (yw(xi))−R(xi))
2 ,

where h̄ denotes the volume of each cell. Multilinear inter-
polation with Dirichlet zero boundary conditions is used to
evaluate the discrete template image at arbitrary coordinates.

Let (xi)j denote the j-th component of xi ∈ R3. For
transformation parameters w ∈ R12, we define the vector

vi :=


(Ax1 + b)i
(Ax2 + b)i

...
(Axn + b)i

 ∈ Rn, i = 1, 2, 3,

to construct the function

y : R12 → R3n, w 7→
(
v1
v2
v3

)
. (26)

Using yi = (yi, yi+n, yi+2n)>, we define

T : R3n → Rn,

 y1
...
y3n

 7→
T (y1)

...
T (yn)

 . (27)

With Ri := R(xi), we set

r : Rn → Rn,

T1

...
Tn

 7→
T1 −R1

...
Tn −Rn
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as residual function and finally

ψ : Rn → R,

r1...
rn

 7→ h̄

2

n∑
i=1

r2i

as the sum of all squared residual elements. Now, DSSD can
be written as a concatenation of four functions:

DSSD : R12 y−→ R3n T−→ Rn r−→ Rn ψ−→ R. (28)

A.1.1 Matrix-Based Differentiation

The differentiation of (28) is performed with the chain rule
as

∇DSSD(w) =
∂ψ

∂r

∂r

∂T

∂T

∂y

∂y

∂w
(29)

just as in the two-dimensional case. Again, we define the gra-
dient as a row vector. The first two individual derivatives in
(29) are given by

∂ψ

∂r
[r] = h̄(r1, . . . , rn) and (30)

∂r

∂T
[T ] = In,

with In ∈ Rn×n as the identity matrix. Denoting the par-
tial derivative with respect to the i-th component by ∂i and
defining ∂iT [y] as

∂iT [y] :=

∂iT (y1)
. . .

∂iT (yn)

 , i = 1, 2, 3,

it holds that

∂T

∂y
[y] = (∂1T ∂2T ∂3T ) ∈ Rn×3n. (31)

Finally, the derivative of the function y is given by

∂y

∂w
[w] = I3 ⊗X ∈ R3n×12 (32)

with the Kronecker product ⊗ and the grid matrix X as

X :=


(x1)1 (x1)2 (x1)3 1
(x2)1 (x2)2 (x2)3 1

...
...

...
...

(xn)1 (xn)2 (xn)3 1

 ∈ Rn×4,

thus completing the analysis of the gradient components from
(29). With

dr :=
∂r

∂T

∂T

∂y

∂y

∂w
∈ Rn×12, (33)

the Gauss-Newton approximationHSSD of the Hessian matrix
is given by

HSSD(w) := dr>d2ψdr

with d2ψ = h̄. Again, note ∂r
∂T

= In.

A.1.2 Matrix-Free Derivative Calculation

With (31) and (32), it follows that

(
∂T

∂y

∂y

∂w

)
i,j

=


∂1T (yi)Xi,j 1 ≤ j ≤ 4
∂2T (yi)Xi,j−4 5 ≤ j ≤ 8
∂3T (yi)Xi,j−8 9 ≤ j ≤ 12

. (34)

Using (30), it holds that(
∂ψ

∂r

)
i

= Tw(xi)−R(xi)

with Tw(xi) := T (ϕw(xi)). The explicit calculation rule for
the objective function gradient in the three-dimensional case
is therefore given by

∇DSSD(w) = h̄
n∑
i=1

(Tw(xi)−R(xi))



∂1Tw(xi)(xi)1
∂1Tw(xi)(xi)2
∂1Tw(xi)(xi)3
∂1Tw(xi)
∂2Tw(xi)(xi)1
∂2Tw(xi)(xi)2
∂2Tw(xi)(xi)3
∂2Tw(xi)
∂3Tw(xi)(xi)1
∂3Tw(xi)(xi)2
∂3Tw(xi)(xi)3
∂3Tw(xi)



>

.

(35)

The Gauss-Newton approximation to the Hessian for the SSD
distance measure is defined as

HSSD = dr>d2ψdr

= h̄

(
∂T

∂y

∂y

∂w

)> (∂T
∂y

∂y

∂w

)
∈ R12×12.

By utilizing (34) and setting

lk :=

( ∂T∂y ∂y
∂w

)
k,i
·
(
∂T
∂y

∂y
∂w

)
k,j


1≤i,j≤12

, (36)

it directly follows that

HSSD(w) = h̄
n∑
k=1

lk.

A.2 Normalized Gradient Fields (NGF)

We consider the NGF distance measure [16]

DNGF :=
1

2

∫
ΩR

1−
(
〈∇R(x),∇T (y(x))〉%,τ
‖∇R(x)‖% ‖∇T (y(x))‖τ

)2

dx,

〈a, b〉α,β :=
∑3
i=1 aibi+αβ, a, b ∈ R3, ‖a‖ε :=

√∑3
i=1 a

2
i + ε2,

with separate edge parameters for reference and template
image, cf. [35]. Setting DNGF(w) := DNGF(R, T ; yw), affine-
linear image registration with NGF translates to

min
w
DNGF(w). (37)
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For numerical optimization, the continuous formulation in
(37) is discretized. For a reference image of size n1 × n2 × n3

and an index i, i = 1, . . . , n, let i′, j′, k′ ∈ N, 1 ≤ i′ ≤ n1, 1 ≤
j′ ≤ n2, 1 ≤ k′ ≤ n3 such that i = i′ + j′n1 + k′n1n2. The
indices of neighboring points with Neumann zero boundary
conditions are given by

i−x = max(i′ − 1, 1) + j′n1 + k′n1n2,

i+x = min(i′ + 1, n1) + j′n1 + k′n1n2,

i−y = i′ + max(j′ − 1, 1)n1 + k′n1n2,

i+y = i′ + min(j′ + 1, n2)n1 + k′n1n2,

i−z = i′ + j′n1 + max(k′ − 1, 1)n1n2,

i+z = i′ + j′n1 + min(k′ + 1, n3)n1n2.

(38)

We define functions

gi :Rn → R3, T 7→


1

2h1
(−Ti−x + Ti+x)

1
2h2

(−Ti−y + Ti+y )
1

2h3
(−Ti−z + Ti+z )


and

si :R3 → R, a 7→ 〈gi(R), a〉+ %τ

for gradient and scalar product type operations at the posi-
tion i, respectively. Further setting

nε :R3 → R, a 7→
√
a21 + a22 + a23 + ε2,

the discretized version of (37) is given by

min
w

DNGF(w) :=
h̄

2

n∑
i=1

1−
(

si(gi(Tw))

n%(gi(R)) nτ (gi(Tw))

)2

with (Tw)i = T (yw(xi)).

A.2.1 Matrix-Based Differentiation

Let y and T as in (26) and (27). We define the residual func-
tion r : Rn → Rn by setting the i-th component function
ri : Rn → R to

ri : T 7→ si(gi(T ))

n%(gi(R)) nτ (gi(T ))
.

The reduction function ψ : Rn → R is given by

ψ(r) =
h̄

2

n∑
i=1

1− r2i ,

yielding the function chain

DNGF : R12 y−→ R3n T−→ Rn r−→ Rn ψ−→ R.

The derivatives of T and y have already been computed in
(31) and (32). For the reduction function ψ, it holds that

∂ψ

∂r
= −h̄r> ∈ R1×n. (39)

The calculation of ∂r
∂T

is performed by differentiating the com-
ponent functions ri, i = 1, . . . , n. The functions ri are com-
posed of si, gi and nε whose derivatives are given by

∂si
∂a

= gi(R)> ∈ R1×3,

i−z i−y i−x i i+x i+y i+z

∂gi
∂T

=

 0 · · · 0 · · · − 1
2h1

0 1
2h1
· · · 0 · · · 0

0 · · · − 1
2h2
· · · 0 0 0 · · · 1

2h2
· · · 0

− 1
2h3
· · · 0 · · · 0 0 0 · · · 0 · · · 1

2h3


and

∂nε
∂a

=
1

nε(a)
a> ∈ R1×3

with ∂gi
∂T
∈ R3×n. Applying the chain rule in both numerator

and denominator of ri yields

∂ri
∂T

=



...
1

2h3

[
−gi(R)3

n%(gi(R))nτ (gi(T ))
+ si(gi(T ))gi(T )3

n%(gi(R))nτ (gi(T ))3

]
...

1
2h2

[
−gi(R)2

n%(gi(R))nτ (gi(T ))
+ si(gi(T ))gi(T )2

n%(gi(R))nτ (gi(T ))3

]
...

1
2h1

[
−gi(R)1

n%(gi(R))nτ (gi(T ))
+ si(gi(T ))gi(T )1

n%(gi(R))nτ (gi(T ))3

]
0

1
2h1

[
gi(R)1

n%(gi(R))nτ (gi(T ))
− si(gi(T ))gi(T )1

n%(gi(R))nτ (gi(T ))3

]
...

1
2h2

[
gi(R)2

n%(gi(R))nτ (gi(T ))
− si(gi(T ))gi(T )2

n%(gi(R))nτ (gi(T ))3

]
...

1
2h3

[
gi(R)3

n%(gi(R))nτ (gi(T ))
− si(gi(T ))gi(T )3

n%(gi(R))nτ (gi(T ))3

]
...



>

with the vector entries at positions i−z, i−y, i−x, i+x, i+y, and
i+z (in that order) as defined in (38). Note that these posi-
tions may coincide, in which case the values are added.

The Gauss-Newton approximation HNGF to the Hessian
is given by

HNGF(w) := dr>d2ψdr ≈ ∇2DNGF(w)

with dr defined as in (33) and d2ψ = −h̄.

A.2.2 Matrix-Free Derivative Calculation

Setting ri := si(gi(T ))
n%(gi(R)) nτ (gi(T ))

and dri := ∂ri
∂T

∂T
∂y

∂y
∂w

, it holds

with (39) that

∇DNGF(w) = −h̄
n∑
i=1

ridri. (40)

As ri ∈ R are scalars, it suffices to derive a matrix-free de-
scription of the vectors dri ∈ R12 to achieve a fully matrix-
free formulation of the objective function gradient. Let 1 ≤
i ≤ n and define indices i−z, i−y, i−x, i+x, i+y, i+z as in (38).
With the definition

dj,ki : = ∂ri[i−z]∂jT (yi−z )Xi−z ,k

+ ∂ri[i−y]∂jT (yi−y )Xi−y,k

+ ∂ri[i−x]∂jT (yi−x)Xi−x,k

+ ∂ri[i+x]∂jT (yi+x)Xi+x,k

+ ∂ri[i+y]∂jT (yi+y )Xi+y,k

+ ∂ri[i+z]∂jT (yi+z )Xi+z ,k
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for i = 1, . . . , n, j = 1, 2, 3, k = 1, . . . , , 4 and

dji :=
(
dj,1i , dj,2i , dj,3i , dj,4i

)
,

it follows that

dri =
(
d1i d

2
i d

3
i

)> ∈ R12, (41)

which according to (40) yields

∇DNGF(w) = −h̄
n∑
i=1

si(gi(T ))

n%(gi(R)) nτ (gi(T ))


dri[1]
dri[2]

...
dri[12]


>

,

(42)

completing the gradient calculation for the three-dimensional
case. Since

HNGF(w) =

(
∂r

∂T

∂T

∂y

∂y

∂w

)>
d2ψ

(
∂r

∂T

∂T

∂y

∂y

∂w

)

=
(
dr>1 . . . dr>n

)
d2ψ

dr1
...

drn

 ,

the calculation of the Hessian approximation can directly be
performed with the help of the matrix-free formulation of dri
from (41). By defining the matrices lk ∈ R12×12 as

lk :=

(
drk[i] · drk[j]

)
1≤i,j≤12

(43)

analog to the case of SSD, the matrix-free formulation for the
Gauss-Newton approximation to the Hessian is given by

HNGF(w) = h̄
n∑
k=1

lk.

This finalizes the derivation of matrix-free calculation rules
for objective function gradient and Gauss-Newton approxi-
mation to the Hessian also for the Normalized Gradient Fields
distance measure with three-dimensional images.
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