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Abstract

In this work we present di�erent approaches to improve parameter estimation
from voxel-wise medical 4D data using one-dimensional dynamic models. Whereas
these models have been used successfully to describe generic regions of interest as
e.g. renal parenchyma or the human brain, the transition to voxel-wise data can
be challenging. Reasons for this include noise or patient motion during the image
acquisition. In this work we describe methods to improve parameter estimation
in such a setting. Results are demonstrated on phantom and on real data for
three example problems (estimation of relaxation time T1 in MRI, estimation of
regional cerebral blood �ow and estimation of renal function). We especially focus
on the role of spatial coupling. To improve parameter estimation in the presence
of noise, we extend parameter estimation by a class of spatial coupling terms,
which is based on Schatten-p-norms of the Jacobian and was originally designed
for RGB denoising. It is demonstrated that the novel methods can improve errors
in T1 estimation up to 8% as compared to established methods. We further present
results which indicate that this coupling can also improve parameter estimation
in a joint setting, where not only dynamic parameters but also motion or control
parameters of the model are recovered. We conclude by demonstrating limits
of established models for blood �ow estimation in the case of highly developed
capillary tissue and extend generic existing knowledge on limits of perfusion.
Speci�cally, we simulate blood-�ow through such a tissue patch and show that
the estimated perfusion scales with the inverse voxel volume and thus leads to
systematic overestimation.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Strategien um die Schätzung voxel-
weiser Parameterkarten aus medizinischen 4D Daten mit Hilfe eindimensionaler
dynamischer Modelle zu verbessern. Eindimensionale dynamische Modelle sind
bereits etabliert um die dynamische Antwort gröÿerer, generischer Regionen wie
des Parenchyms der Niere oder des Gehirns zu beschreiben. Der Übergang auf
Voxelgröÿe kommt jedoch mit Herausforderungen, da Bildrauschen und Patien-
tenbewegung hier prominenter zu Tage treten. In dieser Arbeit präsentieren wir
verschiedene Strategien, diese Herausforderungen zu bewältigen. Ergebnisse die-
ser Arbeit werden für drei verschiedene Modelle experimentell auf realen und auf
Phantom Daten demonstriert: Schätzung der Filtrationsrate der Niere, Schätzung
des regionalen cerebralen Blut�usses und Schätzung des MRT Relaxationspara-
meters T1. Der Fokus dieser Arbeit liegt auf der Rolle räumlicher Kopplung. Um
Robustheit gegen Rauschen zu verbessern, wird der etablierte Parameterschät-
zungsprozess um einen auf Schatten-p-Normen von Jacobimatrix basierenden
Kopplungsterm aus der RGB-Bildentrauschung erweitert. Es wird demonstriert,
dass mit diesem Term die T1 Schätzung bei Rauschen um bis zu 8% verbessert
werden kann. Weiterhin werden positive E�ekte räumlicher Kopplung für Metho-
den demonstriert, bei denen neben dynamischen Parametern auch Bewegung oder
Kontrollparameter der Modelle geschätzt werden. Abschlieÿend werden Grenzen
der Gültigkeit etablierter Modelle zur Blut�ussschätzung aufgezeigt. Etabliertes
Wissen um diese Grenzen wird erweitert, indem ein neuartiges Modell zur Kon-
trastmittelpropagation durch reines Kapillargewebe analysiert wird. Dort wird
gezeigt, dass der rekonstruierte Blut�uss mit dem inversen Voxelvolumen skaliert
und so zu einer systematischen Überschätzung führt.
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1 Introduction

In modern medicine there are various applications where quantitative information
on velocities or rates are important indicators for diagnosis: In ischemic stroke, the
amount of blood passing through brain tissue per unit time (perfusion) has been
linked to a patient's potential for recovery [56, 158], in nephrology the total �ltration
rate of the kidneys (glomerular �ltration rate, GFR) is a main indicator of kidney
health and its decrease is linked to various malfunctions of the kidneys [78]. As the
examples of GFR or perfusion of the brain show, such quantities are traditionally
often referring to complete organs [52, 167, 78]. However, modern medical imaging
methods are additionally enabling local estimates, yielding parameter maps which
depict the local functionality of an organ in rich detail [56, 158, 139]. In this work
we will present both potentials and pitfalls of a large class of techniques to obtain
such local estimates with a focus on coupling methods for stabilization: We will show
several applications where the inclusion of prior spatial information using coupling can
improve local estimates if the data is degraded by noise or motion. However, we will
also present coupled settings, where results of established methods are systematically
biased and need to be interpreted with care. This work can be located at the boundary
of mathematics and engineering: We will describe and analyze real-world problems
using established mathematical theory and we will transfer techniques from applied
mathematics to improve the solutions of our problems.

Let us start by outlining how imaging methods can be used to estimate temporal
parameters from time series of medial images. Since the invention of X-Ray imaging
by Wilhelm Conrad Röntgen in 1895, medical imaging has become one of the corner-
stones of modern medical diagnosis [18]. From the early beginning, medical imaging
was applied to display anatomical information: Historically, X-Ray and Computed
Tomography (CT) images allowed to display bone structures, Magnetic Resonance
Imaging (MRI) allowed to visualize soft tissue and Positron Emission Tomography
(PET) allowed to highlight regions according to their metabolic activity. Such im-
ages are displaying a snapshot of the examined system at a given time point and are
as such not including information on temporal processes. However, there are various
applications where such temporal information is a desirable parameter to enable ad-
ditional diagnosis [78, 56, 158]. In medical imaging, so-called dynamic imaging is a
method which can be used to extract such time dependent parameters [111, 160, 140].
In dynamic imaging, multiple standard images are acquired, yielding a series of images
which do not display the static system but changes of the system. A classic example of
such imaging is so-called Dynamically Contrast Enhanced (DCE) imaging. Here, the
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1 Introduction

patient receives an intravenous injection of a contrast agent. After that, a time-series
of images is acquired which shows the propagation of contrast agent through the blood
stream and the tissue. The most common realizations of this technique which are used
in routine clinical practice are Dynamic Contrast Enhanced MRI (DCE-MRI), Dy-
namic Susceptibility Contrast MRI (DSC-MRI) and Perfusion CT (CTP) [111, 161,
137]. If the changes of the system are additionally displayed in dependency of some
known variable such as time, this allows not only to determine the absolute change
but also rates of change. In this work we will focus on quantifying parameters which
determine the change, such as velocities or �ow rates, using DCE-MRI, DSC-MRI and
CTP.

A way to extract these parameters from a series of dynamic images is by so-called
inverse modeling: Key to this method is the observation that the measured dynamic
images depend on the parameters of interest and will change if the parameters change.
In some cases it is thus possible to set up a physical model which describes the expected
data in dependency of the parameters. Mathematically this can be expressed as the
assumption that the (measured) data d and (to be determined) parameters p are con-
nected by the relationship M(p) ≈ d, where M(p) is a suitable physical model and ≈
denotes a carefully chosen measure of similarity which depends on the expected noise
and will be introduced later. Given data d, in some cases the most likely parameters p
associated with the data can then be found by solving M(p) ≈ d, see Figure 1.1 for a
simple example. In this work we will not focus on improving the physical models them-
selves, but on improving the estimation process by including additional information.
Concerning the models, in dynamic imaging a large class of models used to describe
the data are so-called Dynamic Parametric Models, or short Dynamic Models [98, 35,
111, 161, 137]. Such models have a �nite number of parameters and are describing the
response of a single system over time or a similar continuous variable [41, 71]. Before
we outline the contributions and the content of this work, we conclude this section
with specifying how we understand the concept of a dynamic model:

De�nition 1. Let P ⊆ Rm, Q ⊆ Rl be open domains and let T > 0. The mapping

M : P × [0, T )×Q→ R
(p, t, q) 7→M(p; t, q)

is called a Dynamic Parametric Model or shorter Dynamic Model. For ease of notation
we will omit the control parameters t, q if they are clear from the context and simply
write M(p) := M(p; ·, q), i.e. M(p) : [0, T )→ R.

1.1 Content and Contribution

Traditionally, the physical models which are used to describe data from dynamic imag-
ing are tailored to describe generic regions of interest, as e.g. the renal parenchyma or
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1.1 Content and Contribution
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Figure 1.1: Illustrated is a simple example for an inverse problem: Given is the height
d = (d1, . . . , dk) of a projectile at time points (t1, . . . , tk). The task is to
determine the initial velocity v0 and the launching angle α of the projectile.
Measured data (di, ti) is given in blue, a possible model simulationM(p) in
red where p = (v0, α). The task to �nd parameters p such that M(p) ≈ d
is an inverse problem.

the human brain [167, 139]. In current applications, the same models are increasingly
used to quantify dynamic parameters on a voxel-by-voxel basis [139, 74, 12, 90, 79,
104]. As we will argue in Section 1.2.4, this transition in scale can be challenging: To
avoid motion corruption and to achieve a high time-sampling, scanning times need
to be low, which can introduce additional noise artifacts in the data [111, 161, 137].
Also, as the example of abdominal DCE imaging shows, if patient motion is inevitable,
motion between images can heavily in�uence especially voxel-wise estimates [111, 161,
137]. A third problem is the validity of the model, which might not be given anymore
if it is used on a �ner scale, see Chapter 6.

We now give a general outline of this thesis: In Chapter 2 we start by describing the
three dynamic models which we will use to demonstrate the merits of our contribu-
tions. A basic overview of the physical models and the expected data is given. In
Chapter 3 we will present general analytical results to determine if and how stable
parameters can be recovered from noisy data using the dynamic models described in
the previous chapter. The Chapter 3 culminates in Section 3.5, where we will use these
results to construct a novel technique for T1 estimation from variable �ip-angle data
which has minimal sensitivity with respect to errors in the data: This novel technique
thus combines advantages of established techniques and allows fast, simple and robust
parameter estimation with errors reduced by up to 24% on software phantom data as
compared to an established linear recovery approach and closely performing like the
gold-standard nonlinear approach. In Chapter 4 we will present di�erent ways to couple
dynamic models in order to improve parameter estimation from spatially structured
data. Based on methods which were originally developed for RGB image denoising, we
will introduce tailored coupling terms for multiple parameters and high-resolution data
with distinct spatial layout. As opposed to many existing approaches [114, 155], these
terms are not only enforcing spatial regularity in the estimated parameters separately,
but are indeed coupling the di�erent parameter maps to additionally improve the re-
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1 Introduction

sults. We will demonstrate advantages of these terms for the example of T1 estimation,
where we show an improvement of up to 8% as compared to established techniques
on software phantom data. In Chapter 5 we will further show how redundancy of 4D
data can be exploited to add additional parameters to the recovery. We will both show
how parameter estimation can be combined with motion correction and how additional
control-parameters can be included in the recovery process. Speci�cally, we will show
how coupling terms as introduced in Chapter 4 can improve joint motion correction
and T1 estimation and how the same terms can improve voxel-wise GFR estimation
with missing or low-quality control parameters. We conclude this thesis with Chap-
ter 6, where we demonstrate limits of dynamic models, which occur if they are used
to describe only parts of a coupled system. Speci�cally we will show that established
dynamic models will overestimate perfusion if they are only applied to parts of a highly
coupled system, as in the case of pure capillary tissue. This e�ect is demonstrated on
phantom data, which is constructed using a novel porous media model for indicator
dilution. Additionally we present computations on real data which indicate that this
e�ect can also be found on coarse scale in real life applications.

Di�erent pieces of this work are already published or are submitted and in the pro-
cess of being reviewed. The following listing gives a brief overview of these results in
chronological order:

[H1] Heck, Ruthotto, Berkels and Modersitzki,Model-Based Parameter Es-

timation in DCE-MRI Without an Arterial Input Function, Proceed-
ings of BVM 2014: A major source of error for GFR estimation from DCE-MRI
data is the accurate determination the so-called arterial input function, which is
a main control parameter for the model �t and is related to the injection process
of the contrast agent [99, 38]. For voxel-wise methods, the paper describes a
strategy which exploits data redundancy to estimate the arterial input function
as an additional unknown from the data. The main contribution of this paper is
the additional introduction of spatial coupling to the estimation, which allows
improvements of up to 45% as compared to unstabilized methods on a software
phantom dataset for moderate noise.

[H2] Heck, Benning and Modersitzki, Joint Registration and Parameter

Estimation of T1 Relaxation Times Using Variable Flip Angles, Pro-
ceedings of BVM 2015: A common problem for T1 estimation from abdominal
data which was acquired with variable �ip angles is patient motion between ac-
quisitions [69]. This paper introduces a technique which is similar to the one
proposed by [69] and combines model �t and motion correction. Conceptually
this technique can be thought of as a sequential approach: First, estimated model
parameters are used to simulate motion-free images, which are used as reference
images to update the registration. Second, model parameters are updated us-
ing the updated registration and so on. The main contribution of this paper as
compared to [69] is the introduction of spatial coupling and allows improved
parameters of up to 30%.
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1.2 Three Dynamic Parameters and Clinical Relevance

[S3] Sandmann, Hodneland and Modersitzki, A Practical Guideline for

T1 Reconstruction from Various Flip Angles in MRI, to appear in
Journal of Algorithms and Computational Technology, 2016: Since in
abdominal imaging short scanning times are crucial to avoid motion artifacts,
data can come with limited quality due to noise e�ects, see Section 1.2.4. The
paper presents strategies to improve the estimation of T1 relaxation times from
noisy datasets which were obtained with various �ip angles. To do this, two
strategies are presented: First, a novel estimation method is introduced based on
a sensitivity analysis of the recovery. This novel method combines computational
advantages of a linear parameter �t with the robustness of a nonlinear �t. Here
improvements of up to 24% are achieved as compared to the linear method are
achieved and results are close to the computationally more expensive nonlinear
method. Second, the role of spatial coupling is investigated: In extension of the
results published in [155], we �nd that for high resolution data with distinct
spatial layout, results can be additionally improved if not only T1 but also an
additional variable M0 is stabilized for a Total Variation coupling term. In this
case improvements of up to 8% are achieved.

[S4] Sandmann, Hanson, Malyshev, Lundervold, Modersitzki and Hod-
neland, Limitations of Traditional Models for Perfusion, submitted
to IEEE Transactions on Biomedical Engineering: Although traditional
dynamic models to estimate perfusion from DSC-MRI data were originally devel-
oped with large regions of interest in mind [167], these models are increasingly
used for voxel-wise analysis [56, 158]. In this paper we demonstrate limits of
such models if they are used to describe parts of a system with heavy inter-voxel
coupling, as found e.g. in pure capillary tissue. Speci�cally we will show that
in this scenario established dynamic models will overestimate perfusion propor-
tional to the voxel size. We demonstrated this e�ect on phantom data, which is
constructed using a novel porous media model for indicator dilution. Addition-
ally we present real data which indicates that this e�ect can also be found on
coarse scale in real life applications.

[H5] Amman, Derksen and Heck, A novel magnetometer-accelerometer cal-

ibration based on a least squares approach, Proceedings of ICUAS
2015: Although the author has additionally contributed to a publication which
describes a calibration method for magnetometers used for inertial navigation,
this topic will not be covered in this thesis.

1.2 Three Dynamic Parameters and Clinical Relevance

All dynamic models which are under investigation in this work were carefully chosen
and have signi�cant clinical relevance. In this section we describe the clinical relevance
of the three parameters which lie in the focus of this thesis: Cerebral Blood Flow
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1 Introduction

(CBF), Glomerular Filtration Rate (GFR) and T1 relaxation time. Since the estimation
of these parameters is following a similar protocol, in Section 1.2.4 we will additionally
elaborate on common error sources which can lead to inaccurate parameter results.

1.2.1 CBF Estimation

In 2014 in Germany 15.298 people died of an ischemic stroke, making it the 14th cause
for death in the country [141]. In order to describe the relevance of cerebral blood
�ow for treatment, we brie�y outline common causes and therapy of ischemic stroke
following [158]: In ischemic stroke, an arterial vessel of the brain is occluded, leading
to hypo-perfusion of the fed area and possibly irreversible tissue damage. The a�ected
area can roughly be divided into a hypo-perfused but possibly salvageable area, the so-
called penumbra, and an infarct core where perfusion is drastically reduced. During the
stroke, the penumbra is slowly replaced by the core. A well-known therapy for ischemic
stroke is the usage of thrombolytic agents to clear the clogged vessel and to restore
the perfusion. However, there are various contra-indications for this therapy: In the
case of additional cerebral hemorrhage, thrombolysis might lead to additional tissue
damage, in the case of little salvageable penumbra combined with a large core, studies
indicate that the risk-bene�t ratio of thrombolytic therapy is unfavorable. Accurate
knowledge of the size of hypo-perfused areas is hence crucial to decide which therapy
should be used.

CBF Estimation using Dynamic Imaging

To estimate regional cerebral blood �ow (CBF) [ml/min/100ml], dynamic contrast
enhanced imaging like CTP or DSC-MRI and inverse modeling can be used, see Fig-
ure 1.2. For a review of other techniques for CBF estimation see Section 2.1.6. In
Section 2.1 we will introduce the so-called Meier-Zierler model, which can be used to
describe the contrast agent concentration in the human brain in dependency of CBF
and time.

1.2.2 GFR Estimation

The Glomerular Filtration Rate (GFR) [ml/min] describes how much blood-plasma is
�ltered by the kidneys per unit time [42, 78]. In healthy humans the GFR is typically
varying with age and is decreasing from a mean of 116 ml/min (20-29 years) to a mean
of 75 ml/min (≥ 70 years) [78]. In clinical practice the GFR is used as a main indicator
of kidney health and its decrease is linked to a large variety of kidney diseases [78, 42].
This makes the GFR of large importance in clinical practice [42]. However, we will see
in Section 2.2.3 that estimation of the GFR is delicate: Since it is di�cult to measure
directly, common methods aim to approximate it by estimating the speed at which
an external marker substance is �ltrated by the kidney [132, 42]. This value, which
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Figure 1.2: Figure displaying 4D Perfusion CT (CTP) data of a human head. (a) The
top-row visualizes a 2D slice at three from 12 time points, the bottom row
the concentrations of contrast agent. (b) Displayed is the concentration
timecurve from the location marked in blue. Note that motion artifacts at
the boundary of the skull can be observed. Data was provided by courtesy
of Rashindra Manniesing from the DIAG group at the Haukeland Unversity
in Nijmegen, the Netherlands.

depends on the external substance, is called renal clearance and coincides only with
the GFR if some additional assumptions are ful�lled. Speci�cally the marker needs
to be �ltrated freely and must not be metabolized, reabsorbed or secreted by the
kidney [42]. In everyday clinical routine the GFR is typically estimated based on the
blood concentration of a metabolic product, Creatinin, which ful�lls all of the above
criteria. Although this method is fast, well compatible with clinical routine and has
been shown to be able to reliably detect kidney malfunctions, it comes with a variety
of disadvantages: Most notably it only gives a GFR estimate for both kidneys and
does not allow for separate, let alone local analysis of the kidney function [42]. For a
more detailed discussion of methods for GFR estimation see Section 2.2.3.

GFR Estimation using DCE-MRI

In order to cope with this problem, it has been proposed to use DCE-MRI as an
alternative method for GFR Estimation [68, 5, 139, 16]. As it will be described in
Section 2.3.2, contrast agents in DCE-MRI are excreted nearly exclusively over the
kidney and can be considered as markers whose clearance coincides with the GFR
[42, 136]. Consequently, there are multiple approaches to determine the GFR from
DCE-MRI data of the kidney [68, 5, 139, 16]. Estimation of the GFR from measured
concentration time curves of the kidney follows a similar strategy as already described
for CBF estimation, see Figure 1.3. It will be described in more detail in Section 2.2.
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Figure 1.3: Figure displaying 4D DCE-MRI data of the human kidney. (a) The top-
row visualizes a 2D slice at three from 49 time points, the bottom row the
concentrations of contrast agent in the slice. (b) Displayed is the mean con-
centration of contrast agent in the kidney. Data was provided by courtesy
of Jarle Rørvik of the Haukeland University Hospital in Bergen, Norway.

We will introduce the so-called Patlak-Rutland model for GFR estimation from DCE-
MRI data in Section 2.2, which has been applied successfully in a variety of studies
[68, 16, 166].

1.2.3 T1 Estimation

All physical models which are used for GFR or CBF estimation from dynamical MRI
or perfusion CT data are describing contrast agent concentrations in a volume of
interest. However, in the case of MRI or CT, the measured data is typically not given
in contrast agent concentration but is obtained in raw signal intensity. In order to
relate the model simulation with the data, either the data has to be converted to
contrast agent concentrations or the forward model simulation needs to be converted
to signal intensities. In both cases a relationship between contrast agent concentration
and measured signal needs to be established.

Whereas in CT the signal varies approximately linearly with the concentration of
contrast agent [161], this relationship is more complicated in MRI. To relate MR signal
to contrast agent concentration, two steps are necessary: First, the MR signal has to be
modeled in dependency of tissue properties. Second, the e�ect of contrast agent on the
tissue properties has to be described. Since the MR signal is determined by relaxation
processes, the main tissue parameters used to describe the signal are T1 and T2, which
are representing the speed of the relaxation in longitudinal and in transversal direction.
We will introduce the relationship between T1, T2 and the measured MR signal, the
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Figure 1.4: Figure displaying 4D human kidney data from a variable �ip-angle exper-
iment. (a) Shown are 2D slices of left kidney obtained with various �ip
angles. (b) Displayed are the signal intensities at the point highlighted
in blue. Data was provided by courtesy of Jarle Rørvik of the Haukeland
University Hospital in Bergen, Norway.

so-called signal equation, for a large class of MR sequences in Section 2.3.1. In order
to describe the e�ect of contrast agent on T1 and T2, in DCE-MRI usually a linear
relationship between contrast agent concentration and apparent relaxation 1/T1 is
assumed, see Section 2.3.2. In order to quantify the amount contrast agent in the
tissue based on strength of the MR signal, this means that accurate knowledge of the
baseline T1 of the tissue needs to be known. As described in [69], errors in baseline T1

can have signi�cant e�ects on the recovered parameters.

T1 Estimation Using the Variable Flip Angle Technique

A method to estimate the baseline T1 of the tissue is the so-called variable �ip angle
technique [35, 66, 55]. For a review of other techniques for T1 estimation we refer to
Section 2.3.4. The main idea of the variable �ip angle technique is to recover the lon-
gitudinal relaxation time T1 from a series of magnitude MR measurements which are
obtained with di�erent �ip-angles. Since at each �ip angle the longitudinal magnetiza-
tion is tilted by a di�erent amount, the resulting series of signals contains information
on T1. After having obtained such a series of measurements (d1, . . . , dk), the unknown
T1 can be determined such that M(p) ≈ d, where M describes the MRI signal in
dependency of parameters p, among which is T1, see Figure 1.4.

1.2.4 Error Sources in Dynamic Imaging

All of the above methods come with distinct sources of error, which might a�ect the
accuracy of the estimated parameters. A common challenge for CBF and GFR estima-
tion is that the expected concentration time-curve of the tissue will depend not only on
the CBF or GFR, but also on the injection protocol and on the individual physiology
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1 Introduction

of the patient. To determine CBF or GFR, these factors have to be taken into consider-
ation. In the above modeling this is re�ected by including the time-dependent contrast
agent concentration in a feeding vessel into the estimation, the so-called arterial input
function (AIF). Results in [47, 38] indicate, that the AIF has indeed a high impact
on the estimated values of both CBF and GFR. Accurate measurement of the AIF
is hence highly desirable. For the case of GFR estimation using the Patlak-Rutland
model, we will introduce a novel method to cope with this problem in Section 5.3.

A second challenge for all three applications is patient motion: In abdominal imaging,
especially breathing can lead to misalignment of the data [23, 74, 165]. If concentration
time curves of the kidney or of other structures are to be established, it is necessary to
account for this motion. This is typically challenging, since non-homogeneous variances
in image contrast are introduced by contrast agent or variable �ip angles, making it
di�cult to relate images which were acquired at di�erent time-points or �ip-angles. In
Section 5.1 we will address this problem and introduce a general method for dynamic
imaging which combines the parameter estimation with the motion correction.

A third challenge is the image quality. In DCE-MRI, DSC-MRI and in Perfusion CT
fast sampling rates are necessary during the early uptake phase. For CTP sampling
rates are proposed which are not slower than 4 s [157], in DSC-MRI the rate is approx-
imately 1.9 s [144]. In CTP additionally the radiation exposure of the patient is to be
limited. For all imaging modalities these temporal and dose constraints lead to data
which comes often with limited quality due to noise e�ects, see [137, 161, 111] and the
data presented in Figures 1.2,1.3 and 1.4. To cope with this problem, we will introduce
two novel methods: For the case of T1 estimation, we will introduce a new, e�cient
and robust way to estimate parameters from variable �ip angle data. Additionally, we
will add information on the spatial layout by introducing spatial coupling methods in
Chapter 4.
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2 Dynamic Models in 4D Imaging and

Clinical Applications

We start by describing the three dynamic models, for which the theory of this work
was implemented: The Meier-Zierler Model [98] to estimate Cerebral Blood Flow, the
Patlak-Rutland Model [116, 129, 115] to estimate the Glomerular Filtration Rate of
the kidneys and the signal equation for spoiled gradient echo sequences [93, 55] to
estimate the MR parameter T1. All of the presented models will be subject to further
analysis in the following chapters. The selected models have been chosen with care:
We will see in Chapter 3 that solving the respective parameter estimation problems
requires a large variety of numerical methods (deconvolution, linear parameter �t,
nonlinear parameter �t). Additionally we will see in Section 3.3.2 that parameter
estimation using the Meier-Zierler model is indeed ill-posed. This makes these models
representative for a variety of applications where the contributions of this work might
be applied.

All these models will describe the dynamic behavior of a single black-box system. The
Meier-Zierler Model describes the concentration of contrast agent which is �owing
through a tissue volume under few prior assumptions. We will show in Lemma 2 that
in this case the concentration C(t) of contrast agent in the volume at time t can be
described by

C(t) = PΩ

∫ t

0
ca(s)R(t− s) ds = PΩ(ca ∗R)(t).

Here the so-called residue function R : [0,∞) → R describes the fraction of contrast
agent which remains in the tissue after a certain time and PΩ is the perfusion, the
parameter of interest. The function ca : [0,∞) → R is the so-called arterial input
function, which describes the concentration of contrast agent in a feeding vessel and
is typically assumed to be known.

Whereas the Meier-Zierler Model is only valid for tissue where no extravasation of
contrast agent is expected, the Patlak-Rutland Model is designed to model simple
accumulation e�ects [137]. It was originally used to described blood brain barrier
leakage [115], but since then has also been employed successfully for GFR estimation
[68, 166]. It models the time-dependent contrast agent concentration C(t) in a volume
as

C(t) = vaca(t) +Ktrans

∫ t

0
ca(s) ds.
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2 Dynamic Models in 4D Imaging and Clinical Applications

Here va ∈ [0, 1] describes the fractional blood volume, ca : [0,∞) → R is the arterial
input function and Vol(Kidney) ·Ktrans = GFR describes the normalized glomerular
�ltration rate.

We conclude this section with describing the signal equation for spoiled gradient echo
sequences [55, 168], which models the magnitude MR signal S in dependency of the
�ip-angle α ∈ [0, 2π] as

S = M0 sinα
1− e−TR/T1

1− cosαe−TR/T1
.

Here T1 > 0 is the longitudinal relaxation time, M0 > 0 depends on proton density,
echo time and transversal relaxation and TR > 0 is the repetition time. Although on
the �rst glance the signal equation looks very di�erent to the above models, it is indeed
structurally very similar: In all cases a dynamic variable is described in dependency
of a continuous control parameter: Whereas the Meier-Zierler and the Patlak-Rutland
model are describing the concentration of contrast agent in dependency of time, the
signal equation describes the MR signal in dependency of the �ip-angle.

2.1 The Meier-Zierler Model for CBF Estimation

We will now introduce the so-called Meier-Zierler model [98] which can be used to
estimate Cerebral Blood Flow (CBF) from a time series of contrast-enhanced images.
This section will have three main results: TheMeier-Zierler Model, theMaximum Slope
Model and the Well-Mixed Compartment Model. In practical perfusion imaging, the
Meier-Zierler Model and the Maximum Slope Model are the most important model to
describe perfusion of the human brain and used in a large variety of applications [86,
76, 12]. These models will be essential to the considerations of Chapter 6, where we
will show that these models can be used to equivalently describe a novel PDE model
for perfusion.

All models can be derived from the continuity equation for tracer kinetic modeling,
which will be derived in the following section. The continuity equation will depend on
a large number of free variables, making it for all practical means an underdetermined
system. In oder to apply it in clinical practice, the number of unknowns is reduced by
adding additional assumptions. For the Meier-Zierler Model it will be assumed that
the transit times of particles �owing through the tissue are distributed according to
some probability density function. The unknown of the Meier-Zierler model will be
a function, the so-called residue function. For the Maximum Slope Model it will be
assumed that no out�ow is taking place when the peak of the bolus is passing through
the tissue. This means that during early uptake the concentration in the tissue patch
will depend mainly on the blood �ow CBF, leaving only one unknown parameter.
For the Well-Mixed Compartment Model it will be assumed that the contrast agent is
distributed homogeneously in the tissue patch. As we will see, in this case the number
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2.1 The Meier-Zierler Model for CBF Estimation

Ω

ΩCAPa

ca(t)

Pv

cv(t)

Figure 2.1: Displayed is a black-box domain Ω for the Meier-Zierler Model. Depicted
are concentrations at the in- and outlet ca, cv [mmol/mm3], perfusion con-
stants Pa, Pv [mm3/(s mm3)] and the contrast agent distribution volume
ΩCA, which is the total volume of Ω without the gray cell-like structures.
The perfusion P [mm3/(s mm3)] and absolute �ow F [mm3/s] are con-
nected by P ·Vol(Ω) = F , see Lemma 1.

of free parameters can be reduced to two, the blood �ow CBF and the Mean Transit
Time (MTT). We will also introduce the Central Volume Theorem, which is another
main result from perfusion imaging and establishes a connection between CBF, MTT
and the Cerebral Blood Volume (CBV). However, in this work it is introduced mainly
to simplify some proofs and will thus be stated without proof.

2.1.1 The Continuity Equation for Tracer Kinetic Modeling

We start by introducing the continuity equation for tracer kinetic modeling, which is
basic to nearly all pharmacokinetic models [137]. Given some basic assumptions (see
Assumption 1), the continuity equation describes the average contrast agent concen-
tration in a black-box tissue which is fed with at one inlet and drained at one outlet.
An example for such a black-box tissue is depicted in Figure 2.1.

Assumption 1 (Continuity equation for tracer kinetic modeling).

A1) The contrast agent in- and out�ow is linear and stationary. This means that the
absolute contrast agent in- and out�ow Ja, Jv [mmol/s] depends linearly on the
contrast agent concentration at the respective locations with time-independent
constants Fa, Fv [mm3/s], i.e.

Ja(t) = Faca(t) and Jv(t) = Fvcv(t).

A2) No contrast-agent is created or destroyed in Ω (conservation of mass).

The following Lemma shows that contrast agent transport can be modeled under
Assumption 1 using standard ordinary di�erential equations (ODEs).
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2 Dynamic Models in 4D Imaging and Clinical Applications

Lemma 1 (See [137]). Let ca, cv ∈ C0([0,∞)) and let C(t) denote the contrast
agent concentration in Ω at time point t. Under Assumption 1 the concentration
C(t) is given by ∣∣∣∣∣C ′(t) = Paca(t)− Pvcv(t),

C(0) = 0.

∣∣∣∣∣ (2.1)

where Pa := Fa/Vol(Ω), Pv := Fv/Vol(Ω) have units mm3/(s mm3).

Proof. Let m(t) [mmol] denote the absolute number of contrast agent molecules in
Ω at time point t. Assumption 1 allows us to model the change of contrast agent in
an in�nitesimal small time interval as

ṁ(t) = Ja(t)− Jv(t) = Faca(t)− Fvcv(t).

Dividing the equation by the total volume Vol(Ω) of Ω yields (2.1). �

Note that Pa, Pv [mm3/(s mm3)] are so-called perfusion constants, which are normal-
ized by the distribution volume. Speci�cally the units of Pa, Pv are [volume of �uid]
per [second] per [volume of tissue] and are describing how much �uid passes through
the volume per unit time [119]. Note that in physical applications �ow is usually nor-
malized with respect to surface and not with respect to volume [37, 89]. Indeed we
will see in Chapter 6 that this normalization will indeed lead to scaling problems for
coupled systems.

2.1.2 The Meier-Zierler Model and the Central Volume Theorem

We will now derive the Meier-Zierler Model from the continuity equation and addi-
tional assumptions presented in Assumption 2. The Meier-Zierler Model describes the
contrast agent concentration C(t) in a black-box tissue at time point t as

C(t) = Pa

∫ t

0
ca(s)R(t− s) ds.

Here Pa [mm3/(s mm3)] is the �ow at the inlet and R : [0,∞)→ R is a tissue speci�c
function, the so-called residue function.

In order to derive (2.2), we need to make additional assumptions, namely
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2.1 The Meier-Zierler Model for CBF Estimation

Assumption 2 (Meier-Zierler Model).

1. The transit times t of particles passing through Ω are distributed according to a
probability distribution h ∈ C0([0,∞)) with

a) h ≥ 0,

b) h(0) = 0,

c)
∫∞

0 h(s) ds = 1.

2. The concentration at the inlet is given by a function ca ∈ C0([0,∞)).

The following lemma shows how the continuity equation can be simpli�ed under As-
sumption 2:

Lemma 2 (See [137]). Let C ∈ C1([0,∞)) and Assumption 1, 2 hold. Then

C(t) = Pa

∫ t

0
R(s)ca(t− s) ds = Pa(ca ∗R)(t) = (ca ∗ I)(t) (2.2)

where

R(t) := 1−
∫ t

0
h(s) ds and I(t) := PaR(t) (2.3)

and the convolution of two functions g, h ∈ C1([0,∞) is given by g ∗ h(t) :=∫ t
0 g(t− s)h(s) ds

Proof. Assumption 2 allows us to describe the out�ow Pvcv(t) of the tissue at time
point t as

Pvcv(t) =

∫ t

0
(Paca(s))h(t− s) ds.

Combining this equation with the continuity equation (2.1) yields

C ′(t) = Pa (ca(t)− ca ∗ h(t)) with C(0) = 0.

Note that the solution of this ODE can be obtained by simple integration, yielding
a solution which is di�erentiable due to the Fundamental Theorem of Calculus [83].
However, to simplify the calculations note that the integration can also expressed as
convolution with the function 1 : [0,∞) → R, t 7→ 1. Due to the algebraic properties
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Table 2.1: Summary of some main vocabulary of perfusion imaging.
Symbol Name

PΩ := Pa Blood Flow or Perfusion
TΩ :=

∫∞
0 sh(s) ds Mean Transit Time

VΩ := Vol(ΩCA)/Vol(Ω) Blood Volume.
ca Arterial Input Function
R Residue Function
I Impulse Response Function

of the convolution (associativity, commutativity and distributivity) this allows us to
write the solution as

C(t) = 1 ∗ Pa(ca − h ∗ ca) = Paca ∗ (1− 1 ∗ h)(t).

which concludes the proof. �

Implications of the Meier-Zierler Model and the Central Volume Theorem

The following de�nition introduces some main vocabulary of perfusion imaging. The
names can be explained as follows: The Residue Function R describes which fraction
of contrast agent is still present after t seconds whereas the Impuls Response Function
I describes how the system responds to a Dirac Input.

The following Lemma summarizes basic important properties of R:

Lemma 3 (See [137]). Let R, I be given by (2.3). Then

1. R(0) = 1,

2. R is monotonous decreasing

3. limt→∞R(t) = 0.

4. PΩ = maxt I(t),

5. TΩ =
∫∞

0 R(s) ds, if limt→∞ t
2h(t) = 0.

6. VΩ =
(∫∞

0 C(s) ds
)
/
(∫∞

0 ca(s) ds
)
.

Proof. All steps follow by direct calculation.
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2.1 The Meier-Zierler Model for CBF Estimation

1. R(0) = 1−
∫ 0

0 h(s) ds = 1,

2. Let u < v. Then R(u)−R(v) = −
∫ v
u h(s) ds ≤ 0 since h ≥ 0.

3. Finally it holds that limt→∞R(t) = 1−
∫∞

0 h(s) ds = 0 due to the properties of
h.

4. Follows directly by I(t) = PaR(t) and properties 1-3.

5. By de�nition it holds that TΩ =
∫∞

0 sh(s) ds. However, it also holds that h(t) =

− d
dtR(t). Integrating by parts yields∫ t

0
sh(s) ds =

∫ t

0
s(− d

dt
R(s)) ds = −tR(t) +

∫ t

0
R(s) ds

Using l'Hôpital's rule yields limt→∞ tR(t) = limt→∞ t
2h(t) = 0 due to the addi-

tional assumption on the decay. This yields the claim

6. We �rst observe that for two functions f, g ∈ C0([0,∞) the integral over f ∗ g
equals the product of the integrals over f and g. This means that∫ ∞

0
C(s) ds =

∫ ∞
0

(I ∗ ca)(s) ds =

(∫ ∞
0

ca(s) ds

)(∫ ∞
0

I(s) ds

)
(2.4)

On the other hand it holds that∫ ∞
0

I(s) ds = Pa

∫ ∞
0

R(s) ds = PaTΩ = VΩ (2.5)

where the last equality holds due to the central volume theorem (2.6) which will
be introduced in the next theorem. Combining (2.4) and (2.5) yields the claim.

This concludes the proof. �

Another important relationship used in perfusion estimation is the so-called Central
Volume Theorem [142, 98, 118, 137]. The Central Volume Theorem relates three of the
main indicators for perfusion, the blood�ow, the blood volume and the mean-transit
time. Since we will need the theorem only occasionally, we refer to [98] for the proof.

Theorem 1 (Central Volume Theorem [142, 98]):
Let Assumption 1 and Assumption 2 hold. Then

VΩ = TΩPΩ. (2.6)

23



2 Dynamic Models in 4D Imaging and Clinical Applications

2.1.3 The Well-Mixed Compartment Model

We have seen that assuming that transit times are distributed according to some prob-
ability distribution allowed to simplify the continuity equation (2.1) signi�cantly. We
now introduce another simpli�cation, which will be of importance in Chapter 6. Specif-
ically we will assume that the plasma compartment is well-mixed, i.e. that the contrast
agent concentration at the outlet equals the average contrast agent concentration in
the tissue. We will show that this assumption leads to exponential impulse-response
functions I(t) = PΩ exp(−PΩ/VΩt). In current literature this family of functions is
often employed to simulate tissue curves, which are subsequently used as ground-truth
values to evaluate novel recovery techniques [111, 160].

The Assumptions for the well-mixed compartment can be summarized as follows:

Assumption 3.

1. The contrast agent concentration at the outlet equals the average contrast agent
concentration in the Ω, i.e. VΩcv(t) = C(t).

2. The in�ow equals the out�ow (incompressibility of �ow), Pa = Pv.

The following lemma shows, that in this case the impulse response functions are ex-
ponentials:

Lemma 4. Under Assumption 1, 3 it holds that C ∈ C1[0,∞) is given by

C(t) = (I ∗ ca)(t) with I(t) = PΩe
−(PΩ/VΩ)t. (2.7)

Proof. Combining Assumption 1 and Assumption 3 and denoting C(t) = VΩc(t)
yields the ODE

VΩc
′(t) = PΩ(ca(t)− c(t)), with C(0) = 0.

The above ODE is linear and inhomogenous. It can be solved by �rst solving the
homogeneous system and then varying the constant, see [152, �2(II)] for an example.�
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2.1 The Meier-Zierler Model for CBF Estimation

2.1.4 The Maximum Slope Model

Another model to determine the perfusion from a tissue concentration curve is the so-
called maximum slope model [80]. The maximum slope model relies on the assumption
that no venous out�ow is present, i.e. Pv = 0. In this case the basic continuity equation
for pharmakokinetic modeling (2.1) simpli�es to

C ′(t) = Paca(t)− Pvcv(t) = Paca(t).

From this relationship one can see that if ca has a maximum, C ′ must also have a
maximum. It follows that

Pa =
maxtC

′(t)

maxt ca(t)
. (2.8)

2.1.5 Discussion

We have presented a general equation for tracer kinetic modeling, the so-called conti-
nuity equation for tracer kinetic modeling (2.1). Since we have found that this equation
had too many unknowns to be of practical use, we have described di�erent assump-
tions under which the continuity equation could be simpli�ed signi�cantly. Speci�cally
we presented three simpli�cations: The Meier-Zierler Model was derived under the
assumptions that transit times are distributed according to some probability distribu-
tion. For the Well-Mixed Compartment Model it was assumed that contrast agent is
distributed homogeneously in ΩCA. For the Maximum-Slope Model it was supposed
that not venous out�ow was present during the peak of contrast agent.

In current literature, the most common model which is used to describe Cerebral Blood
Flow is the Meier-Zierler Model [86, 76, 12]. Although an evaluation in [2] has shown
that the maximum slope model performs comparably and yields equal therapy deci-
sions in clinical practice, the assumption that no venous out�ow is present when ca

peaks requires high injection speeds which are hard to ful�ll [84]. However, we will see
in Section 3.3.2 that parameter estimation using the Meier-Zierler Model is usually
ill-posed and requires advanced numerical methods. This makes blood �ow estimation
using the Meier-Zierler Model highly complicated: In [86] it was demonstrated that
di�erent commercial software is generating di�erent CBF results for the evaluation
of perfusion data of the same patient. The Well-Mixed Compartment Model is often
used for simulations [111, 160, 161], but its strong assumptions are usually not valid
for current scanner resolutions. We will demonstrate other, more basic limits of perfu-
sion in Chapter 6. Speci�cally we will study perfusion in highly coupled systems and
demonstrate, that in this case perfusion is highly dependent on scale.
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2.1.6 Alternative Methods for CBF Estimation

For sake of completeness, we conclude this section by giving a short introduction to
CBF estimation using alternative estimation techniques. Speci�cally we will focus on
a tailored MR sequence, so-called Arterial Spin Labeling (ASL) and an emerging but
still highly experimental technique, so-called Magnetic Particle Imaging (MPI).

CBF estimation by Arterial Spin Labeling (ASL)

We describe ASL following closely [25]: ASL can be thought of dynamic contrast en-
hanced imaging without the usage of an external contrast agent. Instead, ASL uses the
blood itself as contrast agent by so-called tagging: Tagging means that the longitudinal
magnetization of arterial blood is inverted in a region upstream to the volume of inter-
est. In a later measurement of downstream tissue, this magnetization can be detected.
As compared to CBF estimation using external contrast agents, this has two main
advantages: First, no administration of external contrast agent is necessary, second
the arterial input will be known: If the tagging pulse is applied with some length, the
arterial input function should have approximately the shape of a smoothed rectangle,
which simpli�es the pharmacokinetic modeling signi�cantly. Since experiment times
are approximately in the range of 1 s, it is often additionally assumed that no venous
out�ow is present, yielding the following equation for the concentration C(t) of tagged
arterial blood in the volume of interest:

C(t) = PΩ

∫ t

0
ca(s) ds

where ca is the (rectangular) input function. If it is further assumed that all tagged
blood has arrived in the tissue and no venous out�ow is present, this yields theoretically
the following expected ASL signal at time T after labeling:

S(T ) = S0 + PΩ(2fτM0a)d (2.9)

here (2fτM0a) represents the integral over the ca, where τ > 0 is the duration of
the tagging pulse M0a the steady-state magnetization of arterial blood and f ∈ (0, 1)
models the e�ciency of the tagging pulse. The factor d := e−T/T1a accounts for the
loss of magnetization in the time T between tagging and measurement.

This modeling already shows some of the challenges which have to be overcome if ASL
is to be employed in routine clinical practice: Equation (2.9) is only valid if indeed
all tagged blood has arrived at the volume of interest. This makes ASL sensitive to
arterial delay [164, 4]. Also, in the above modeling it is assumed that the tagged spins
are relaxing with the T1 of arterial blood: However, since it is expected that there
is water exchange with the tissue, these e�ects have to be clari�ed as well [25, 4].
Nevertheless ASL is an alternative, very promising technique for CBF measurement
and expected to be employed in clinical practice soon [4].
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CBF estimation by Magnetic Particle Imaging (MPI)

Another emerging method in this �eld is so-called Magnetic Particle Imaging (MPI),
where the propagation of a ferromagnetic contrast agent is displayed using MRI-like
techniques [82]. As compared to the previously mentioned DCE protocols, by design
MPI has several advantages, as the lack of tissue background, radiation and increased
resolution [82]. However, since MPI is not yet used routinely in clinical practice, this
work will focus on the previously mentioned DCE protocols.

2.2 The Patlak-Rutland Model for GFR Estimation

In this section we describe the so-called Patlak-Rutland Model to estimate the Glomeru-
lar Filtration Rate (GFR) of the kidney from a time series of contrast-enhanced images
[68, 166]. Since the Meier-Zierler model does not describe extravasation of contrast
agent explicitly, its usage to to extract �ltration rate is di�cult. The Patlak-Rutland
model on the other hand is tailored to model accumulation e�ects in highly vascu-
larized tissue: As compared to the Meier-Zierler Model it is assumed that contrast
agent can be in either of two areas of the black-box tissue: A vascular space and extra-
vascular extra-cellular space (EES), where it is assumed to accumulate. These two
spaces are assumed to be connected by a directed �ow, which represents the �ltration.
This concept makes applications of the Patlak-Rutland broader than only GFR esti-
mation: In hemorrhagic stroke, it also used to model blood brain barrier leakage e�ects
[115]. Note that since the GFR refers to the amount of blood plasma, which is �ltered
by the kidney per unit time, in this section we will not describe blood volume as in
the section on CBF, but plasma volume. These two quantities are connected by the
hematocrit value, which measures the volume fraction of solid particles of the blood.
The hematocrit value will be introduced in more detail at the end of this section. The
Patlak-Rutland model will be basic to the considerations of Section 5.3, where we will
use it to simultaneously estimate the arterial input function.

2.2.1 The Patlak-Rutland Model

We will now show how the marker concentration can described in dependency of the
plasma concentration ca, the plasma volume va and the �ltration Ktrans, see Figure 2.2
for details.

Lemma 5. Let Ω ⊆ R3 be a bounded domain and let E ⊆ Ω and A ⊆ Ω be
disjunct. Let us further assume that there is some linear and stationary �ow Ktrans

[mm3/(s mm3)] from A to E (cf. Section 2.1) and that contrast agent can only be
in A or E. Let va := |A|/|Ω| and let ca ∈ C0([0,∞)) denote the contrast agent
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ca(t)
A

C(t)

E

Ktrans

Figure 2.2: Schematic of tissue for which the Patlak-Rutland Model is valid. The
tissue is supposed to consist of a plasma compartment (A, red) and an
extra-vascular-extra-cellular-space (E, blue) and a compartment which is
not accessible to contrast agent (gray). The perfusion constant Ktrans

[mm3/(s mm3)] models �ow from plasma to EES (�ltration) and C(t) mod-
els the concentration in the whole volume.

concentration in A. Then it holds for the contrast agent concentration in Ω at time
point t that

C(t) = vaca(t) +Ktrans

∫ t

0
ca(s) ds. (2.10)

Proof. We can derive the Patlak Model as follows: Let va, ve [mm3/mm3] denote
the fractional plasma and EES volume respectively and ca(t), ce(t) [mmol/mm3] the
contrast agent concentrations in plasma and EES. We can express the contrast agent
concentration in Ω as

C(t) = vaca(t) + vece(t).

However, if we assume that there is some �ow Ktrans [mm3/(s mm3)] from Plasma to
EES, then the same derivation as in Lemma 1 shows that∣∣∣∣∣(vEcE)′(t) = Ktransca(t),

cE(0) = 0.

∣∣∣∣∣ (2.11)

Straight-forward integration yields the claim. �

2.2.2 Discussion

In this section we have introduced a model to describe the contrast agent concentration
in the kidney. Note that the Patlak-Rutland model assumes that once contrast agent
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is brought into the EES, it stays there and is not excreted. Since the Patlak-Rutland
model also explicitly models the contribution of the plasma compartment, it is valid for
highly perfused tissue where contrast agent extravasation but no out�ow is expected
[137]. In the kidney the Patlak Rutland Model is typically only valid in the early
uptake phase since no out�ow is modeled [68, 137]. It acute stroke the Patlak model
is also used to model blood-brain-barrier leakage in the early uptake phase [75].

Apart from the Patlak-Rutland-Model there are manifold di�erent pharmacokinetic
models which are used for GFR estimation. To cope with the disadvantage that the
Patlak Model is only valid during early uptake, in [5] the following ODE was assumed
to govern the contrast agent concentration in the EEC:

(vEcE)′(t) = Ktransca(t)−Ktrans(1− f)cE(t) and cE(0) = 0.

Note that as compared to (2.11) tubular out�ow is modeled with a rate of (1−f)Ktrans

for the extraction fraction f ∈ (0, 1). In [139] this model is even extended by not us-
ing the arterial plasma concentration ca, but by using a possibly di�used version cP .
However, note that signi�cantly more parameters are introduced, which are scaling ex-
ponentially in the model. This makes the numerical model-�tting di�cult and sensitive
with respect to noise [22, 16, 151, 46].

Practical Remarks and the Role of Hematocrit

If the pharmacokinetic models like the Patlak model are used for GFR estimation, it is
important to note that the GFR refers to the amount of blood plasma which is �ltered
by the kidneys. If the AIF is selected from measurements in a major vessel, these
measurements typically only re�ect the contrast agent concentration in the blood.
This means that the measured AIF needs to be normalized by the plasma fraction,
which is given by (1−Hct), where Hct is the hematocrit-value of the patient For large
vessels hematocrit is often assumed to be in the range 0.43 − 0.45 [68, 139]. Note,
however, that the hematocrit value varies both by patient and by vessel size [161].
Also note that Ktrans is given in normalized units [mm3/(s mm3)] whereas the GFR
is given in absolute units [ml/min]. In order to convert Ktrans to the GFR, a typical
recalculation is given by GFR = Ktrans ·Vol(Kidney).

2.2.3 Alternative Methods for GFR Estimation

In this section we will introduce alternative methods to estimate the GFR. Speci�cally
we will introduce GFR estimation based on Creatinin, which is the most important
method in daily clinical routine. This section is mainly based on [42].

Most methods aim to approximate the GFR by estimating not the GFR itself, but the
renal clearance of a marker substance. The main idea to determine renal clearance is
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based on Fick's principle [52] which relates the �ltered excreted amount of a substance
with the excreted amount, i.e.

nF
∆t

=
nE
∆t

(2.12)

where nF , nE [mmol] are the number of particles which are �ltered and which are
excreted respectively and ∆t is some time interval. The total numbers of particles can
be expressed in terms of concentration and volume, i.e.

nF = VF cP and nE = VUcU . (2.13)

where in the case of the kidney VF [ml] is the total amount of �ltered plasma, cP
[mmol/ml] is the plasma concentration, VU [ml] is the total amount of urine and cU
[mmol/ml] is the urine concentration of the substance. Inserting (2.13) into (2.12) and
rearranging yields

clear :=
VF
∆t

=
VUcU
cP∆t

, (2.14)

the renal clearance [ml/min] of a substance. As described above, for substances which
are ful�lling certain criteria the renal clearance and the GFR are coinciding. The most
important examples for such substances are Creatinin, which is a product of the muscle
metabolism and is hence created by the body itself, and Inulin, which is a polyfructosid
and needs to be injected. For these substances equation (2.14) shows that the GFR can
be estimated from four parameters: The concentration in the plasma, the concentration
in the urine, the amount of urine and time. However, especially the measurement of
the amount of urine is di�cult in clinical practice [42].

The most common methods in everyday clinical practice are hence based exclusively
on the concentration of Creatinin in the plasma and neglect the measurement of urine
volume and urine concentration. Instead default values are used which depend on
parameters ranging from sex, weight and age (Cockcroft-Gault) to sex, weight, age,
ethnicity and cP (CKD-EPI). Advantages of this methods are their speed, good confor-
mity with clinical routine and proven reliability to detect kidney failure [42]. However,
since (2.14) shows that the GFR is proportional to 1/cP , a reliable diagnosis of a signif-
icantly reduced GFR based on these methods can only be performed for a GFR which
is smaller than 50 ml/min [42]. Also, the kidneys are able to compensate for failing
areas by increasing �ltration in healthy areas, which means that heavy losses in overall
glomerular �ltration might stay undetected. Finally traditional methods only allow to
estimate the GFR for both kidneys, the failing kidney can hence not be detected by
these methods.

2.3 The SPGR Signal Equation for T1 Estimation

In this section we introduce the so-called Signal Equation for Spoiled Gradient Echo
(SPGR) Sequences. Although this might seem like a signi�cant break, we will see that
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structurally the models from the previous section are similar, since all are describ-
ing the one dimensional response of a system in dependency of a continuous variable:
Whereas pharmacokinetic models describe contrast agent concentration in a reference
volume over time, the signal equation describes the magnitude MR signal of a refer-
ence volume over the �ip-angle. We will use the Signal Equation to recover the tuple
(M0, T1), where M0 is a constant which depends on the steady state magnetization
and the transversal relaxation time T2. Additionally, we will describe the in�uence of
contrast-agent on the apparent T1 of the tissue. We conclude this section by introduc-
ing alternative methods for T1 estimation.

2.3.1 The Signal Equation for SPGR Sequences

In this section we model the signal equation for spoiled-gradient echo (SPGR) se-
quences, closely following [93]. However, note that this section follows argumentation
designed to describe an NMR signal and is thus applicable only for one voxel: For a
complete analysis of such sequences for MRI see [96, 168].

We start by giving a brief overview of SPGR sequences: In SPGR sequences, magne-
tization is not �ipped by full 90°, thus avoiding long recovery times before the next
measurement [54]. Instead a fast series of pulses with considerably smaller �ip angles of
e.g. 15° is employed until eventually a steady-state magnetization is established. After
each pulse, so-called spoiling is used to destroy the transversal magnetization. Note
that this use of spoiling considerably simpli�es the description of the MR signal, since
the signal is mainly governed by processes a�ecting the longitudinal magnetization
and transversal magnetization can be neglected. We start this section by introducing
a description of strictly longitudinal recovery processes. After that, we will introduce
a recursive formula to describe the steady-state magnetization which is established
after a �nite number of pulses. We conclude this section with the main result: The
signal-equation (2.19) for SPGR sequences.

We start by introducing the Bloch equations, which describe the magnetization of a
system exposed to a magnetic �eld [14]. However, note that these will be signi�cantly
simpli�ed due to additional assumptions to be made later. Given an external magnetic
�eld B : [0, T ] → R3, the Bloch equations are describing the magnetization M :
[0, T ]→ R3 of a system by

Ṁ(t) = γM(t)×B(t)−R(M(t)−M00) for R := diag( 1
T2
, 1
T2
, 1
T1

).

Here M00 ∈ R3 is the equilibrium magnetization of the system, γ ∈ R the gyromag-
netic ratio and × is the cross-product. Since B(t) ×M(t) is orthogonal to the plane
spanned by B(t) and M(t), the �rst term can be interpreted as a torque which causes
M to rotate if a magnetic �eld B and M are linear independent. The matrix R intro-
duces so-called relaxation e�ects in x, y and in z direction, causing the magnetization
to return to the original state with rates 1/T2 and 1/T1 respectively. In MRI, usually
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the magnetic �eld B0 is applied to point only in one direction, i.e B0 = (0, 0, B0)>.
In this case the equilibrium magnetization M00 = (0, 0,M00)> will point in the same
direction as B0. In full form, the Bloch equations are then given by

Ṁx(t) =γ (My(t)Bz(t)−Mz(t)By(t))−
Mx(t)

T2
,

Ṁy(t) =γ (Mz(t)Bx(t)−Mx(t)Bz(t))−
My(t)

T2
,

Ṁz(t) =γ (Mx(t)By(t)−My(t)Bx(t))− Mz(t)−M0

T1
.

In MRI, so-called radio-frequency (RF) pulses can be used to create an additional
external �eld B1(t) = (B1(t), 0, 0)> for a very short time. It can be shown that such
a magnetic �eld tilts the magnetization by a �ip-angle angle α ∈ [0, 2π). Additionally,
after such a pulse the magnetization relaxes to the equilibrium magnetization while
rotating around the z axis. Due to induction this rotation induces a voltage in receiving
coils, the so-called free induction decay (FID) signal.

Following [93], we make the following assumptions:

Assumption 4. Let us assume that

� The external magnetic �eld B(t) is constant, i.e. B(t) = (0, 0, B0)>.

� After an RF pulse and subsequent spoiling the magnetization of the system is
given by M(0) = (0, 0,M+)>.

In this case the above equations simplify to∣∣∣∣∣∣Ṁz(t) = −Mz −M00

T1
,

Mz(0) = M+.

∣∣∣∣∣∣ ⇐⇒ Mz(t) = M00 +
(
M+ −M00

)
e
− t
T1 . (2.15)

Assume that a sequence of repeated pulses with constant �ip-angle α is applied, see
Figure 2.3 for an illustration of the situation. Further assume that directly after each
pulse spoiling sequences are employed which are destroying all transversal magneti-
zation. After that we wait a period of time TR and then the procedure starts again.

In the case of repeated pulses it holds that the magnetization M+
n directly after the

n-th pulse and subsequent spoiling, which destroys the transversal magnetization, can
be written as

M+
n = cos(α)M−n (2.16)
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M−n

(a)

M−nM+
n
α

(b)

M+
n

M−n+1

(c)

TRP,S

Figure 2.3: Figure displaying the magnetization during a SPGR sequence in a 2D co-
ordinate system. (a) Displayed is the magnetization M−n before the n-th
pulse. (b) Displayed is the magnetization M+

n after the n-th pulse and
spoiling (P,S). The magnetization is tilted by the �ip-angle α and imme-
diately afterwards the transversal component is destroyed, see also (2.16).
(c) Displayed is the magnetization M−n+1 at time TR after the n-th RF
pulse as determined by (2.17). An expression for M−n+1 in dependency of
M−n is the basis for the signal equation, cf. (2.18).

where M−n is the magnetization directly before the pulse, see Figure 2.3. Assuming
that pulses are following a regular period TR, we can use (2.15) to model M−n+1, the
magnetization right before the (n+ 1)-th pulse as

M−n+1 = M00 +
(
M+
n −M00

)
e−TR/T1 . (2.17)

Combining (2.17) with (2.16) yields the following, recursive formula for the magneti-
zation before the n+ 1-th pulse:

M−n+1 = M00 +
(
cos(α)M−n −M00

)
e−TR/T1 . (2.18)

Letting E1 =: e−TR/T1 and c := cosα, we obtain by straight-forward recursion

M−n = M00(1− E1)
n−1∑
j=0

(cE1)j +M00(cE1)n

= M00(1− E1)
1− (cE1)n

1− cE1
+M00(cE1)n.

Letting n→∞ and using cE1 < 1 yields the steady-state solution

M−∞ = M00
1− E1

1− cE1
.

To complete the modeling, two additional factors have to be included: First the mea-
sured signal is proportional to the transverse component of the magnetization and
second, not the free induction decay is measured by instead an echo of the signal after
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time TE. Combining this yields the expression S = sin(α)M−∞e
−TE/T ∗2 for the magni-

tude steady state signal S in dependency of the observed T2 which is denoted by T ∗2 .
We thus obtain the signal equation for spoiled gradient echo sequences:

S(M0, T1) = M0 sin(α)
1− e−TR/T1

1− cos(α)e−TR/T1
, (2.19)

where M0 := M00e
−TE/T ∗2 . See also [96, Section 3.4.7] and [168] for a di�erent deriva-

tion of the signal equation.

2.3.2 In�uence of Contrast Agent on T1

In this section we will relate the contrast-agent concentration with the apparent T1 of
the tissue. The main sources for this section are [145, 117]. A large class of contrast
agents in DCE-MRI is based on gadolinium (Gd3+) ions. Since free metal ions are
highly toxic to human tissue, they need to be embedded in larger molecules (chelates).
In bound form, gadolinium mainly increases T1-relaxivity, although it also a�ects T ∗2
to some degree. Following [145], the e�ect of contrast agent on the e�ective T1 can be
modeled as

1

T1
=

1

T1,0
+ r1c (2.20)

where T1,0 [ms] is the T1 of the tissue without contrast agent, r1 [l/(mmol s)] is the
(known) relaxivity constant of the contrast agent and c [mmol/l] is its concentration.
Contrast agents like Magnevist or Omniscan are biologically almost inert and are
distributed from the bloodstream to the extra-cellular-extra-vascular space rapidly
[117]. They lose their e�ect within 1.3 h�1.6 h after injection and are excreted within
approximately 24 h, mainly by the kidney [117]. Combined, these properties make
this class of contrast agents especially interesting for measurement of the �ltration
capability of the kidney, since the excretion process can be observed in a time sequence
of MR images.

2.3.3 Discussion

In this section we have introduced a model for the magnitude signal of spoiled gradient
echo sequences. In various cases the actual signal might be described only imperfectly
by the signal equation, the most important in clinical practice being imperfect �ip
angles. Since the �ip-angle is determined by α = γB1τ , where τ > 0 is the duration
of the pulse [96], local inhomogeneities in B1 can cause the �ip-angle to di�er from
the intended one [33]. This e�ect has been observed as a cause of error in various
applications [20, 33]. Common methods to identify B1 errors aim to measure B1 by
identifying the true signal zero around 180◦ [150, 44] or relate signals with constant
�ip-angle but varying repetition time [112, 163]. However, in this work we will assume
that errors in B1 are negligible. If additional measurements of B1 are available, these
can be incorporated into the reconstruction at will.
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2.3.4 Alternative Methods for T1 Estimation

As outlined in Section 1.2.3, the signal equation can be used to recover T1 from multiple
measurements of a volume which were obtained with di�erent �ip-angles but otherwise
constant scan parameters. In this part we brie�y describe other methods to estimate T1.
Most T1 recovery methods make the assumption that the transversal magnetization
Mxy is zero and that hence the signal intensity is mainly governed by the relaxing
longitudinal magnetization. In this case one can see that in (2.19) apart from T1 and
M0 there are only two free experimental parameters which describe this process: the
�ip-angle α and the repetition time TR. Where in the variable �ip-angle method it is
assumed that TR is constant and the �ip-angles α are varied, so-called Inversion or
saturation recovery sequences make a complementary assumption. Here, the �ip-angle
is assumed to be constant whereas the recovery time is varied. This can be interpreted
as follows: Initially the magnetization is �ipped by a �xed, known angle. After that
the strength of the rebuilding magnetization is measured at di�erent time points. The
resulting curve has implicit information on the relaxation time T1, which again can
then be recovered by a model �t.

Saturation Recovery Sequences refer to the special case that the �ip angle α = π/2. In
this case it follows for (2.15) that M+ = 0 and hence

Mz(TR) = M0(1− e−
TR
T1 ).

Using at least two di�erent repetition times TR now allows to determine T1 by a model
�t. Note that the above equation only holds in the ideal scenario, that α = π/2. Due
to B1 �eld inhomogeneities the actual α often di�ers from the one intended by the
user. In this case we obtain

Mz(TR) = M0(1− (1− cosα)e
−TR
T1 )

= M0(1− (1− (π/2− α))e
−TR
T1 ) +O(α2)

= M0((π/2− α)e
−TR
T1 ) +O(α2).

Note that now for TR << T1 the measured signal will be dominated by α and hence
will yield unreliable reconstruction results for slightly wrong �ip-angles.

Inversion Recovery Sequences refer to a similar class of sequences, where the magne-
tization is inverted. Then the signal is allowed to relax for a variable time TI, the
inversion time. In this case it follows from (2.15) that the remaining magnetization is
given by

Mz(TI) = M0(1− 2e
TI
T1 ).

In order to measure this magnetization, a 90° pulse is applied which rotates the re-
maining magnetization to the plane where Mz = 0. For an error-analysis for imperfect
�ip-angles see [77]. However, since these sequences have a very long repetition time,
Look and Locker [93] introduced a modi�ed type of these sequences. They proposed
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to use the signal equation (2.19) with variable TR and low, but constant �ip angles.
This approach has been recently combined with ECG gating to estimate T1 for cardiac
MRI and termed Modi�ed Look-Locker (MOLLI, [100]).

Note that for inversion or saturation recovery sequences one has to wait after each
experiment for the equilibrium magnetization M0 to be fully reestablished. Since it
takes approximately a duration of 4.6T1 for M0 to return to 99% of its original value,
this often yields long experiment times. Due to motion, it is di�cult to use these
sequences in abdominal imaging.
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the Art Solution Strategies, Analysis

and Approximation

Having described the models of interest in the previous chapter, we will now introduce
state of the art methods to use these dynamic models to estimate tissue parameters.
We will assume that parameters for only one dynamic curve are to be determined and
neglect any spatial dependency. This issue will be addressed in Chapter 4 explicitly.
Next to setting up a general framework for parameter estimation from noisy data,
the main contribution of this section is a novel method to recover T1 from variable
�ip-angle data. We will show in Section 3.6 and Section 7.1 that this novel method
combines speed and e�ciency of linear estimation with the accuracy and robustness
of a nonlinear recovery.

We start this section by describing a general framework which establishes a connection
between dynamic parameters and measured data. Since key to this connection is a
suitable noise model, we start by arguing that for magnitude MRI images the expected
noise is approximately Gaussian [73]. Based on this modeling, we introduce state of
the art solution strategies to estimate parameters from noisy data using the models
described in Chapter 2. We then describe analytical theory which can be used to
determine if and how stable parameters can be estimated from noisy data with a given
numerical method (so-called identi�ability and sensitivity). These results are used
to improve T1 estimation: In Section 3.5 we construct a novel parameter estimation
method for T1 estimation, which has minimal sensitivity for a range of expected T1. The
novel method will be a linear estimation technique, which makes it computationally
very e�cient. However, as we will show its results are in accuracy comparable to a
computationally more expensive nonlinear parameter�t. The bene�ts of this method
will be demonstrated in Section 3.6 on software phantom data and in Section 7.1 on
real data.

We start this chapter with a general remark: Whereas the theory which was introduced
in Chapter 2 has been formulated in the continuous setting, in real-life applications
usually only discrete measurements are available. In order to separate elements from
the respective spaces, we will characterize elements from the continuous setting only
in this chapter using bold fonts. Given a continuous dynamic curve M(p) ∈ C0[0,∞),
we denote the discrete counterpart by M(p) ∈ Rk, which we assume to be given by

M(p) := (M(p; t1, q), . . . ,M(p; tk, q))
> ∈ Rk.
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The continuous variable t might denote time in the case of pharmacokinetic models
(2.2), (2.10) but might also denote the �ip angle as in the case of the signal equation
(2.19). If t denotes time, we will assume that the acquisition time points (t1, . . . , tk) are
given by ti = ∆t ·(i−1) for some interval ∆t > 0. Note however, that there are various
real-life situations in which the assumption that the timeline is evenly spaced is not
ful�lled. Reasons for this might be breath-hold protocols in MRI [74] or dose reduction
in CT [111, 161, 136]. In this case we will follow common practice and interpolate the
data on a regular time grid [161, 136].

3.1 Noise Modeling in MRI

In the previous chapter we have introduced relationships between dynamic parame-
ters and theoretical, perfect data. Since in imaging data is often degraded by noise
we will now establish a relationship between theoretical, perfect data and noisy mea-
surements. Since the focus of this work is MRI, we will follow [73] and show that for
magnitude MRI, noise is approximately Rician distributed [122]. However, as another
result we will see that the Rician Distribution can be approximated with a Gaussian
distribution for good SNR. In all following work we will hence assume a Gaussian noise
model for parameter recovery from MRI signal data. In software phantom data we will
nevertheless use Rician noise.

As a short outline, we will follow [73] and assume that the Fourier transformed im-
age data (so-called k-space data) is degraded by white Gaussian noise with uniform
variance. However, as typical images used in clinical practice are magnitude images,
we will have to describe the distribution of absolute values |z| = |w + n| ∈ C for
white Gaussian noise n ∈ C. From the example w = 0 one can see, that the expected
distribution will not be Gaussian since no negative values can be attained. If on the
other hand the variance of the noise is much smaller than the absolute value of w, one
would expect an approximate Gaussian Distribution.

More speci�cally, let us assume that the measured (complex) k-space value z ∈ C can
be decomposed as z = w+n where w = wx+iwy is the mean and n = nx+iny is white
Gaussian noise with zero mean and uniform variance σ2. As for clinical applications
the MR signal is usually given as a magnitude image without the phase information,
we aim to model the distribution of |z|. To do this, we �rst observe that the probability
density function for the cartesian coordinates of the measured signal z = zx + izy is
given by

pC(zx, zy) =
1

2πσ2
e−

1
2σ2 ((zx−wx)2+(zy−wy)2).

Since rotating the frame of reference will not change the distribution of absolute values,
we can assume without loss of generality that wy = 0 and wx = |w|. In this case
the above equation simpli�es to the following expression for the rotated cartesian
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coordinates:

pRC(zx, zy) =
1

2πσ2
e−

1
2σ2 ((zx−|w|)2+z2

y)

Changing to polar coordinates zx = |z| cosφ, zy = |z| sinφ yields the transformed
density

pP(|z|, φ) =
|z|

2πσ2
e−

1
2σ2 ((|z| cosφ−|w|)2+(sinφ|z|)2).

To establish the notational connection to the previous and following chapters, let us
denote d := |z| and d̄ := |w|. Integrating over the phase yields the following distribution
of d given d̄:

pA(d) =
d

σ2
e−

1
2σ2 (d2+d̄2) 1

2π

∫ π

−π
e
d̄d
σ2 cosφ dφ

=
d

σ2
e−

d2+d̄2

2σ2 I0

(
dd̄
σ2

)
(3.1)

where I0 is the (even) modi�ed Bessel function of �rst kind of 0th order, which is
equivalent to [3]

I0(x) =
1

π

∫ π

0
ex cosφ dφ.

The distribution described in (3.1) is the so-called Rice distribution [122].

Two limits of the Rician Distribution are of interest: For large SNR, i.e. if |w|/σ >> 0,

the Rician Distribution converges to a Gaussian-Distribution with mean
√
d̄2 + σ2 ≈

|w| and variance σ2 [65]. This means that for good SNR a Gauss-Distribution is a
suitable approximation. However, it is worth noting that the magnitude signal will
generally overestimate the true mean signal. The other limit of interest is if d̄ = 0. In
this case a similar calculation as for (3.1) shows that

p(d) =
d

σ2
e−

d2

2σ2 .

This distribution is the so-called Rayleigh-Distribution and is signi�cantly di�erent to
the Gaussian-Distribution, see Figure 3.1.

3.2 State of the Art Solution Strategies

In the last section we have completed the task to relate dynamic parameters with the
measured data. In this section we will describe state of the art solution strategies to
recover parameters from noisy measurements. Given (noisy) data d and a modelM(p),
we will describe ways to determine p̄ such that M(p̄) ≈ d.

In Section 3.2.1 we start by clarifying the exact meaning of M(p) ≈ d: Speci�cally,
we will model the distribution f(d|p) of data given parameters by using the results of
Chapter 2 and Section 3.1. Using a standard Log-Likelihood method we will then derive
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Figure 3.1: Comparison of di�erent distributions for σ = 1 and d̄ = 2. Shown is the

Rician distribution, Gauss normal distribution with mean
√
d̄2 + σ2 and

the Rayleigh distribution. One can see that even at SNR=2 the Rice dis-
tribution is well approximated by the Gauss distribution.

an L2 distance measure for the parameter �t and obtain the well-known formulation
for parameter estimation:

Minimize J(p) :=
1

2σ2
|M(p)− d|2,

where σ2 is the variance of the (uniform) noise. However, in practice this formulation
is not a magic bullet for all parameter estimation problems, as the following examples
show: In the case of CBF estimation using the Meier-Zierler Model, we will show
in Section 3.3.2 that parameter estimation is ill-posed and data might be explained
by multiple parameters. Suitable regularization is hence necessary to cope with this
problem and will be introduced in Section 3.2.2. In the case of T1 estimation, many
authors use a linear reformulation of the quadratic model since it is easier to implement
[66, 55, 154, 33], although results from [154, 33] indicate that it is less robust.

We will hence present state of the art solution strategies for the three considered
models. In Section 3.2.2 we will show how the Meier-Zierler Model can be used to
estimate blood �ow, blood volume and mean transit time. To cope with the problem
of ill-posedness, we will present a deconvolution approach which is regularized using
a truncation method [111, 161]. In Section 3.2.3 we will show how (va,K

trans) can be
estimated from a dynamic concentration curve C by using a straight-forward least-
squares formulation of the Patlak-Rutland model. We conclude with Section 3.2.4,
where we describe two state of the art solution strategies to determine (M0, T1) from
variable �ip angle data. Speci�cally we will introduce two methods for T1 estimation:
A linear method and a nonlinear method, which are both widely used in literature [66,
55, 154, 33].

40



3.2 State of the Art Solution Strategies

3.2.1 Data Distribution and Log-Likelihood

We start by deriving the L2 distance measure to recover parameters from measured
data and Gaussian noise. In Chapter 2 we have established a relationship between
dynamic parameters p̄ and (perfect) data d̄ and in the previous section we have estab-
lished a relationship between (perfect) data d̄ and measured data d. More thoroughly,
for we have modeled d = M(p̄) + n for additive noise n. In the case of Gaussian noise
this allows us to describe the expected distribution of measurements given parameters
p̄ as:

f(d|p̄) =
1√

2π det Σ
e−

1
2

(M(p̄)−d)>Σ−1(M(p̄)−d).

where Σ is the (symmetric, positive de�nite) covariance matrix which models the
noise.

In parameter estimation one is not interested in describing the probability to measure
data d given some parameter p, but instead of �nding parameters p which are explain-
ing given data d. Given d, a straight-forward approach is to determine p such that the
probability f(d|p) is maximal [6]. To simplify the calculations, a well-known approach
is to not maximize f but to use a monotonous logarithmic transformation log f , the
so-called log-likelihood function, yielding:

Maximize g(p) := log f(d|p).

In the case of Gaussian noise, straight-forward calculations show that this maximiza-
tion problem is equivalent to the minimization problem:

Minimize J(p) := |M(p)− d|2Σ.

In the rest of this work, we will hence use a standard L2 distance to recover parameters.
Note that this means that we are assuming an approximate Gaussian noise model for
the data. In case of CBF or GFR estimation from DCE MRI data this is in line with
current literature [161, 136]. However, since in this case the �tting is performed with
respect to CA concentrations and not the raw signal intensities (see Section 2.3.2),
future work could either establish a more suitable relationship or make use of concate-
nated models. Also, in the case of CT usually Poisson noise is expected. In this case
usage of the Kullback-Leibler distance could improve parameter estimation [64], but
has not been implemented by the author.

3.2.2 The Deconvolution Method for the Meier-Zierler Model

We will now describe a state-of the art method to estimate perfusion from DCE data
using the Meier-Zierler Model, the so-called block-circular SVD (bSVD) method [160,
86, 143, 95, 79]. Indeed we will show in Lemma 8 that CBF estimation using the
Meier-Zierler model is an ill-posed problem. Standard recovery methods which were
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introduced in the previous section hence cannot be used to recover blood �ow from
measured data. Instead, suitable regularization has to be introduced. In the bSVD
method [160], the deconvolution problem is reformulated as a matrix equation LI = C.
For the convolution matrix L a block-circular structure is assumed, which makes the
deconvolution robust against delay in contrast agent arrival. The equation is then
solved using a standard truncated singular-value decomposition.

A Matrix Formulation for Convolution

Let us assume that a discrete tissue curve C ∈ Rk and an arterial input function
ca ∈ Rk are given. Our goal is to determine the impulse response function I ∈ Rk. In
the continuous setting, Lemma 2 shows that the three functions are connected by the
relationship

C(t) = (I ∗ ca)(t) =

∫ t

0
ca(t− s)I(s) ds.

This in connection with the results of the previous section motivates to formulate the
discrete problem as follows:

Minimize: J(I) := |ca ∗D I − C|2. (3.2)

Here I, C ∈ Rk and ∗D is a suitable discretization of the convolution operator which
will be described in the next paragraph.

In order to describe a suitable discretization for ∗D, let us start by elaborating on
∗ in the continuous setting: The Meier-Zierler Model describes the contrast agent
concentration in the tissue as C(t) = I ∗ ca(t). Following Section 2.1, the impulse
response function is given by I(t) = PΩR(t) and R(t) describes the fractional residues
of contrast agent in the tissue at time t. The convolution can hence be interpreted as
an integration over all contrast agent which has been introduced into the system up to
time t, weighted with the respective probabilities that it resides in the tissue. For an
evenly spaced timeline, a straight-forward discretization of C = ca ∗D I is hence given
by

Cj = ∆t

j∑
i=1

ca,j−i+1Ii ⇐⇒ C = L̃I for L̃ := ∆t


ca,1

ca,2 ca,1
...

. . . . . .
ca,k · · · ca,2 ca,1

 . (3.3)

In practical perfusion imaging, this discretization comes with a signi�cant problem:
Speci�cally, contrast agent might be present in the tissue although no contrast agent
has been measured in the arteries yet, i.e. C(0) >> 0 and ca(0) = 0 [160]. This might
be due to arteriovenous malformations or simply measurement errors [160]. Since it
holds in this case by construction that ca,1 = 0, this formulation cannot account for
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Figure 3.2: E�ects of delay on the Impulse-Response function I obtained from a con-
centration curve C using deconvolution. Positive delay as in (a) will result
in a shifted I. Negative delay as in (b) cannot be reconstructed with the
standard deconvolution since by construction (ca ∗ I)(0) = 0 for all I. This
behavior can be avoided by using a deconvolution with a block-circular
matrix (3.4) as depicted in (c) where it is assumed that ca is circularly
shifted.

such data and will yield unreliable results, see Figure 3.2 for an illustration of this
problem. To cope with this problem, it was proposed in [160] to use a block-circular
matrix L with the following structure:

L := ∆t



l1 0 . . . . . . 0 lk · · · · · · l2

l2 l1
. . . . . . lk · · · l3

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . lk
lk · · · · · · l2 l1 0 · · · · · · 0


∈ Rk,2k−1. (3.4)

where li depends on ca and the chosen integration rule, in our case li = ca,i. This
structure allows to reconstruct I also from data C which shows earlier enhancement
than the AIF, see Figure 3.2. Results from [160] have shown that this approach is
indeed more robust to shifts than the standard approach for positive as well as negative
shifts. Since its introduction, this so-called block-circular matrix has been used in a
wide range of applications [86, 143, 95, 79] and will hence be used in the this work as
the main method to recover perfusion using the Meier-Zierler Model.

Solution of the Linear System Using a Truncated SVD

We will show in Lemma 8 that CBF estimation using the discretization given in (3.4)
is ill-posed and multiple parameters might explain the same data. To solve (3.2), it was
proposed in [160] to use a truncated singular value decomposition of the block-circular
convolution matrix L. Since the singular value decomposition describes a linear map in
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rotated coordinate systems, where the axes are rearranged according to directions of
maximal and minimal scaling, it is thus especially suited to isolate modes responsible
for the ill-posedness of the problem. The following theorem shows that a singular value
decomposition does indeed exists for any matrix and its proof gives further insight on
how its results are to be interpreted:

Theorem 2 (Singular Value Decomposition, cf. [63]):
Let A ∈ Rn,m and l := min{m,n}. Then there are orthonormal matrices U ∈ Rn,n,
V ∈ Rm,m and a diagonal matrix Σ := diag(σ1, . . . , σl) ∈ Rn,m for real numbers
σ1 ≥ · · · ≥ σl ≥ 0 such that

A = UΣV >.

Proof (cf. [63]). Let A ∈ Rn,m be arbitrary. We de�ne

v1 := argmax
|v|=1

|Av| and σ1 := |Av1|.

Note that the maximum is attained as we are considering a continuous map over a
compact set and σ1 ≥ 0. If σ1 = 0 clearly A = 0. In this case it holds for Σ := 0 ∈ Rn,m
and arbitrary orthonormal bases U ∈ Rn,n, V ∈ Rm,m that A = UΣV >.

Let us hence consider the case σ1 > 0. We de�ne u1 := Av1/|Av1| ∈ Rn. Let V1 ∈ Rm,m
and U1 ∈ Rn,n be any extension of v1 and u1 to orthonormal bases of Rm and Rn
respectively. Then it holds that

U>1 AV1 =

(
σ1 ṽ
0 B

)
:= Σ1,

for B ∈ Rn−1,m−1 and ṽ ∈ R1,m−1.

We will now show that ṽ = 0. As U1, V1 are orthonormal bases under which length is
preserved, it holds that argmax|v|=1 |Σ1v| = argmax|v|=1 |Av| = σ1. However, for the
test-vector w := (σ1, ṽ)> it holds that

|Σ1w| ≥ σ2
1 + |ṽ|2 =

√
σ2

1 + |ṽ| · |w| > σ1|w| if |ṽ| > 0

Hence |Σ1w|/|w| > σ1 and it follows ṽ = 0.

Repeating the same procedure for matrix B ∈ Rn−1,m−1 again yields orthonormal
matrices V1 ∈ Rn−1,n−1, U2 ∈ Rm−2,m−2, a positive real number σ2 ∈ R and a matrix
C ∈ Rn−2,m−2. Now it holds that(

U1

(
1 0
0 U2

))>
A

(
V1

(
1 0
0 V2

))
=

σ1

σ2

C
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and the claim follows by repeating the procedure until

U>AV =

σ1

. . .
σl

 .

�

Common thresholds for truncation are at approximately 10%, see [111, 161]. For de-
convolution of perfusion data it has been shown that this procedure is very robust
[111].

The bSVD Method for CBF Estimation and other approaches

For the rest of this work, the method to recover perfusion from CA concentration data
by using the block-circular matrix and a truncated SVD will be referred to as bSVD.
As compared to deconvolution with the matrix presented in (3.3), this formulation
allows to account for delay in CA arrival. Note that the use of truncation acts as a
regularizer, since small singular values are discarded in this formulation.

Naturally, there are many other approaches to solve the deconvolution problem: A
straight-forward approach is to solve it in the Fourier domain [59, 110]. Since convo-
lution in time-space corresponds to multiplication in the Fourier space and vice-versa
(cf. [110]), a solution I can be found by

I = F−1(F(C)/F(ca)).

Here F denotes some orthogonal transformation, as e.g. Fourier or Laplace Transform.
Monte-Carlo simulations show that such approaches tend to underestimate the true
�ow even if additional �lters are used [59, 159, 161]. Consequently, Fourier methods are
rarely used in practice. Another class of deconvolution approaches are using Bayesian
Modeling to additionally incorporate monotonicity constraints on R [17]. A recent
evaluation [131] has shown that this method yields slightly improved estimates as
compared to bSVD. However, since the method relies heavily on stochastic techniques
like marginalization, expensive integrations need to be performed, yielding a slower
performance than bSVD.

3.2.3 Linear Fit for Patlak-Rutland Model

The discretization of the Patlak-Rutland Model is straight-forward and leads to a
standard linear system. Given discrete contrast agent concentration measurements in
the kidney C ∈ Rk and arterial input function ca ∈ Rk, a standard discretization of
the Patlak-Rutland Model is given by

C = vaca +Ktrans(L̃ca) = Bp
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where L̃ ∈ Rk,k is the lower triangular matrix given by (3.3), B := [ca, Lca] ∈ Rk,2 and
p := (va,K

trans)> ∈ R2. This means that given C, ca ∈ Rk it is possible to reconstruct
p using a standard linear parameter�t, i.e. p = V S†U> for the SVD B := USV > and
the pseudo-inverse S† of S, see Theorem 2.

3.2.4 Two Solution Strategies for the Signal Equation

In this section we will introduce the most common formulations of T1 estimation
using the variable �ip-angle technique, the so-called nonlinear and the linear approach.
Historically, the nonlinear approach was the �rst method used for T1 estimation [35].
Here T1 is reconstructed with a so-called nonlinear parameter �t. It is known to yield
more accurate results [154, 33] but can come with signi�cant computational overhead,
see [155] for a GPU-implementation. The so-called linear approach is based on a linear
reformulation of the model [66, 55]. It is easier to implement but yields less accurate
result if more than two �ip angles are used for the reconstruction [154, 33].

We start by repeating the signal equation for spoiled gradient echo sequences (2.19):

M(M0, T1) = M0 sinα
1− e−TR/T1

1− cosαe−TR/T1

In the nonlinear method, the unknowns (T1,M0) are estimated as the solution of

Minimize J(M0, T1) = |M(M0, T1)− d|2 (3.5)

However, note that since there is no explicit solution formula, the minimization has
to be carried out using iterative algorithm, cf. [107, 9]. In this work we used Gauss-
Newton algorithms with hard constraints T1 ≥ 0 and M0 ≥ 0. These can be shown to
converge Newton-like for low-residue least squares problems [9].

The linear method was �rst introduced by [66] for NMR and then used in [55] to
estimate T1 using the FLASH sequence. It relies on the following reformulation of the
signal equation:

M(E1, N) :=
N sinα

1− cosαE1
where N := M0(1− e−TR/T1), E1 := e−TR/T1 .

Denoting p := (E1, N)> this allows to reformulate the relationship M(T1,M0) = d as
the following linear system:

Ap = b, for Ai := [di/ tanαi , 1] and bi := di/ sinαi. (3.6)

with A ∈ Rk,2 and b ∈ Rk. As for the Patlak-Rutland Model, the linear method comes
with a closed form solution formula p = A†b [87]. From a practical point of view it is
preferable and has been used extensively in T1 estimation [55, 154, 33]. However, note
that since noisy data d will in�uence both A and b, the linear method is known to lack
robustness [154, 33]. We will introduce an improved version of the linear method in
Section 3.5.
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3.3 Identi�ability Analysis for Parametric Models

In the previous section we have presented solution strategies to determine dynamic
parameters from measured data. However, it is not clear yet the recovery problem is
indeed well-posed. Speci�cally, we could encounter the problem that di�erent parame-
ters might be linked to same measured data, yielding an ill-posed recovery problem.

In this section we will introduce a basic criterium to determine if parameter recovery
using inverse modeling is possible, so-called identi�ability analysis. We will use this
theory in Section 3.3.2 to show that T1 estimation using the signal equation and GFR
estimation using the Patlak-Rutland model are usually well-posed problems, whereas
CBF estimation using the Meier-Zierler model is ill-posed and multiple parameters
might explain the same measured data.

The identi�ability analysis will be carried out using a stochastic approach described in
[125]. The main result of this section is Theorem 3, which shows that for a smooth para-
metric model M(p) and a Gaussian noise model, a parameter vector p is identi�able
if and only if I(p) := ∇M(p)>∇M(p) has full rank (cf. Lemma 7 and Theorem 3).

We start this section by recalling that we denote the probability density function of
expected measurements d given some parameter p by f(d|p), see also Section 3.2.1. The
next de�nition clari�es what identi�ability means. In a nutshell, parameters p ∈ Rm
are called identi�able, if there are no other parameters which create the same expected
distribution of measurements.

De�nition 2.

1. Two parameter vectors p1, p2 ∈ Rm are called observationally equivalent if and
only if f(d|p1) = f(d|p2) for all d.

2. A parameter vector p ∈ P ⊆ Rm is called identi�able in P , if and only if there
is no other p̃ ∈ P such that p and p̃ are observationally equivalent.

3. A parameter vector p ∈ Rm is called locally identi�able, if and only if there is
some open neighborhood U of p such that p is identi�able in U .

In Section 3.3.1 we will present criteria to determine if parameters are locally identi-
�able. Note that for arbitrary models M(p), results for global identi�ability are much
harder to obtain, see [125, 92] for some criteria. However, if noise is not too severe
and measurements stay in the area around the expected measurement, we expect the
local version to be a su�cient criterium to ensure that reconstruction is possible. In
order to derive bounds on the size of this area, approaches originating from di�erential
geometry might be used [7, 57]. These approaches analyze the curvature of the sample
space {M(p)} and relate it to the curvature of an approximating surface. However,
these approaches are out of the scope of this work and will not be covered.
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3.3.1 A Criterium for Local Identi�ability

In order to derive a criterium for local identi�ability we start this section by making
some assumptions on the probability distribution f(d|p):

Assumption 5. Let us assume that

A1) P ⊆ Rm is open,

A2) f(·|p) are a proper density functions, in particular f ≥ 0 and
∫
f(d|p) dd = 1 for

all p ∈ P ,

A3) the sample space D := {d ∈ Rn : f(d|p) > 0} is independent of p,

A4) f is smooth in p. Speci�cally for all p ∈ P the functions f(d|p) and log f(d|p)
continuously di�erentiable with respect to p.

Theorem 3 will show that local identi�ability is closely connected to another stochastic
concept: The so-called Fisher information [27]. In motivating Fisher information, we
closely follow [27]: For sake of simplicity let us assume that p ∈ R. Following the theory
derived in Section 3.2.1, we will assume that given a measurement d, parameters p are
estimated by maximize the log-likelihood function g(p) := log f(d|p). However, if g(p)
is �at it would mean that small changes in p will only yield small changes in the
likelihood and the reconstruction might not be trusted. Fisher information uses in this
case the expected value of (g′(p))2 with respect to all measurements d as an indicator
of how well the parameters can be estimated.

De�nition 3. Let f(d|p) ful�ll Assumption 5, let p ∈ Rm and let g(p) := log f(d|p).
We de�ne the Fisher information matrix of f at p as

I(p) := (Ii,j) ∈ Rm,m where Ii,j(p) := Ed (gi(p) · gj(p)) =

∫
D
gi(p) · gj(p) dd,

for gi := ∂g(p)
∂pi

and where Ed(h) denotes the expected value of d with respect to the
distribution h.

The following Theorem, which proof can be found in [125], shows that local identi�-
ability can be expected if and only if the Fisher information matrix has full rank. As
a technical prerequisite, we will additionally need to assume that p̄ is a regular point
of I, meaning that there is an open neighborhood of p̄ such that I(p) has constant
rank.
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Theorem 3 (See [125, Theorem 1]):
Let f(d|p) ful�ll Assumption 5 and let p̄ ∈ Rm be a regular point of I(p). Then p̄
is locally identi�able if and only if I(p̄) has full rank.

Proof (See [125]).

We will see in Section 3.4 that the same condition will be necessary to determine the
sensitivity of reconstruction methods. Since determining the Fisher-information might
be tedious, the following lemma shows that for twice di�erentiable functions Fisher
information can also be expressed in terms of the curvature of g with respect to p. For
p ∈ R it shows that indeed I(p) = −Ed (g′′):

Lemma 6. Let f(d|p) ful�ll Assumption 5, let p ∈ Rm and assume that g is twice
di�erentiable with respect to p. Then

I(p) ∈ Rm,m is given by Ii,j(p) = −Ed
(
∂2g(p)

∂pi ∂xj

)
.

Proof (See [27]).

Since we are typically modeling noise with Gaussian character, the lemma derives the
Fisher information for di�erentiable model M and Gaussian noise:

Lemma 7. Let p ∈ P ⊆ Rm, d ∈ D ⊆ Rk, let M : P → D be twice continuously
di�erentiable and

f(d|p) := 1√
2πσ2k

e
− 1

2σ2k |M(p)−d|2
.

Then the Fisher information matrix is given by

I(p) = 1
σ2k

(
∇M(p)>∇M(p)

)
.
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Proof. To see this, let us �rst consider the likelihood function and its derivatives

g(p) = −1
2 · log(2πσ2k)− 1

2σ2k
|M(p)− d|2,

∇g(p) = − 1

σ2k
(M(p)− d)>∇M(p),

∇2g(p) = − 1

σ2k

(
∇M(p)>∇M(p) + (M(p)− d)∇2M(p)

)
.

where∇2M(p) ∈ Rm,m,k is a tensor containing second derivatives. Let us now calculate
Ii,j . Dropping p for better readability and denoting derivatives by gi := ∂g/∂pi and
gi,j := ∂2g/(∂pi∂pj) yields

Ii,j = −Ed (gij) = Ed

(
1

σ2k

(
M>i Mj +

k∑
i=1

(Mij)k(M − d)k

))

=
1

σ2k
M>i Mj +

k∑
i=1

(Mij)kEd((M − d)k)

=
1

σ2k
M>i Mj

Here the last equality follows since it holds by construction that Ed(d) = M . �

3.3.2 Identi�ability Results for the Proposed Models

In this section we will use the theory on identi�ability outlined in the previous section
to analyze the models which were introduced in Chapter 2. Speci�cally we will show
that for all but the parameters of the deconvolution model are usually identi�able.
The deconvolution model is a special case: Here reconstruction is maximally sensitive
with respect to noise and parameters are usually not identi�able. This means that
parameter estimation of CBF is delicate and will require special methods.

We start by summarizing our assumptions on the reconstruction:

Assumption 6. Let us assume that

1. The distributions are given by a Gaussian Noise model with constant variance
σ2, i.e.

f(d|p) := 1√
2πσ2k

e
− 1

2σ2k |M(p)−d|2
.

2. For a measurement y ∈ D parameter estimation is performed by minimizing the
negative log-likelihood

Minimize: J(p) := |M(p)− d|2.
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Identi�ability for the Meier-Zierler Model

Equation (3.3) shows that the deconvolution problem can also be written as a matrix
equation:

Find I ∈ Rk such that LI = C.

For a regularly spaced timeline the discrete convolution matrix L ∈ Rk,k is given by

L := ∆t


ca,1

ca,2 ca,1
...

. . . . . .
ca,k · · · ca,2 ca,1

 .

Note that by construction the �rst component of the arterial input function ca,1 is zero.
This means that deconvolution is in this case indeed ill-posed. However, we will show
in Section 3.4 that even if ca 6= 0 the sensitivity of the reconstruction will generally be
very large: Small errors in the data may lead to large errors in the reconstruction.

Lemma 8. Let Assumption 6 hold an let ca ∈ Rk. Then parameters I ∈ Rk are
identi�able if and only if ca,1 6= 0.

Proof. Again note that the Fisher-Information matrix is given by 1/σ2kL>L accord-
ing to Lemma 7. Since det(A) = cka,1, it follows that L has full rank if and only if
ca,1 6= 0. The claim follows again from Theorem 3. �

Identi�ability for the Patlak-Rutland Model

In this section we will derive identi�ability results for GFR Estimation using the
Patlak-Rutland Model. As the following Lemma shows that parameters are always
identi�able, assuming that the arterial input function does not correspond to the an-
alytic Dirac delta.

Lemma 9. Let Assumption 6 hold, let 0 6= ca 6= (0, . . . , 0, 1) and let L ∈ Rk,k be
given by

L = ∆t

1
...

. . .
1 · · · 1

 .
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Then the parameters p = (va,K
trans) are locally identi�able by the Patlak-Rutland

Model.

Proof. First note that according to Lemma 7, the Fisher-Information matrix is given
by

I(p) = 1/σ2kB>B for B := (ca, Aca) ∈ Rk,2.

By construction L has only one eigenvalue ∆t which has algebraic multiplicity k,
geometric multiplicity 1 and corresponding eigenvector ek = (0, . . . , 1)>. This means
that the matrix B>B has full rank if and only if ca 6= 0 and ca 6= ek and the claim
follows with Theorem 3. �

Identi�ability for the Signal Equation

In this section we will show that both the nonlinear and the linear parameter �t for
T1 reconstruction are usually well-posed:

Lemma 10. Let Assumption 6 hold. Then (T1,M0) are identi�able by the linear
and the nonlinear �t if and only if k ≥ 2, T1 6=∞ and M0 6= 0.

Proof. We start by showing the claim for the linear model: A direct calculation shows
that the Fisher-Information matrix I(p) is given by

I(p) = 1/σ2kA>A where A :=

d1/ tanα1 1
...

...
dk/ tanαk 1

 .

According to Theorem 3 parameters are identi�able if and only if I(p) and hence A
has full rank. Let us check the columns of A for linear dependency: Assume that there
is λ, µ ∈ R such that λ tanαi − µdi = 0 for all i. In this case

λ
sinαi
cosαi

= µ

(
M0 sinαi

1− E1

1− cosαiE1

)
λ

µM0(1− E1)
=

cosαi
1− cosαiE1
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However, if E1 6= 1 and M0 6= 0 the last equality is never ful�lled for all i since the
right hand side is independent of the �ip-angle. It follows by assumption that A has
full rank.

For the nonlinear case we have

∇S =

d1 s(α1) d1/M0
...

...
dk s(αk) dk/M0

 where s(αi) :=
(cosαi − 1)(∂E1/∂T1)

(1− cosαiE1)(1− E1)
.

Since d 6= 0 and since there are at least two measurements with di�erent �ip-angles it
follows that ∇S has full rank and hence (T1,M0) is identi�able. �

3.3.3 Discussion

Given a parametric and an expected noise model, we have derived both a su�cient and
a necessary criterium to determine if a set of parameters can be recovered from multiple
measurements. Theorem 3 shows in connection with Lemma 7 that for Gaussian noise,
parameters p̄ ∈ Rm are identi�able if and only if the Fisher information matrix I(p̄) =
[∇M(p̄)]>[∇M(p̄)] has full rank.

It is worth noting that this analysis is carried out with respect to the parameters and
not with respect to the data. It thus cannot be used to decide if parameter results from
a given curve are meaningful. However, it nevertheless brings deeper understanding
of the models: In the case of T1 estimation we have seen, that parameters which are
not identi�able are associated with zero-data, i.e. d = 0. This means that recovery
from data with low signal intensities cannot be trusted. For CBF estimation using
the Meier-Zierler Model we have seen that estimation is always ill-posed. This follows
because this speci�c problem can be formulated as a linear problem with a singular
matrix. Only for the Patlak-Rutland model parameter estimation is usually well-posed,
if extreme limit cases are ignored.

We stress, that identi�ability is a very basic criterium: It refers to the theoretical pos-
sibility to recover a given pair of parameters from multiple observations of associated
dynamic curves. Identi�ability states only that recovery is possible but not how well
this is the case. Indeed, in practice I(p̄) might be close to singular, requiring a possibly
large number of measurements to recover p̄. This is especially crucial since in medical
imaging often only one dynamic curve is given. We will address this issue, the so-called
sensitivity, in the next section.
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3.4 Sensitivity Analysis for Parametric Models

Whereas the last section was concerned with establishing theory which describes if
parameters can be reconstructed from measurements, this section will be concerned
with the question of how well this recovery is possible. It will be following the results
the author presented in [S3] and the more general approach presented in [51]. The main
result of this section is Theorem 6, which gives an expression for both the expected
value and the variance of the estimated parameters if they are recovered from noisy
measurements of a dynamic curve. These results will be basic for novel method for
T1 estimation, which will be introduced in Section 3.5, where we will construct an
estimation technique which has minimal sensitivity.

We start with a short, motivating part for the sensitivity analysis, where we will not
go into technical detail. Speci�cally, we will estimate the sensitivities of parameter
estimation techniques φ : D → P , which are mapping data d to estimated parameters
p. As a practical example, φ(d) could be given by a local minimizer of the negative
log-likelihood function, i.e.

φ : D → P,

d 7→ argmin
p∈P

(− log f(d|p)) .

where D ⊆ Rk, P ⊆ Rm and for motivational purposes we will assume that the
minimum is unique. In this section we will derive results concerning the distribution
of the recovered parameters p = φ(d). Speci�cally we are interested in variance of the
distribution of p if it is reconstructed from noisy measurements of some ground-truth
d̄. Note that the variance gives us a measure of sensitivity: If we �nd that the variance
of p is large, we know that the estimated p̄ := φ(d̄) cannot be trusted since small
noise on d̄ might yield large errors in the recovered p. Theorem 6 gives an explicit
expression for the variance of p if it is estimated by some function φ : D → P .
Since φ will often be highly nonlinear, we use linearization techniques to ease the
analysis. For a given point d̄ we will derive variance and mean of the distribution of
p = φL(d) := φ(d̄) + ∇φ(d̄)(d − d̄) where it will be assumed that φ is di�erentiable.
The following Theorem shows how the variance and mean of the linearized functional
can be calculated:

Theorem 4 (Mean and Variance of φL, see [51]):
Let P ⊆ Rm and D ⊆ Rk. Assume that d ∈ D is distributed with mean d̄ and
covariance Cov(d) ∈ Rk,k. Finally let φ ∈ C1(D,P ), φ(d̄) = p̄ and

p = φL(d) := φ(d̄) +∇φ(d̄)(d− d̄).

Then
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Figure 3.3: Example for Sensitivity Analysis: Measured and theoretical distribution of
T1 recovered from 65.000 noisy measurements using the nonlinear data-�t.
The data was simulated with T1 = 1000ms, M0 = 1000, TR = 800ms and
�ip-angles α1 = 10◦ to α10 = 100◦ in increments of 10◦. White gaussian
noise had a standard deviation σd = 10ms. In this experiment the measured
and predicted standard deviation both were σT1 = 32.3ms on an error level
of 10−1ms.

1. Ed(p) = p̄, where Ed(p) is the expected value of d with respect to the distri-
bution p and

2. Cov(p) = [∇φ(d̄)] Cov(d)[∇φ(d̄)]>.

Proof. The proofs are following directly:

1. Ed(p) = Ed
(
φ(d̄) +∇φ(d̄)(d− d̄)

)
= φ(d̄), since Ed(d) = d̄.

2. Follows also directly with the identities Cov(Ap) = ACov(p)A> and Cov(p+c) =
Cov(p) for constant A ∈ Rm,k and c ∈ Rk. That these identities hold can be seen
from

Cov(Ap) = Ep

(
(Ap− Ep(Ap))(Ap− Ep(Ap))>

)
= Ep

(
A(p− Ep(p))(p− Ep(p))>A>

)
= ACov(p)A>

due to the linearity of the expected value. The other identity follows from

Cov(p+ c) = Ep

(
((p+ c)− Ep(p+ c)) ((p+ c)− Ep(p+ c))>

)
= Cov(p)

since Ep(c) = c. �
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Theorem 4 gives a simple, explicit expression for both the variance and expected
value of the linearized reconstruction function φ at point d̄. However, there are many
applications where φ is not given parametrically and the derivative ∇φ is not straight-
forward to compute, as the following example shows: In the case of a nonlinear model-
function M(p) and Gaussian noise, φ could be given by

φ(d) = argmin
p∈P

g(p, d) where g(p, d) := |M(p)− d|2.

where for motivational purposes it is assumed that a unique minimum exists. Theo-
rem 6 shows that in this case so-called implicit-function theorem [83, p.112] can be
used to nevertheless calculate the derivative ∇φ.

Again let us brie�y not go into technical detail and let us motivate the proof of The-
orem 6 as follows: Key to an explicit expression for ∇φ is the following reformulation
of φ:

φ(d) = {p ∈ P : ∇pg(p, d) = 0}
The implicit function theorem states that if g ful�lls regularity assumptions to be spec-
i�ed later, then there is a function h which parametrizes the zero-levelset of ∇pg(p, d),
i.e. h(d) = p ⇐⇒ ∇pg(p, d) = 0. Note that this implies that φ(d) = h(d), since
h maps each measurement d on corresponding parameters p which minimize g(·, d).
In this case a straight-forward application of the chain rule furthermore yields the
following expression for the derivative ∇φ(d):

∇pg(φ(d), d) = 0

=⇒ [∇2
pg(φ(d), d)]∇φ(d) + [∇dpg(φ(d), d)] = 0

⇐⇒ ∇φ(d) = −[∇2
pg(p, d)]−1[∇dpg(p, d)].

where p := φ(d), ∇dp denotes di�erentiation with respect to both d and p and it is
assumed that [∇2

pg(p̄, d̄)] is invertible.

If we de�ne f(p, d) := ∇pg(p, d), the Implicit Function Theorem states the following:

Theorem 5 (Implicit Function Theorem, [83, p.112f]):
Let f ∈ C1(U,Rm) in a neighborhood U ⊆ Rm×Rk of a root (p̄, d̄) of f . Further-
more assume that ∇pf(p̄, d̄) is invertible. Then there are neighborhoods P ⊆ Rm
of p̄, D ⊆ Rk of d̄ and a function h ∈ C1(D,P ), with p̄ = h(d̄) such that the
zero-levelset of f is the graph of h, i.e.

f(p, d) = 0, (p, d) ∈ P ×D ⇐⇒ p = h(d), d ∈ D.

Furthermore the derivative ∇h(d̄) is given by

∇h(d̄) = −[∇pf(p̄, d̄)]−1[∇df(p̄, d̄)].
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Proof. Given in [83, p.112f]. �

The following theorem summarizes, how sensitivities can be computed for a standard
maximum-likelihood reconstruction in the presence of Gaussian Noise:

Theorem 6:
LetM ∈ C2(Rm,Rk) be a parametric model and assume that for constant variance
σ2 the expected measurements are distributed as

f(d|p) := 1√
2πσ2k

e
− 1

2σ2k |M(p)−d|2
.

Furthermore assume that M(p̄) = d̄, that H(p̄) := [∇M(p̄)]>[∇M(p̄)] is invertible
and that

φ(d) := argmin
p∈Rm

|M(p)− d|2

Then reconstructions p = φ(d) from a neighborhood of d̄ are approximately dis-
tributed with

Ed(p) = p̄ and Cov(p) = σ2(AA>)

for A := [H(p̄)]−1[∇M(p)]>.

Proof. We follow the general outline as described in the beginning of the section
and calculate mean and expected value of the linearized functional φL(d) := φ(d̄) +
∇φ(d̄)(d− d̄). We start by giving an explicit expression for ∇φ(d̄) by using the implicit
function Theorem with g(p, d) := ∇p|M(p)− d|2:

g(p, d) = [∇M(p)]>(M(p)− d) ∈ Rm

∇pg(p, d) = [∇2M(p)](M(p)− d) + [∇M(p)]>[∇M(p)] ∈ Rm,m

∇dg(p, d) = −[∇M(p)]> ∈ Rm,k

Here ∇M(p) ∈ Rk,m is the Jacobian of M and [∇2M(p)] is a m × m × k tensor
containing second derivatives of M . Note that by assumption the implicit function
theorem is applicable. Using it at location (p̄, d̄) yields the following expression for
∇φ(p̄):

∇φ(p̄) = [H(p̄)]−1[∇M(p̄)]> ∈ Rm,k

where H(p̄) := [∇M(p̄)]>[∇M(p̄)].

We can now use this expression directly with the results which were obtained in The-
orem 4: The claim Ed(p) = p̄ follows by construction from the properties of f . For the
expression for the covariance Cov(p) it follows:

Cov(p) = σ2[∇φ(p̄)][∇φ(p̄)]> ∈ Rm,m �
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The following lemma shows, that the covariance matrix can be expressed in terms of
an SVD of ∇M and depends quadratically on the inverse singular values of ∇M .

Lemma 11. Let M ∈ C2(Rm,Rk), σ > 0, assume that ∇M(p̄) has full rank
and let Cov(p) be the covariance matrix of φL, see Theorem 6. Let furthermore
USV > = ∇M(p̄) be an SVD of ∇M(p̄). Then

Cov(p) = σ2(V S−2
m V >)

for S−2
m := diag(1/s2

1, . . . 1/s
2
m) ∈ Rm,m and singular values si > 0 of ∇M .

Proof. For ease of notation let us drop p̄. Theorem 6 shows that H = [∇M ]>[∇M ]
and hence H−1 = V (S>S)−1V >. Note that H is invertible by assumption. It follows
that

A = H−1[∇M ]> = V (S>S)−1S>U> = V S−1
mkU

>

where S−1
mk ∈ Rm,k has diagonal elements 1/si for the singular values si. It follows from

Theorem 6 that
Cov(p) = σ2(AA>) = σ2(V S−2

m V >)

where S−2
m := diag(1/s2

1, . . . 1/s
2
m) ∈ Rm,m. �

3.4.1 Conclusion

Theorem 6 gives an explicit expression for the sensitivities of reconstruction methods,
which are not given parametrically but as minimizers of an objective function. Since
parameter estimation is often expressed as a �tting problems [6], this formulation
covers a large class of applications. The theory of this section also provides a link to
the identi�ability analysis performed in the previous section: It can readily be seen
that both Theorem 3 and Theorem 6 are fundamentally based on the criterium that
[∇M(p)]>[∇M(p)] is invertible in a neighborhood of p̄. This property has a simple
motivation: If the model can be linearized as M(p) = M(p̄) +∇M(ζ)(p− p̄) for some
ζ ∈ [p̄, p) and ∇M(ζ) has not full rank in a neighborhood of p̄, reconstruction will
certainly be ill posed. From this point of view the additional assumption that M is
twice di�erentiable seems to be of a technical nature and it might be possible to relax
it even more. However, since the models we have introduced are smooth enough, the
current criterium is su�cient. Additionally Lemma 11 shows that small singular values
of∇M have adverse in�uence on the stability of the recovery: Again, this is in-line with
the previous motivation, since for small singular values of M neighboring parameters
might be mapped to very similar data, leading to unstable parameter estimation.
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3.5 Linear Approximations in T1 Estimation

The next section will show how the obtained expression for the sensitivity can be used
to improve T1 estimation.

3.5 Linear Approximations in T1 Estimation

In this section we will introduce a novel method for T1 estimation from variable �ip-
angle data which combines the speed and robustness of a linear approach with the
robustness of a nonlinear approach and has been published in [S3]. To do this, we will
introduce a family of estimation approaches and show that both the linear and the
nonlinear �t belong to this family. After that, we will construct a third member of
this family which is similar to the linear �t, but more robust. Experimental evaluation
of the novel method on phantom data can be found in Section 3.6, real data results
in Section 7.1. In these sections we will show that the novel, linear recovery method
yields both comparable results to a nonlinear parameter �t and improved results as
compared to an established linear method.

We start this section with a brief summary of established T1 estimation from variable
�ip-angle data [154, 33, 43]. For a more detailed outline we refer to Section 2.3. We
will assume that multiple MR measurement (d1, . . . , dk) ∈ Rk of an object were ob-
tained with di�erent �ip angles (α1, . . . , αk) but otherwise constant parameters and
are interested in an estimation of p := (T1,M0). Both the linear and the nonlinear
estimation approaches are based on the Signal Equation for Spoiled Gradient Echo
Sequences (2.19):

M(M0, T1) = M0 sinα
1− e−TR/T1

1− cosαe−TR/T1
=

N sinα

1− cosαE1
.

Here (M0, T1) and (E1, N) are related by a change of coordinates

E1 = e−TR/T1 , T1 = −TR/ log(E1),

N = M0(1− e−TR/T1), M0 = N/(1− E1).

In the Nonlinear Fit, p := (T1,M0) is reconstructed by

p = argmin
p
|M(p)− d|2

The Linear Fit estimates p := (E1, N) as the solution of the linear system:

Ap̄ = b, for Ai := [di/ tanαi , 1] and bi := di/ sinαi.

with A ∈ Rk,2 and b ∈ Rk.
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3.5.1 A Family of Weighted T1 Estimation Techniques

We will now introduce a family of weighted reconstruction approaches for T1 estima-
tion. To do this, we �rst recognize that the nonlinear residue can be written in terms
of the linear residue as follows:

N sinαi
1− cosαiE1

− di = ωNL
i

(
di/ tanαkE1 +N − di/ sinαi

)
= ωNL

i (Aip− bi),

where ωNL
i := sinαi/(1− cosαiE1).

A straightforward generalization is hence to compute the unknowns p̄ by solving a
weighted k-by-2 least squares problem [87]:

φ(d) = argmin
p
|Ap− b|2W =

k∑
i=1

ω2
i (Aip− bi)2. (3.7)

We can interpret the linear approach by Gupta [66] as a choice ωLin := (1, . . . , 1)> ∈
Rk, which results in a standard linear least squares problem with an explicit solution
formula, cf. Section 3.2.4. Note, however, that lower errors in reconstruction can be
achieved using nonlinear weighting, as noise in�uences Ak as well as bk [154, 153, 33].
Based in the Sensitivity Analysis in Section 3.4, we will now introduce linear weights
which approximate the nonlinear weights. As the linear weighting method comes with
a closed form solution formula, it is preferable from a practical point of view.

3.5.2 Linear Approximations of Nonlinear Weights

In this section we will introduce a method to construct linear weights, which approx-
imate the nonlinear weights. To �nd the weights, we �rst calculate the sensitivity of
recovered T1 in dependency of the weights ω. Indeed, for the nonlinear and the linear
case our �ndings coincide with the results obtained in [154, 43].

Lemma 12 (Sensitivity for linear weights). Let φ(d) be given by (3.7) and
assume that the weights w are independent of the data d. Furthermore assume that
p̄ := (T1,M0) is identi�able and that p̄ and d̄ are connected by d̄ := M(p̄) ∈ Rk.
Finally let d ∝ N (d̄, σ) for the normal distribution N with mean d̄ and variance
σ2.

Then the variance σ2
E1

of the reconstructed E1 and the variance σ2
T1

of the recon-
structed T1 are given by

σ2
E1

= σ2|∇φ1(d̄)|2 and σ2
T1

= σ2
E1
·
(
T1

4
/(E1TR)2

)
. (3.8)
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Here φ(d) = (φ1(d̄), φ2(d̄))> and

∇φ(d̄) = (A>W 2A)−1A>W

and the matrices W := diag(ω1, . . . , ωk) and A are de�ned as in (3.7).

Proof. Following Theorem 6, the covariance Cov(p) with respect to (E1, N) is given
by

Cov(p) = σ2[∇φ(d̄)][∇φ(d̄)]>.

where ∇φ(d̄) is as given above. Since Cov(p)1,1 is the variance of E1, we have σ2
E1

=
σ2|∇φ1(d̄)|2. To obtain the variance σ2

T1
, we need to account for a change of coordinates

and multiply with
dT1

dM0
=

TR

(logE1)2E1
=

T 2
1

E1TR
.

This yields the claim. �

The obtained expression for σ2
T1

is a nonlinear function both in the weights ω and the
parameters p̄: Given some ground-truth parameters p̄ := (T1,M0) and a set of weights
ω, the value σ2

T1
describes the variance of the recovered T1. Naturally, this value should

be as small as possible. Given a set of expected parameters p1, . . . , pL, we propose to
solve the following minimization problem to obtain a set of optimized weights ω ∈ Rk
which minimizes the joint variance for p1, . . . , pL:

ωOpt = argmin
ω∈Σ


L∑
j=1

fjσ
2
T1

(pj , ω)

 . (3.9)

Here fj ∈ R+
0 are user-de�ned factors which can be used to highlight particular ranges

of parameters pj in the reconstruction. The optimized weights can be used to recon-
struct T1 by solving a linear system but with improved sensitivity of the reconstruction.
Note that σT1(p̄, ω) = σT1(p̄, sω) for any s > 0, since a uniform scaling of the weights
will not change the sensitivity. The objective function is hence invariant with respect
to scaling and minimization ill-posed. To cope with this issue, we de�ne the set of
admissible weights Σ := {ω ∈ RL, ω ≥ 0,

∑
ωi = 1}.

To illustrate the setting, we visualize the landscape of standard deviations σT1 in
dependency of the weights for T1 = 1000 ms and M0 = 1000 in Figure 3.4. We then
solved problem (3.9) to obtain a set of weights with minimal variance. Results are
showing ωOpt di�erent from ωNL, but with the same standard deviation.
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Figure 3.4: Displayed is σT1 for di�erent weights ω = (ω1, ω2, 1 − ω2 − ω3) ∈ R3 and
�xed T1 and M0. Control parameters were T1 = 1000 ms, M0 = 1000, α =
(5◦, 8◦, 15◦) and TR = 5 ms. Highlighted by a white × are the nonlinear
weights, linear weights and the optimized weights. Standard deviations for
the optimized weights and for the nonlinear weights were σOpt

T1
≈ σNL

T1
≈

168.21 ms with σOpt
T1
− σNL

T1
= 2.05× 10−11 ms. Standard deviation for the

linear weight was σLin
T1

= 184.34 ms. For this con�guration σT1 can be
reduced by 9% using the optimized or the nonlinear weighting scheme
instead of the standard linear one.
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3.6 Results: Linear Approximations for Software Phantom

Data

We will now demonstrate how T1 estimation can be improved by using the optimized
weights, which were introduced in the previous section. Speci�cally, we will compare
the following three di�erent choices of weights:

ωLin := (1, . . . , 1) ∈ Rk, ωNL := sinαi/(1− cosαie
−TR/T1), ωOpt given by (3.9).

In this section we will present phantom data which indicates that as compared to
the standard linear weights, the optimized weights are yielding improved T1 results
which are similar to the ones obtained with the nonlinear weights. However, note that
the optimized weights allow to recover T1 using a standard linear parameter �t and
are computationally much more e�cient. Real data experiments which support this
assertion will be presented in Section 7.1.

We start by outlining a software phantom for the human kidney which served as
ground-truth for our experiments on synthetic data.

3.6.1 An XCAT Software Phantom for the Human Kidney

In this section we will describe the construction tailored software phantom for the
human kidney. A simulated 2D MRI scan of the human kidney was set up as follows:
The anatomy (cortex, medulla, background) was obtained from the XCAT-Phantom
[133]. Estimates of T1 and T ∗2 of the mentioned structures were taken from literature
[8]. The second constantM0 was determined byM0 = M00exp(−TE/T ∗2 ) for a constant
M00, which was roughly approximated from our own measurements. Note that since
no values for T ∗2 were available, we approximated T ∗2 with T2. More precisely, we
chose for the kidney cortex T1 = 966ms, T2 = 87ms and M00 = 3100. The medulla
was set up with parameters T1 = 1412ms, T2 = 85ms and M00 = 3500 and for the
background we chose T1 = 110ms, T2 = 85ms and M00 = 2000, [8]. After that, partial
volume e�ects were simulated by smoothing the parameter maps M0 and T1 with a
Gauss-�lter of width 3 voxel and standard-deviation of 0.7 voxel. Finally, we used the
signal-equation (2.19) to simulate (perfect) MR signals with scan parameters taken
from di�erent publications on T1 estimation. Sequence S1 was designed to yield robust
reconstruction over a large range of T1 [33], S2 and S3 were chosen from a publication
on the nonlinear reconstruction method [153] and S4 was used to acquire the real data
presented in this work. Examples of the phantom images are displayed in Figure 3.5

In order to add more realistic conditions, Rician noise was simulated by adding uniform
white Gaussian noise to the k-space data, see Section 3.1. After that, the noise intensity
was measured point wise as the fraction of noise of the undisturbed signal and then
averaged over the complete dataset. Similar to [153], in our experiments e�ective noise
intensities of 3%, 5%, 7% and 9% were simulated.
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Identi�er Flip-Angles TR TE Source
S1 (2◦, 9◦, 19◦) 4.4ms 1.1ms [33]
S2 (2◦, 10◦, 20◦, 30◦) 2.7ms 1ms [153]
S3 (5◦, 10◦, 15◦) 4ms 1.67ms [153]
S4 (5◦, 8◦, 15◦, 25◦) 2.51ms 0.89ms [74]

α1 = 5◦ α2 = 8◦

α3 = 15◦ α4 = 25◦

Figure 3.5: MR sequence parameters sequences and corresponding sources from liter-
ature. Also given is the software phantom for S4 with a noise intensity of
7%.
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Table 3.1: Table displaying the predicted sensitivities of the di�erent weighting
schemes for the sequences described in Figure 3.5. Given is the standard
deviation in reconstructed T1 with respect to σd = 1ms, see (3.8). Factors
fj were selected proportional to the expected amount of cortex,medulla and
background. Results from the nonlinear and the optimized weighting scheme
are in close agreement.

Cortex Medulla Background
ωLin ωNL ωOpt ωLin ωNL ωOpt ωLin ωNL ωOpt

S1 18.29 17.70 17.70 40.39 37.12 37.12 2.71 1.61 1.92
S2 24.84 20.65 20.66 62.38 48.53 48.53 1.99 1.46 1.68
S3 28.61 27.57 27.57 80.28 76.09 76.09 2.10 1.99 2.00
S4 57.30 45.82 45.82 182.38 139.28 139.28 1.31 1.28 1.37

3.6.2 Experimental Comparison of Di�erent Weighting Strategies

We will now show, how the proposed weighting strategies can improve T1 estimation.
It is well-known that the sensitivity of the reconstruction does not only depend on the
reconstruction method and the expected (T1,M0), but also on the employed sequences
parameters [33, 154, 43]. The proposed weighting strategies (Nonlinear, Linear, Opti-
mized) were evaluated with respect to their theoretical sensitivities and with respect
to the mean error on simulated as well as real data.

We calculated the standard deviation σT1 for the three proposed strategies (Nonlinear,
Linear, Optimized) and for the sequences described in Figure 3.5. Results are given in
Table 3.1, showing predicted sensitivities which are in close agreement to the nonlin-
ear weights. However, note that these sensitivities are given with respect to a purely
Gaussians noise model, whereas in MRI we expect Rician noise [65]. To compare the
three strategies with Rician Noise, parameter estimation was performed on phantom
data which was degraded by Rician Noise. Results are given in Table 3.2. Here it
can be seen, that also for Rician Noise the optimized weights improve the errors in
reconstructed T1 drastically.

Also the improvement depends largely on the di�erence in sensitivities between the
nonlinear weights and the linear weights: If these are very similar, as it is the case for
S1, only minor in�uence on the reconstruction can be observed.

As expected the results depend on the employed sequence: For Sequences S2 and S4
we can observe large positive impact of weighting strategies on reconstruction with
reductions in the standard deviation of up to 24%, for sequences S1 and S3 improve-
ments are only minor. In our experiments, we found that the optimized weights can
perform similar to the purely nonlinear weights with a fraction of the computational
overhead. The phantom data results are con�rmed by the real data results, where
di�erences between the nonlinear reconstruction and the linear reconstruction with
optimized weights were in the range of 1%, see Section 7.1.
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Table 3.2: Table displaying improvement of the mean-relative error in reconstructed
T1 by use of the weighting schemes. Experiments were conducted with dif-
ferent sequences and di�erent noise-levels on phantom data. Given is the
mean relative error in percent, calculated in 5000 experiments and evalu-
ated over Cortex and Medulla. Factors fj were selected as in Tab. 3.1. The
nonlinear parameter �t yields the smallest and the standard linear �t the
largest errors. Results of the optimized weights are in close agreement with
the nonlinear weights for small noise. For high noise level, results of the
optimized weights and the nonlinear weights begin to di�er, possibly due to
the less gaussian character of the noise.

3% 5% 7% 9%

ωLin 5.48 9.06 12.68 16.74
S1 ωNL 5.23 8.62 12.03 15.75

ωOpt 5.24 8.66 12.13 16.05
ωLin 4.09 6.81 9.47 12.37

S2 ωNL 3.34 5.56 7.72 10.05
ωOpt 3.34 5.58 7.76 10.15
ωLin 10.76 18.59 43.45 96.91

S3 ωNL 10.20 17.29 25.43 35.71
ωOpt 10.38 18.01 38.22 89.31
ωLin 11.43 51.41 89.74 182.46

S4 ωNL 8.72 22.72 24.79 34.86
ωOpt 8.81 21.30 38.53 113.57
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4 Spatial Coupling for Dynamic Models

with Multiple Parameters

Since in dynamic imaging acquisition times need to be low, we have argued in Sec-
tion 1.2.4 that low SNR is one of the main problems estimate high-quality parameter
maps. In order to improve parameter estimation in the presence of noise, in this chap-
ter we will introduce a way to include spatial information into the estimation process.
Up to now we have only addressed the recovery of parameters from single dynamic
curves. However, as the example of T1 estimation or of CBF estimation shows, there
are many applications where the recovery needs to be performed voxel-wise, leading to
a large amount of estimation problems. Since in clinical practice experiments are typi-
cally only performed once, it is necessary that all parameter estimation problems yield
accurate results. If, for some reason, data is degraded by noise or imaging artifacts, re-
covered parameters might be ultimately inexact with no further way to improve them.
To cope with this issue, either the imaging process or the estimation process can be
improved. In this work we will focus on improving the estimation model.

We will do this by including prior information on the expected spatial structure of
the recovered parameter maps by so-called spatial coupling. In contrast to uncoupled
recovery, where parameters for each voxel are estimated individually, in coupled recov-
ery, parameter values of di�erent curves will depend on each other. The speci�c form
of the connection follows an expectation on the spatial layout of the parameter map.
Our focus will lie on local coupling, where parameter values of adjacent voxels are
connected. In the simplest case, one might expect that these should not vary largely.
Speci�cally, we will introduce a novel class of coupling terms to parameter estimation,
which is originally stemming from RGB denoising. These coupling terms are tailored
to stabilize the recovery of multiple parameters from data which with clear edges.
In Section 4.4 we will demonstrate advantages for the case of T1 estimation. We will
demonstrate on phantom data, that using these coupling terms can improve recovery
up to 8% as compared to established approaches.

We start in Section 4.1 by describing established techniques for spatial coupling. We
will distinguish between coupling by denoising and fully coupled approaches. By cou-
pling by denoising we will refer to pipeline approaches, where �rst an unstabilized
parameter estimation is performed and spatial information is added subsequently. In
contrast, fully coupled approaches are combining these two steps: As we will see, these
can be regarded as standard estimation approaches with the constraint that the re-
covered parameter maps are ful�lling a user-de�ned spatial regularity property. We
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4 Spatial Coupling for Dynamic Models with Multiple Parameters

will introduce three of the most common coupling terms: So-called Tikhonov coupling,
Tikhonov-Phillips coupling and Total Variation coupling. Analytical results are pre-
sented which show that Tikhonov coupling will result global scaling, Tikhonov-Philips
coupling will yield smooth solutions and that Total Variation coupling allows the im-
age to admit edges. Note that especially the last property is crucial for crisp parameter
maps.

In Section 4.2 we will describe extended approaches for the case that multiple param-
eters are recovered per voxel, as e.g. in the case of (T1,M0) estimation. As we will
see, established approaches for coupled T1 estimation from variable �ip angle data can
be divided into two classes: either they are addressing the spatial regularity of only
one parameter map and are recovering other parameters without any assumptions on
their structure [155], or they are introducing regularity for each parameter map sep-
arately [114]. In contrast we will introduce a family of coupling terms, which are not
only enforcing spatial regularity of one parameter map, but are coupling all estimated
maps. These terms have been studied for for RGB denoising extensively [61, 88, 105]
and are currently increasingly used for image reconstruction [148, 81]. However, we
have not found indications that they have yet been proposed for T1 estimation or even
parameter estimation in general.

This chapter culminates in Section 4.3 where we will use the above modeling to improve
T1 estimation. The section will extend results which have been published by the author
in [S3]. In phantom experiments described in Section 4.4 we will show that the novel
coupling terms can improve errors in T1 up to 8%. Results on real data support this
claim and can be found in Section 7.2.

We conclude this chapter with Section 4.5, where we will focus on numerical aspects
of the above modeling. The problem formulations of the previous sections will require
non-smooth numerical methods, since the objective functions will be non di�eren-
tiable. However, as we will see the proposed objective functions will still be convex
and hence exhibit a large amount of structure which can be exploited by an e�cient
numerical scheme. In Section 4.5 we will brie�y describe a Primal Dual Hybrid Gra-
dient Algorithm (often called the Chambolle-Cremers-Pock Algorithm) [28] which is
state-of-the-art algorithm to solve such problems.

Notation for Multiple Voxels

We start by introducing notation for parameter estimation for multiple voxels. To
this end we assume that the data d consists of k three-dimensional images di, where
each image is presented on a cell-centered l1-by-l2-by-l3 grid of n := l1l2l3 points
xj , j = 1, . . . , n. Thus d = (d1, . . . , dn)>d ∈ Rnk for di ∈ Rn. Similarly, we assume
that the unknowns p consist of m three-dimensional parameter maps pi and hence
p = (p1, . . . , pm)> ∈ Rnm for pi ∈ Rn. For the model we will continue to use the

68



4.1 Traditional Techniques for Spatial Coupling

established notation and obtain M : Rnm → Rnk, where we assume that the ordering
of M(p) corresponds to the ordering of the data d.

4.1 Traditional Techniques for Spatial Coupling

In this section we will introduce di�erent techniques to include spatial information
into a parameter estimation process. We will start by introducing coupling terms C
to the reconstruction process, which penalizes parameter maps which do not exhibit
an expected spatial regularity property. Novel techniques will be introduced based on
this general modeling.

After that we will introduce conventional choices for such coupling terms. Speci�cally
we will consider the following three terms: Tikhonov coupling which penalizes large
variations, Tikhonov-Philips coupling which penalizes large gradients of the recovered
parameter maps and Total Variation coupling which also penalizes large gradients
but can be shown to act edge-preserving. We will further present mathematical results
which show characteristic properties of solutions corresponding to the di�erent choices.
Speci�cally we will show that the use of Tikhonov coupling will only yield scaling of
recovered parameter maps and that Tikhonov-Philips coupling will yield solutions
which are signi�cantly smoother than the noisy image. For Total Variation coupling
we will provide an intuitive motivation why locally constant parameters maps are
recovered.

4.1.1 A General Framework for Spatial Coupling

In this section we will introduce a mathematical framework to include spatial informa-
tion into a parameter-estimation process. Speci�cally, we will motivate an approach
to recover parameters by solving a problem of the type

Minimize: J(p) := ‖M(p)− d‖2 + λ C(p)

where J : Rnm → R and C : Rnm → R is a cost function which penalizes parameter
maps which are not ful�lling some expected property, as e.g. spatial smoothness. In
this work we will concentrate on so-called local coupling terms, where information
of adjacent voxels is taken into account. Since discrete gradients are capturing such
information, continuous mathematical theory might be used for analysis. However,
note that there are various other approaches to include prior knowledge on the spatial
layout. As an example, non-local formulations might be used to include information
of voxels which are in some way similar but are not in a direct neighborhood [21, 48].
However, we will stick with local approaches, since the can often be motivated directly
from physical models [29]. We now start by introducing our framework for parameter
estimation from an optimization point of view.
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4 Spatial Coupling for Dynamic Models with Multiple Parameters

Fully Coupled Approaches

Fully coupled approaches [114, 155] can be motivated as follows: The goal is to �nd
parameters p ∈ Rnm which are explaining the data with reasonable accuracy but are
at the same time ful�lling a spatial regularity assumption, which can be measured
by a cost-function C : Rnm → R+

0 . A classic example for such a cost function is
C(p) :=

∑
‖∇hpi‖22, where the matrix ∇h is a discrete gradient operator. Small values

of C(x) would hence correspond to a smooth parameter map, large values to large
variations. Di�erent choices for C will be covered in the next sections.

For a Gaussian distribution of parameter maps, the resulting optimization problem
can be phrased as [107]

Minimize C(p)
s.t. 1

2σ2 ‖M(p)− d‖22 ≤ ε
(4.1)

Following [6], rewriting this problem using the KKT conditions and a dual variable
µ ≥ 0 [107] yields the equivalent reformulation as the saddle-point problem:

Minimize
p∈Rnm

Maximize
µ≥0

L(p, µ)

where the Lagrangian L(p, µ) is given by

L(p, µ) := C(p) + µ(‖M(p)− d‖22 − 2εσ2)

Note that in the above optimization problem the choice of ε depends on the user. To
simplify matters, let us assume that instead we �x some value µ ≥ 0. Indeed we will
see that in this case the problem will be independent of ε and we end up with the
optimization problem:

Minimize: L(p) := C(p) + µ(‖M(p)− d‖22 − 2εσ2)

⇐⇒ Minimize: J(p) := ‖M(p)− d‖22 + λ C(p) for λ := 1/µ. (4.2)

Here λ ≥ 0 controls the strength of in�uence of the stabilizer: If λ is large, C will have
large in�uence and we will obtain parameter maps which are ful�lling the regularity
assumptions heavily. If on the other hand λ is small, the distance-term becomes the
dominant term in (4.2) and the data �t becomes more prominent. However, note that a
good choice for λ is not trivial: Although there are strategies to choose λ automatically,
such strategies often come with considerable numerical overhead since optimization
has to be performed with respect to λ [70]. In this work we will hence con�ne to the
straight-forward approach to determine λ experimentally.
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4.1 Traditional Techniques for Spatial Coupling

Coupling by Denoising

Compared to the fully coupled approach, coupling by denoising can be regarded as a
sequential approach to parameter recovery. In coupling by denoising, �rst an uncou-
pled voxel-wise parameter estimation is performed, yielding estimated parameter-maps
p = (p1, . . . , pm)> ∈ Rnm. After that, one or more of the maps are denoised, which
introduces the desired coupling between parameters at di�erent locations.

Given the recovered, unstabilized parameters p ∈ Rnm the denoising problem can be
expressed similarly to (4.1) as

Minimize C(q)
s.t. 1

2σ2 ‖q − p‖22 ≤ ε

The same argumentation as earlier leads to the problem:

Minimize: J(q) := ‖q − p‖22 + λ C(q). (4.3)

Discussion

The approach coupling by denoising can be regarded as a crude alternating direction
approach to solve (4.2): In order to decouple the system, �rst parameters are estimated
from data and then the coupled parameter map is obtained subsequently. Advantages
of denoising approaches as for any pipeline approach are that available implementa-
tions for the respective sub-problems can be used at will. Note, however, that many
authors have found that results using the simultaneous method are superior to denois-
ing techniques [114, 155]. The fully coupled approach on the other hand often comes
with some numerical overhead, since implementations need to be performed for each
model and coupling term individually. However, since it is not clear which of the two
proposed modelings will yield superior results, our experiments in Section 4.4.1 will
cover both choices.

4.1.2 Established Choices for Coupling Terms

Having introduced a general framework to introduce spatial coupling into parameter re-
covery, we will now describe three established choices for the coupling term C and their
properties. Speci�cally we will introduce Tikhonov coupling [147], Tikhonov-Phillips
coupling [147] and Total Variation coupling [126]. We will present mathematical results
which show that CTP will smear edges and that CT will have only a scaling e�ect on
the solution. On the other hand, we will motivate that Total Variation coupling allows
the solutions to admit edges. A practical comparison of the three coupling terms on
real T1 maps can be found in Figure 4.2. This section will follow the outline given in
[29].
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4 Spatial Coupling for Dynamic Models with Multiple Parameters

Let us start by switching to a continuous setting, where we assume for ease of presen-
tation that Ω := (0, 1)2 ⊆ R2 and p : Ω → R. We start by giving explicit expressions
for the stabilizers under investigation:

CT(p) :=

∫
Ω
p2 dx, for p ∈ L2(Ω),

CTP(p) :=

∫
Ω
|∇p|2 dx, for p ∈ H1(Ω),

CTV(p) := sup
ξ∈C∞0 (Ω;R2),
‖|ξ|2‖∞≤1

∫
Ω
〈p,∇ξ〉 dx, for p ∈ L2(Ω).

Given a function p ∈ L2(Ω), in this section we will focus on the following three model-
problems:

Minimize:

Ji(p) := ‖p− p0‖22 + λ Ci(p)
s.t. p ∈ Xi

(4.4)

where

C1 := CT, C2 := CTP, C3 := CTV,

X1 := L2
0(Ω), X2 := H1

0 (Ω), X1 := L2
0(Ω).

We will now derive regularity results for the solutions of these problems, demonstrating
the smoothness properties which can be expected.

We start with the simplest case, with Tikhonov coupling. Here the following Lemma
shows that a solution will be just a uniformly scaled version of p0 and is hence ill-suited
to remove outliers.

Lemma 13. For Tikhonov coupling (4.4) admits a unique solution p : Ω → R
which is given by

pT(x) =
p0(x)

1− λ
.

Proof. Existence follows from [39, Theorem 3.3]. Further, solving the Euler-Lagrange
Equations shows that the minimizer is given by the above expression. Uniqueness
follows from the strict convexity of the squared L2 norm. �

However, things are di�erent for Tikhonov-Phillips coupling. As the next Lemma
shows, solutions of (4.4) will be signi�cantly smoother inside Ω than the function
p0:
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Lemma 14. For Tikhonov-Phillips coupling (4.4) admits a unique solution p ∈
H1

0 (Ω) ∩Hm+2
loc (Ω).

Proof. Let us consider the equation∫
Ω

(p− p0)φ+ 〈∇p,∇φ〉 dx = 0 (4.5)

for all φ ∈ C∞0 (Ω). A straight-forward application of the Lax-Milgram Theorem [49,
Section 6.2.1, Theorem 1] shows that (4.5) has a solution p ∈ H1

0 (Ω) and [49, Sec-
tion 6.3.1, Theorem 2] shows that the the solution is indeed in Hm+2

loc (Ω). However,
since (4.5) is the Euler-Langrange Equation of the strictly-convex equation (4.4), it is
automatically is a solution of (4.4) due to [39, Theorem 3.11]. Since (4.4) is strictly
convex, the solution is unique. �

This lemma shows that for the coupling term CTP we can expect the solution to smear
edges: Even if p0 has discontinuities, we can expect the solution pTP to be smooth in the
inside of Ω. Note that this might be desirable behavior for coarse resolutions, where
smoothness due to partial volume e�ects is expected. However, for �ne resolutions
and tissue with clear structure we expect the image to admit discontinuities which
cannot be captured by this coupling term. As the following Lemma motivates, for Total
Variation coupling solutions of (4.4) on the other hand can exhibit discontinuities:

Lemma 15 (Regularity of Minimizers, see [29]). LetΩ := (0, 1), p0 :=
χ(1/2,1), i.e. p0(x) = 0 for x ∈ (0, 1

2 ] and p0(x) = 1 for x ∈ (1
2 , 1). Then there

is a minimizing sequence of (4.4) which converges to

pTV := 1/2 for λ ≥ 1/2 and pTV :=

{
λ for x ∈ [0, 1

2 ]

1− λ for x ∈ (1
2 , 1]

for λ <
1

2

in the L2(Ω) sense.

Proof. Can be found in [29]. �

To further illustrate the properties of solutions to Total Variation coupling, let us
highlight the Total Variation term from the perspective of smooth functions. The
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following Lemma shows that for smooth u the Total Variation of u can be expressed
in a more simple way:

Lemma 16. Let Ω ⊆ Rd be a bounded domain with smooth boundary and u ∈
C1(Ω). Then

CTV(u) =

∫
Ω
|∇u(x)|2 dx.

Proof. We �x ξ ∈ C∞0 (Ω;R2) ∩ {‖|ξ|2‖∞ ≤ 1} and use the divergence theorem to
obtain:

−
∫

Ω
udiv(ξ) dx = −

∫
∂Ω
〈uξ, ν〉 dσx+

∫
Ω
〈∇u, ξ〉 dx =

∫
Ω
〈∇u, ξ〉 dx

since ξ = 0 on ∂Ω. The claim follows now from Theorem 8, which shows that for each
point x ∈ Ω it holds that

sup
ζ∈Rd
|ζ|2≤1

〈∇u(x), ζ〉 = |∇u|2.

�

This allows the following interpretation of Total Variation for smooth functions u :
R→ R: Since u can be split into monotonous segments, on each segment one can see
by the fundamental theorem of calculus that CTV(u) indeed measures the absolute
height of the jump, since

∫ b
a |u

′| dx = |u(b) − u(a)|. This is illustrated by Figure 4.1.
Using Total Variation as a coupling term will hence lead to solutions which try to jump
as seldom and as low as possible. This has the advantage that solutions can exhibit
discontinuities but the disadvantage that even in non-monotonous areas staircasing
artifacts will be necessarily introduced as demonstrated in the example of Figure 4.2,
see also [29, Page 29].

We conclude this section with Figure 4.2, which shows an illustrative comparison of
the di�erent coupling approaches for real T1 data.

4.2 Spatial Coupling for Vector Fields

In this section we will introduce tailored approaches for the coupling terms in vector-
�eld estimation. Note that the coupling approaches which were introduced in the
previous Section 4.1 were tailored for scalar-valued functions u : Ω → R. However, in
parameter estimation one typically aims to recover more than one parameter per voxel.
There have been multiple approaches to introduce spatial coupling into parameter

74



4.2 Spatial Coupling for Vector Fields
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Figure 4.1: Figure illustrating Total Variation in the 1D Case. By the fundamental-
theorem of calculus

∫
|p′|dx = 3 + 2 + 1 + 2 = 8. The Term CTVS(u) hence

expresses the total height of all jumps of p.

No Stab. CT CTP CTV

Figure 4.2: Figure showing solutions to (4.3) for a real data T1 map of a right human
kidney with di�erent choices for the coupling term C. pNL is an uncou-
pled reconstruction result for a real-data T1-map. It can be seen that the
usage of CT results in just a scaled version of pNL and that the usage of
CTP smears the edges. Although edges are preserved for CTV, so-called
staircasing artifacts can be observed in constant areas.
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4 Spatial Coupling for Dynamic Models with Multiple Parameters

estimation [114, 155, 135]. In the case of T1 estimation, some of these approaches
are only introducing coupling with respect to the parameter of interest, i.e. T1 [155].
However, since the unknowns might be more than one parameter map, a natural
extension is to introduce the coupling for the complete vector �eld p : Ω → Rm
instead [114, 135]. This opens the question which coupling approaches for vector-
�elds are suitable. Established approaches for parameter estimation [114, 135] are
using straight-forward extensions C(p) :=

∑m
i=1 Ci(pi) where Ci are traditional coupling

terms for scalar-valued functions. Using such approaches yields parameter maps which
are admitting only individual regularity properties. However, in many applications
of parameter estimation one would expect to see additional coupling between the
individual parameter maps: If one map changes due to changes in the tissue, one
would expect the other map to change, too.

In Section 4.2.1 we will motivate a family of coupling terms which admit such properties
and are based on singular values of the Jacobian. The introduced family was originally
designed for color image denoising [130, 61, 88, 105], which is a classic application
for coupled recovery of vector �elds. The proposed approaches will be based on the
Schatten-p-Norm of the Jacobian ∇u, which is the regular lp norm of its singular
values: σ1, . . . , σm

|∇u(x)|Sp :=

(
m∑
i=1

|σi(x)|p
)1/p

,

see also Theorem 2. The main contribution of this section can be found in Section 4.2.2,
where we will introduce common choices for Schatten-p-norms for vector-�eld estima-
tion and give simple geometric interpretations. As we will see, this class of coupling
terms will yield parameter maps which are strongly coupled and similar to TV display
clear edges.

4.2.1 Total Variation and Singular Values of the Jacobian

Let us start by motivating to use lp norms of the singular values of ∇p(x) from a
geometrical point of view: We have seen in Section 4.1.2 that a large class of coupling
terms for scalar-valued functions relies on di�erent norms of the gradient. Since the
magnitude of the gradient is a natural and straight-forward measure to capture the
amount of local variations of a function, this is an obvious choice. However, for vector-
�elds the gradient is not vector-valued but instead matrix-valued. If gradient-based
coupling terms are to be extended to vector �elds, this additional structure needs to
be taken into account. Speci�cally, one desired property of a norm |.| of the Jacobian
would be invariance with respect to rotation, meaning that both |∇p(x)| = |∇p(x)V >|
and |∇p(x)| = |U∇p(x)| for any orthonormal matrices V ∈ Rd,d and U ∈ Rm,m.
Geometrically the �rst property means that if the channel-gradients are uniformly
rotated, the norm is not supposed to change. The second property means that also
rotation in p does not alter the norm of the Jacobian, since ∇(Up(x)) = U(∇p(x)).
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A natural approach to characterize matrices from such a perspective is the singular
value decomposition of a matrix, see Theorem 2. Indeed this theorem shows that if the
Jacobian of a vector-�eld p : Ω→ Rm is decomposed as ∇p(x) = U(x)Σ(x)V (x)>, the
diagonal matrix Σ(x) is invariant under the any of the orthonormal transformation
considered above. This property can be regarded as simple geometric motivation to
consider standard p-norms of the singular values diag(Σ) of ∇p as stabilizers, the
so-called Schatten p norms [88, 105]:

De�nition 4. Let 1 ≤ p ≤ ∞ and let J = UΣV > be an SVD of J ∈ Rm,d, see
Theorem 2. The Schatten-p norm of J de�ned as

|J |Sp := |diag(Σ)|p.

A di�erent motivation to use Schatten-norms comes from geometric measure theory
and shows an intimate connection to Total Variation. This connection is established by
the so-called coarea formula (Theorem 7), which will be introduced at the beginning of
this section. The coarea formula gives a closed-form expression for the total volume of
the level-sets of a (continuous) vector-valued function p : Ω→ Rm, where Ω ⊆ Rd. We
will then show in Lemma 17 that for the special case m = 1 the length of the levelsets
corresponds to the Total Variation of the function. For m > 1, the total volume of
all level sets could hence be regarded as an extension of Total Variation to vector
valued functions [61]. Indeed we will show that this quantity is closely connected to
the product of the singular values of the Jacobian ∇u. However, since the product
of singular values is highly non-convex function, we will con�ne to consider Schatten-
Norms to ease the analysis.

Singular Values of the Jacobian and the Coarea Formula

Let us begin by introducing the coarea formula, which established a relationship be-
tween derivatives and levelsets of vector �elds. Note that statement and implications
of this theorem will be clari�ed in the following paragraphs.

Theorem 7 (Coarea Formula, [94]):
Let Ω ⊂ Rd, u : Ω→ Rm be C1(Ω) and assume that m ≤ d. Then∫

Ω
|Jmu(x)|dx =

∫
Rm

(∫
u−1(t)

dHd−m
)
dt. (4.6)

where Hd−m denotes the d−m-dimensional Hausdor� measure and |Jmu(x)| de-
notes the m-dimensional Jacobian of u at location x, which is de�ned as

|Jmu(x0)| = sup{Hm
(
∇u(x0)(C)

)
: C ⊂ Rd is an m-dimensional unit cube}.
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Speci�cally we mean

∇u(x0)(C) := {[∇u(x0)]x : x ∈ C} ⊆ Rm and

C := OCm for Cm := [0, 1]m ⊆ Rm and O : Rm → Rd with O>O = idm .

To illustrate the connection between Total Variation and (4.6), let us �rst look closer
on the m-dimensional Jacobian |Jmu| of u. This is done in the following Lemma.

Lemma 17. Let Ω ⊂ Rd be a bounded domain, let u ∈ C1(Ω,Rm) and let m ≤ d.
Then ∫

Ω
|J1u(x)|dx =

∫
Ω
σ1(x)dx,∫

Ω
|Jmu(x)|dx =

∫
Ω
σ1(x) · . . . · σm(x)dx.

where σi(x) is the i-th singular value of ∇u(x). More speci�cally it holds for the
special cases m = 1 and m = d∫

Ω
|J1u(x)|dx =

∫
Ω
|∇u|2dx for u ∈ C1(Ω,R)∫

Ω
|Jdu(x)|dx =

∫
Ω
|det(∇u)|dx for u ∈ C1(Ω,Rd).

Proof (see [61]). Let u ∈ C1(Ω,Rm) be arbitrary for m ≤ d. As we want to charac-
terize J1u(x), we need to characterize the 1-dimensional unit-cubes of Rd. These are
exactly the line-segments [0, v] ⊂ Rd for |v|2 = 1. We furthermore denote the Jacobian
of u at location x by G := ∇u(x) ∈ Rm,d. As G : Rd → Rm is linear, G([0, v]) = [0, Gv])
and hence H1([0, v]) = |Gv|2. It follows

|J1u(x)| = sup{H1(G(C))) : C = [0, v] for |v|2 = 1} = sup
|v|2=1

|Gv| = σ1(G).

Let us now characterize Jmu(x). The SVD of G = ∇u(x) is given by G = UΣV >

for orthogonal U ∈ Rd,d, V ∈ Rm,m and diagonal Σ ∈ Rd,m. It now follows directly
from the properties of the SVD (Theorem 2) that the vertices of the maximizing m-
dimensional unit-cube are given by V = (v1, . . . , vm) and its volume by det(G) =
σ1 · · ·σm. �
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Thus for a function u : Ω → R the 1-dimensional Jacobian corresponds to the Total
Variation of u. For transformations u : Ω→ Rd the d-dimensional Jacobian is just the
Jacobi determinant. Note that both cases can be expressed in terms of the singular
values of the Jacobian.

The Coarea Formula and Level-Sets

To understand Total Variation from a level-set point of view, let us now elaborate
on the right integral of (4.6). If we assume that u ∈ C1(Ω,R) and use Lemma 17,
equation (4.6) simpli�es to

∫
Ω
|∇u(x)|dx =

∫
R

(∫
u−1(t)

dHd−1

)
dt.

We can interpret the right integral as an integration over the lengths of the level-sets of
u: For each t ∈ R the levelset function

∫
u−1(t) dH

n−1 measures the size of the pre-image
of t under u. An illustration of the situation is given in Figure 4.3.

Total variation coupling thus produces solutions which have both few and short lev-
elsets. Avoiding oscillations, merging multiple function values into one and thus pro-
ducing locally constant solutions is thus preferable from a Total Variation point of
view. In the other extreme case that u : Ω → Rd is a di�eomorphism, equation (4.6)
becomes the well-known transformation formula∫

Ω
|det(∇u)|dx =

∫
u−1(Ω)

dx.

Schatten-p-Norms

A straight-forward extension of Total Variation to vector-valued functions from u :
Ω → Rm would hence be to consider the term |Jmu(x)| = σ1(x) · · ·σmin{m,d}(x).
However, the product of the singular values is highly nonlinear and non-convex, which
signi�cantly complicates the analysis and numerical evaluation. Additionally, the prod-
uct is zero (and the energy thus minimal), if foldings along any dimension occur. For
our means, we want to enforce foldings in as many dimensions as possible, leading to
low-rank solutions, see Section 4.2.2. To cope with these problems, multiple approaches
to stabilize recovery are considering Schatten-p-Norms of the Jacobian as a remedy.
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Figure 4.3: Figure illustrating the connection between Total Variation and levelsets.
Given are two functions ui(x) with corresponding levelset functions li(t) :=∫
u−1
i (t) dH

0. By the fundamental-theorem of calculus
∫
|u′1|dx = 3 + 2 +

1 + 2 = 8 and
∫
|u′2|dx = 2 + 2 = 4, corresponding to the integrals of l1

and l2.
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Conclusion

In this section we have introduced two di�erent motivations to consider Schatten-p-
Norms of the Jacobian as coupling terms: First, we have given a geometric intuition: We
have argued that since singular values are invariant under rotation, they are ful�lling
basic properties for well-designed coupling term. Speci�cally we have shown that the
singular values of the Jacobian will not change if the gradients or the vector �eld is
rotated. As an additional motivation, we have established a connection between the
singular values of the Jacobian and Total Variation: We have shown, that for functions
p : Ω→ Rm andm = 1 Total Variation measures the total length of the levelsets of the
function. As an extension, we have found that for m > 1 the integral over the product
of the singular values measures the total volume of all levelsets. Since the product is a
highly non-convex function and will additionally be minimal if only few foldings occur,
we have argued that lp norms will be a more suitable choice, both from an analytical
and a practical perspective.

4.2.2 Common Choices for Coupling Terms for Vector Field Estimation

We will now introduce common conventional choices for coupling terms for vector �eld
estimation. Additionally, we will show how many approaches for vector-�eld coupling
can be formulated in terms of the Schatten-p-norms. We will see in Section 4.3 that
for T1 estimation the choices p = 1 and p = 2 will yield the best results. The di�er-
ent approaches will be introduced for the example of color image denoising. A direct
comparison on simple color data can be found in Figure 4.4.

Color Image Denoising

In this section we will consider the problem to recover an RGB image uGT : Ω → R3

from a measurement u0 = uGT + n, for white gaussian noise n. Analogous to the
previous modeling, this will be done by �nding a minimizer u : Ω→ R3 of

J (u) :=

∫
Ω
|u− u0|22dx+ λ

∫
Ω
g(∇u)dx (4.7)

where g : R3,d → R depends on the Jacobian of u. Since this problem is well-studied
for color image denoising, we will consider established choices for g which can be found
in [130, 61, 88, 105]. Note, however, that to the best of the authors knowledge these
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u0 gTVC gFro

uGT g∞ gNuc

Figure 4.4: Motivating example displaying solutions of (4.7) with di�erent coupling
terms. Reconstruction was performed from u0, which was obtained by
adding white gaussian noise with standard deviation σ = 50 to the ground-
truth image uGT. It can be observed that although all coupling terms allow
edges, results with fewest o�-colors are obtained using gNuc. Implementa-
tion details can be found in Section 3.2.

terms have not been used for the proposed cases parameter estimation.

gTP(∇u) := |∇u|2S2
, [114, 135, H2]

gFro(∇u) := |∇u|S2 , [130]

gNuc(∇u) := |∇u|S1 , [88]

g∞(∇u) := |∇u|S∞ , [61]

gTVC(∇u) :=
∑
|∇ui|2, [15].

Geometric Interpretation of the Approaches

As it turns out, there are simple geometric interpretations which allow a deeper un-
derstanding of most of the coupling terms. Before we consider the terms in detail, we
start with a key relationship which shows that the Schatten-2-norm corresponds to the
standard Frobenius norm of a matrix and can hence be calculated with having access
to an SVD of the matrix:
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Lemma 18. Let A ∈ Rn,m be arbitrary with singular value decomposition A =
UΣV >. Then

|A|2S2
=
∑
i,j

a2
i,j

Proof. Follows directly from the considerations

|A|2S2
= trace(Σ2) = trace(V Σ2V >) = trace(A>A) =

∑
i,j

a2
i,j ,

where the second identity holds since for any matrices trace(AB) = trace(BA). �

Keeping this relationship in mind, we now give simple geometric interpretations of the
di�erent coupling terms:

gTP Since it follows from Lemma 18 that that |∇u(x)|2S2
=
∑
|∇ui(x)|22, we can in-

terpret the squared Schatten-2-norm as the sum of standard Tikhonov-Philips
coupling terms. This term will hence generally yield smooth solutions, cf. Sec-
tion 4.1.2.

gTVC This is sometimes referred to channel-by-channel TV [15]. Each channel will be
smoothed with TV, but no coupling between the channels is present since (4.7)
still decouples.

gFro This stabilizer is a special case of a class of stabilizers introduced in [130]. Since
|∇u|S2 =

√∑
|∇ui|22 (Lemma 18), it can be regarded as another straight-forward

extension from TV to multiple channels. However, in contrast to gTVC the chan-
nels are now coupled.

gNuc This Schatten-1 norm is also referred to as the nuclear norm. In compressed
sensing, it is employed in rank minimization problems [120]. For color-image
denoising this means that it enforces solutions where the Jacobian has low rank,
implying that channel gradients will be linearly dependent. This is depicted in
Figure 4.5. Usage of this term usually yields a stronger coupling of the channels
than gFro, cf. [88, 105]. In medical imaging nuclear norm minimization has also
recently been introduced for image fusion [91].

g∞ Using the Schatten-∞-norm for stabilization has been introduced in [61]. By
minimizing the largest singular value, the other singular values will go to zero to
likewise.

In order to illustrate the properties of the di�erent norms, we used them for denoising
of color images. Results are given in Figure 4.4.
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(a) (b)

Figure 4.5: Figure demonstrating di�erent coupling approaches for vectorial images.
For color images, (b) is preferable to (a) as channels are aligned. Note that
for gTVC (a) and (b) have the same energy.

4.3 Spatial Coupling for T1 Estimation

To demonstrate advantages of the coupling terms for vector �eld recovery, we introduce
these terms for T1 estimation from variable �ip angle data. Note that parts of these
results have been accepted for publication in [S3]. In this section we will only present
the models, results are given in Section 4.4

We start by outlining established coupling techniques for T1 estimation [114, 155]. For
ease of presentation, let us again stay in the functional setting, i.e. p : Ω → R2 with
p(x) = (T1(x),M0(x)). In [114] di�usive coupling was introduced for inversion time
estimation, i.e.

CTP(p) :=

∫
Ω
|∇T1|2 + |∇M0|2 dx.

An advantage of this method is that it is easy to implement, as standard nonlinear-least
squares methods can be used for optimization [87, 107]. A downside of this approach
is that it is usually not edge preserving. The idea to include Total Variation (TV) to
stabilize T1 estimation has been introduced in [155]: Here the proposed coupling term
was

CTV(p) :=

∫
Ω
|∇T1| dx

With TV stabilized methods, edges in the T1 map are preserved. However, note that
in the proposed approach no coupling with respect to M0 is performed. Additionally,
since Total Variation is non-di�erentiable, the numerical minimization will require
non-standard methods and will be described in more detail in Section 3.2.
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We hence propose to extend these techniques. Speci�cally we will show that more
accurate estimation can be obtained by solving the problem

Minimize:

J(p) := ‖M(p)− d‖22 + λ CNuc(p).

In Section 4.4 we will conduct di�erent experiments to support this claim. First, we will
clarify if the problem should be formulated in the (T1,M0) [114, 155] or in the (E1, N)
[153, H2] realm, cf. Section 3.2.4. Second, we will compare denoising approaches with
simultaneous approaches. Third, we will compare traditional approaches to stabilize
only T1 [114, 153] with the proposed vector-�eld coupling techniques.

4.4 Results: Spatial Coupling for T1 Estimation for

Software Phantom Data

In this section we will show how spatial coupling can improve T1 estimation from
variable �ip angle data. This section will cover phantom data, real data experiments
can be found in Section 7.2.

Note that we have introduced several novel aspects to the existing coupling approaches
for T1 estimation, which were introduced in [8, 155]: First, we have proposed to use
coupling in (E1, N) instead of (T1,M0) and second we have proposed to use simple
denoising approaches instead of the simultaneous approaches. We hence start with
Section 4.4.1, where we compare the existing approaches with respect to the above
criteria. We will �nd that best results for T1 estimation can be achieved with Total
Variation coupling in the (T1,M0) coordinate system using the fully coupled approach
for both parameters. This extends the existing results published in [155], where TV
coupling was performed only with respect to T1. These results have been published by
the author in [S3].

Since the author made the above observations chronologically earlier than the con-
siderations about vector �elds, we proceed to compare di�erent coupling terms for
vector �elds in Section 4.4.2. Speci�cally, we will consider the following choices for the
coupling terms C for p = (T1,M0):

CTVC(p) := λ1

∫
Ω |∇T1| dx +λ2

∫
Ω |∇M0| dx,

CTP(p) := λ1

∫
Ω |∇T1|2 dx +λ2

∫
Ω |∇M0|2 dx,

CFro(p) := λ
∫

Ω |∇p|Fro dx,

CNuc(p) := λ
∫

Ω |∇p|S1 dx.

Note that the functionals CTV and CTP di�er from the original de�nition given in
Section 4.2.2 since they depend on two control parameters λ1, λ2 ∈ R. This additional
degree of freedom gives us an range for �ne-tuning of the results and to additionally
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Table 4.1: Table displaying the impact of spatial coupling on phantom data for se-
quence S1 and noise-level 7%. Results are given as mean relative error cal-
culated from 5000 experiments on cortex and medulla and are given in per-
cent. It can be observed that for phantom data fully coupled approaches are
only superior to denoising approaches if both parameters are regularized.
Also, coupling in (T1,M0) is superior to coupling in (E1,M0).

Simul. Denoising
CTV CTP CTV CTP No Stab.

# Parameters 1 2 1 2 1 1

(T1,M0) 6.76 5.96 7.36 6.59 6.31 6.74 12.91
(E,N) 6.48 6.49 11.32 11.32 6.58 9.71 12.91

exploit bene�ts of coupling terms. Here we �nd that best results can be achieved using
CNuc or CFro, which outperform CTVC by approximately 8%.

4.4.1 Analysis of existing coupling strategies

We simulated multiple 2D scans of the human kidney using the software phantom
which is described Section 3.6.1, with sequence parameters S1 and a modest noise-level
of 7%. Since S1 yielded the lowest reconstruction error in Section 3.6, the experiments
demonstrate the advantages of coupling even for well-designed sequences. After each T1

estimation, the quality of the estimated T1 map was assessed using the mean relative
error, which was evaluated over cortex and medulla of the kidney. The number of
experiments was determined experimentally to be 5000, since for this number the
mean relative error was approximately stable up to 10−5. All coupling parameters γ
were determined experimentally by sampling the parameter space.

Results are presented in Table 4.1. It can readily be seen that all discussed coupling
methods are capable to drastically reduce the relative error as compared to no coupling.
Also, coupling in both T1 and M0 has advantages as compared to coupling only in
T1. However, these e�ects can not be observed for coupling in the (E1, N) coordinate
system. In this case, no large di�erence in coupling of (E1, N) as compared to coupling
only in E1 can be observed. This might be due to the exponential scaling, as variations
in high T1 are less accurately detectable in E1. Comparing the fully coupled approaches
with the denoising approaches, one can see the fully coupled approaches are only
superior if both parameters are coupled. This establishes the need for fully coupled
approaches considering both variables M0 and T1.
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Noise CNL CTP COp CTV CFro CNuc

3% 9.17 4.26 3.95 3.86 3.79 3.45
6% 18.72 6.70 6.18 6.94 5.99 5.57
9% 34.56 9.53 8.87 9.00 8.67 8.25

Ground Truth No Stab. CNuc CFro

CTV COp CTP

Figure 4.6: Parameter estimation results for vector �eld coupling for Sequence S4
and various noise levels. Given is the mean relative error over cortex and
medulla in 5000 experiments in percent. The table shows that the lowest
relative error can be achieved using CFro. Also given are samples of esti-
mated (T1,M0) maps from data with 6% noise, visualized as RGB images.
The red channel was T1, the blue channel M0. This visualization allows a
better comparison of common properties of the recovered parameter maps.

4.4.2 Analysis of Coupling Strategies for Vector Fields

Since the results in Section 4.4.1 indicated superiority of coupling approaches for
(T1,M0) in the simultaneous setting, we proceeded to compare the di�erent coupling
techniques for vector �elds. This time 2D scans were simulated using the parameters
of sequence S4, which corresponded to the real data. As in the previous section we
measured the mean relative error on cortex and medulla over 5000 experiments. Re-
sults are show in Figure 4.6. Results indicate that vector �eld coupling is capable to
improve T1 recovery on the given phantom data. Also the visual comparison shows
that most consistent results can be achieved with vector �eld coupling terms.
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4.4.3 Discussion

The results demonstrates that spatial coupling can be used to improve T1 estimation
results from low-quality data. Even simple coupling terms as e.g. standard Tikhonov-
Philips can be used to obtain clearer and more distinct parameter maps. It can ad-
ditionally be seen that stabilization of all parameters is crucial: In our experiments
we have found that stabilization of only one parameter as e.g. proposed in [155] leads
to only minor improvements in T1 estimation. Our phantom data results furthermore
show that coupled estimation is able to additionally improve the parameter recovery,
since it leads to spatially aligned T1 and M0 maps. However, note that the impact of
coupling naturally depends on the expected quality of the data: For data with high
SNR we expect only minor advantages introduced by coupling. Additionally it needs
to be pointed out, that by design the developed software phantom has some bias for
locally constant parameter maps, favoring the non-di�erentiable coupling terms. This
comes from the assumption that the parameters T1 and M0 are constant on distinct
anatomical structures. The experimental �ndings on software phantom data will be
extended to real data in Section 7.2.

4.5 Numerical Aspects of Spatial Coupling

In this section we will describe the numerical methods which were used to solve the
minimization problems outlined in the previous sections. All implementations were per-
formed in Matlab [97] and run on a standard PC (3 GHz Intel Core i7, 16 GB RAM).
The optimization methods were tailored to �t the respective objective functions. The
employed algorithms can be divided in two groups: Smooth and non-smooth optimiza-
tion methods. For di�erentiable objective functions, optimal solutions were obtained
by either discretizing the �rst-order necessary condition and solving the resulting sys-
tem directly or by employing a constrained Gauss-Newton solver for minimization [9].
For the cases that the objective function J was not di�erentiable, we exploited the
speci�c structure of J , which often was the sum of two convex functions. Speci�cally,
we used the so-called primal-dual-hybrid-gradient algorithm [28], which is described
in Section 4.5.1 in more detail.

The problems were usually solved in a Gauss-Newton fashion: For nonlinear modelsM
the data-term ‖M(p)−d‖ is often non-convex and might admit multiple local minima.
In this case optimization is thus not straight-forward [107]. To cope with this issue, a
standard strategy which exploits higher order derivatives is the so called Gauss-Newton
method [107]. Instead of linearizing the objective function and obtaining a �rst-order
algorithm, in Gauss-Newton methods only the residue r(p) := M(p)− d is linearized.
This leads to a convex and nonlinear data term which can then be optimized using
second order methods as e.g. Newton's method. Speci�cally, the objective function
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J(p) = ‖M(p)− d‖2 + C(p) is approximated by

JkLin(p) := ‖Akp− bk‖2 + C(p)
for Ak := ∇M(pk) and bk := d+∇M(pk)pk −M(pk).

Updated guesses pk+1 is obtained iteratively by minimizing JkLin until {pk}k ∈ N
converges, see [107] for a detailed analysis of such methods. As compared to optimizing
second-order Taylor approximations of the objective function (=Newton's method),
this strategy has the advantage that the obtained approximation will always be convex.
This implies that the resulting linear system is symmetric, positive semide�nite and
can be solved e�ciently using e.g. a conjugate gradient algorithm [107]. Note that
in the case of non-di�erentiable coupling terms, established optimization algorithms
often require convex objective functions. This property additionally makes the Gauss-
Newton method a strong candidate for this class of objective functions.

4.5.1 A Primal-Dual Hybrid Gradient Algorithm for Convex Functions

In this section we will show how the problems described in Section 4.3 can be im-
plemented numerically. The main tool to solve the problems is the so-called Primal
Dual Hybrid Gradient (PDHG)-Algorithm (also called Chambolle-Pock or Chambolle-
Cremers-Pock Algorithm) [28], which is a solution strategy for such problems and is
famous for being quite simple to implement. As it turns out, easy to implement does
not coincide with easy to understand. In this section we will describe why and how
the PDHG Algorithm works.

The PDHG-algorithm is tailored to solve problems of the type

Minimize G(x) + F (Kx). (4.8)

Here F : Rn → R and G : Rm → R are proper, convex, lower semi-continuous functions
and K : Rn → Rm is a linear operator. Here property proper is of a technical nature
and means that the functions does not take −∞ as a function value and is �nite in at
least point. Roughly this property means that the function indeed admits a minimum
which is not trivial to obtain. We will show later that the minimization problems which
were introduced in the previous section fall exactly into this scheme. In our setting
F (x) := ‖x‖p will be a (non-di�erentiable but convex) norm, K := ∇d ∈ Rn,dn will
be a discrete gradient operator and G(x) := ‖Ax− b‖22 will be both di�erentiable and
convex. However, since F will generally be non-di�erentiable, smooth optimization
algorithms are no option to tackle the problem [29].

Key to understanding the PDHG-Algorithm are two insights: First, that convex func-
tions can be equivalently described in terms of their so-called convex conjugates and
second, that the convex-conjugates of many convex functions can be minimized much
more e�ciently than the function itself.
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Let us start by elaborating on the �rst insight: Formally the convex-conjugate F ∗ :
Rn → R of a function F : Rn → R is given by:

F ∗(y) := sup
x
〈x, y〉 − F (y).

Indeed [123, Corollary 12.2.1] shows that if F is convex and proper it holds that

F (y) = F ∗∗(y) = sup
x
〈x, y〉 − F ∗(x) (4.9)

This means, that any convex F can be described equivalently using the dual function
F ∗. The following theorem and the example show that convex-conjugates of p-norms
are just characteristic functions of convex sets and thus admit a very simple struc-
ture.

Theorem 8:
Let 1 ≤ p ≤ ∞ and v ∈ Rn with |v|p <∞. Then it holds for q := p/(1− p) that

|v|p = sup
w∈Rn,
|w|q≤1

〈v, w〉 = 〈v, w〉+ χq(w)

where χq(w) = 0 for |w|q ≤ 1 and χq(w) =∞ for |w|q > 1.

Proof. For w ∈ Rn with |w|q ≤ 1 it follows directly from Hölders inequality that

〈v, w〉 ≤ |v|p|w|q ≤ |v|p.

And hence sup 〈v, w〉 ≤ |v|p. For the other direction let us �rst consider the case
1 < p <∞. Let w ∈ Rn with

wi :=

{
|v|1−pp

|vi|p
vi

for vi 6= 0

0 for vi = 0.

Then it follows that

〈v, w〉 = |v|1−pp

∑
|vi|p = |v|1−pp |v|pp = |v|p,

|w|qq = |v|−pp
∑
|vi|p = |v|−pp |v|pp ≤ 1

and hence sup 〈v, w〉 ≥ |v|p.

It remains to show the cases p = 1 and p =∞. If p = 1 let wi := sgn(vi). Then 〈v, w〉 =
|v|1 and |w|∞ ≤ 1 and the claim follows. If p =∞ let wi := 0 for i 6= argmaxi |vi| and
wi := sgn(vi) for i = argmax |vi|. Once again 〈v, w〉 = |v|∞, |w|1 = 1 and the claim
follows. �
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Example 1. In this example we will derive the convex-conjugate to the p-norm F :
Rn → R, F (x) := |x|p. We �rst note that all norms are convex functions since |λx +
(1−λ)y| ≤ λ|x|+(1−λ)|y| due to the triangular inequality and homogeneity. Lemma 8
shows that |y|p = supx 〈x, y〉+χB(x), where B := {x ∈ Rn : |x|q ≤ 1} and χB(x) := 0
for x ∈ B and χB(x) := ∞ for x /∈ B. Comparing this with equation (4.9) yields
F ∗(x) = −χB(x).

Let us now elaborate on the second insight and describe why the optimization of convex
conjugates can often be carried out easier than optimization of the convex function
itself. To see this, we note that for smooth functions a backward gradient step can also
be calculated by solving a minimization problem:

Lemma 19. Let F ∈ C1(Rn) be convex and τ > 0. Then

xk+1 = argmin
x∈Rn

1
2τ |x− xk|

2 + F (x) ⇐⇒ xk+1 − xk
τ

= −∇F (xk+1)

Proof. First note that since | · |2 is strictly convex and F is convex, the left hand
side problem indeed admits a unique minimizer. Now the claim follows from a direct
application of the �rst-order necessary condition for a minimizer. �

This lemma can be relaxed from di�erentiable to proper, convex functions F , see [123].
Since this would imply extensive introduction to convex analysis, we will not show
this extension in this work. Nevertheless the importance of the above reformulation is
summarized in the following de�nition (see [28]):

De�nition 5 (Prox-Operator). Let f : Rn → R be proper and convex and let
τ ∈ R+. The Proximity-Operator for f with step-width τ is de�ned as

ProxτF (y) := argmin
x∈Rn

1
2τ |x− y|

2
2 + F (x).

An evaluation of the Prox-Operator at y can hence be regarded as calculating a back-
ward gradient step for f with step-length τ > 0. As the following example shows,
the Prox-Operator for convex-conjugates of p-norms corresponds to simple projections
onto unit balls:
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Example 2. In this example we describe ProxτF ∗(y) for F : Rn → R, F (x) := |x|p.
Using the results from Example 1 yields

ProxτF ∗(y) = argmin
x∈Rn

1
2τ |x− xk|

2 + χq(x)

for χB(x) as in Example 1. This shows that

ProxτF ∗(y) = argmin
x∈B

1
2τ |x− xk|

2 = PB(xk)

where PB(xk) denotes projection of xk onto the set B with respect to the Euclidian
norm.

These two connections are enough to introduce the PDHG-Algorithm [28]. Here Prob-
lem (4.8) is tackled as follows: First, the functions F (y) andKx are decoupled by using
the identity F ∗∗ = F [123, Corollary 12.2.1]. Now the problem can be reformulated as
follows:

min
x

G(x) + F (Kx)

= min
x

G(x) + F ∗∗(Kx)

= min
x

G(x) + max
y
〈Kx, y〉 − F ∗(y)

= min
x

max
y

G(x) + 〈Kx, y〉 − F ∗(y). (4.10)

Note that in the given situation min and max can be interchanged due to [123, Theo-
rem 36.3]. The minimization problem (4.8) thus becomes a saddle-point problem (4.10),
where a minimization with respect to one variable and maximization with respect to
the other variable has to be performed. In order to solve (4.10), alternating backward
gradient steps are performed: For x in negative gradient direction and for y in positive
gradient direction. In terms of the Prox-Operator these become:

yk+1 = ProxσF ∗(yk + σKxk)

xk+1 = ProxτG(xk − τK>yk+1)

In [28] a slight modi�cation was added to this algorithm: Do gain speed, y is updated
not with the last iteration of xk, but with the more optimistic guess x̄k := xk + (xk −
xk−1), yielding Algorithm 1. In [28, Theorem 1] it is shown, that the algorithm indeed
converges if the step-sizes ful�ll the condition στ ≤ |K|S∞ .
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Algorithm 1 (x, y) = PDHG(x0,K,G, F
∗, λ)

1: Estimate operator norm L := supx |Kx|/|x|
2: Choose step-width τ = λ/L and σ = 1/(Lλ)
3: Initialize x0 := x0 and y0 := Kx
4: repeat
5: yk+1 = ProxσF ∗(yk + σKx̄k)
6: xk+1 = ProxτG∗(xk − τK>yk)
7: xk+1 = 2xk+1 − xk
8: until convergence
9: return: x := xk+1 and y := yk+1

4.5.2 Extended Notation for Mixed Norms

As the formulations in Section 4.2 are for continuous functions d : Ω → Rk and
p : Ω→ R2, we introduce some notation for the discrete setting. The notation closely
follows the one introduced in the introduction of this chapter. However, as additional
derivatives are introduced, we need to extend the notation by parts. Note that this
part we will make use of 3D arrays A ∈ Rl,m,n.

As introduced in the beginning of this chapter, we identify an image u ∈ Rl1,l2,l3 with
its vectorized form u ∈ Rn for n := l1l2l3. Correspondingly, we identify k data images
with d ∈ Rn,k and the parameter maps with p ∈ Rn,2. A discrete gradient operator,
which maps a parameter map p to the pointwise Jacobian matrices, is denoted by ∇d :
Rn,2 → Rn,2,2. We furthermore introduce several matrix- and vector norms. Generally,
will denote a norm for short matrices or vectors by |.|X and for long vectors by ‖.‖Y .
We also introduce the following mixed norms and the following scalar products:

De�nition 6. Let A ∈ Rn,l1,l2 = [A1, . . . , An] for Ai ∈ Rl1,l2 and let 1 ≤ p ≤ ∞ and
1 ≤ q ≤ ∞. We de�ne the mixed-norms ‖.‖p,q by:

‖A‖p,q :=

(
n∑
i=1

|Ai|qSp

)1/q

for 1 ≤ q <∞,

‖A‖p,∞ := max
i
|Ai|Sp for q =∞.
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4 Spatial Coupling for Dynamic Models with Multiple Parameters

De�nition 7. Let A,B ∈ Rl1,l2,l3 . We de�ne the scalar product of A and B as

〈A,B〉 :=
∑
i,j,k

ai,j,kbi,j,k.

4.5.3 Primal-Dual formulation of CNuc

We will now describe an example of how the objective functions were discretized and
optimized using the PDHG Algorithm. Since optimization for Total Variation is stan-
dard and can be found e.g. in [28], we will describe the more advanced minimization
of the Nuclear norm, following the ideas presented in [88].

We start by giving the discrete version of J(z) for 2D data d ∈ Rn,k, where for each
voxel vi, i ∈ {1, . . . , n} a discrete dynamic curve curve di ∈ Rk is given. For parameter
maps p ∈ Rn,2, a linear operator A : Rn,2 → Rn,k, b ∈ Rn,k and a discrete Jacobian
∇d : Rn,2 → Rn,2,2 the objective function is given by:

Minimize J(p) := 1
2‖Ap− b‖

2
2,2︸ ︷︷ ︸

=:G(p)

+λ‖∇dp‖1,1︸ ︷︷ ︸
=:F (Kp)

(4.11)

We now use the relationship established in Theorem 8 to reformulate F (Kp) as

λ‖∇dp‖1,1 = max
w1,...,wn∈R2,2,
|wi|S∞≤λ for all i.

n∑
i=1

〈
(∇dp)i, wi

〉
= max

w∈Rn,2,2,
‖w‖∞,∞≤λ

〈
∇dp, w

〉

We include the constraints on w by means of an indicator function φU for U := {w ∈
Rn,2,2 : ‖w‖∞,∞ ≤ λ} with φU (w) = 0 for w ∈ U and φU (w) =∞ everywhere else. We
can hence rewrite (4.11) as the saddle-point problem

min
p

max
w

1
2‖Az − b‖

2
2,2︸ ︷︷ ︸

G(p)

+ 〈∇dp, w〉︸ ︷︷ ︸
〈Kz,w〉

−φU (w)︸ ︷︷ ︸
F ∗(w)

.

Let us formulate the respective proximity operators. Following Example 2, we see
that

ProxτG(y) = ẑ with (idn +τA>A)ẑ = y + τA>b

ProxσF ∗(w) = (w̃1, . . . , w̃n) ∈ Rn,2,2 with w̃i := UiP(Σi)Vi ∈ R2,2

here UiΣiVi = wi is an SVD of wi and P is a projection operator which cuts o�
pointwise at λ. Note that this formulation requires to solve an SVD for each voxel. To
improve speed we implemented the SVD for 2×2 matrices as given in [13] explicitly.
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4.5 Numerical Aspects of Spatial Coupling

4.5.4 Smooth Optimization

To optimize di�erentiable objective functions, we used a non-standard modi�cation
of the Gauss-Newton Method described in [9], which allows to incorporate hard-
constraints. Although this method is interesting from an optimization perspective,
we will not go into technical detail. The modi�cation allowed to include the hard con-
straints 1ms ≤ T1 ≤ 5000ms and M0 ≥ 1, which added additional stability to the
method. Note that bounds M0 > 0 and 0 < T1 <∞ are necessary to guarantee iden-
ti�ability of the parameters, see also Lemma 10. Standard stopping criteria based on
relative update size of pk, J(pk) and |∇J(pk)| were used [58, Section 8.2.3.3].

4.5.5 Conclusion

In this section we haver presented di�erent numerical methods to tackle the opti-
mization problems. We have concentrated on the Primal-Dual-Hybrid Gradient algo-
rithm (PDHG) [28] for two reasons: First, it demonstrates that optimization of non-
di�erentiable objective functions is a complex task which requires tailored approaches,
second the PDHG Algorithm is at the current time one of the most popular algo-
rithms in image processing (Google Scholar currently gives 1532 citations, retrieved
26.11.2016, 20:16.). Without diving into technical detail on convex analysis, we given
a brief motivation of why the PDHG Algorithm works. Additionally, we have given a
detailed discretization how it can be used to minimize the nuclear norm.

However, note that there are various points where the numerical method can be re�ned
even further: First, the PDHG Algorithm can be extended to employ hard constraints
for the variables. This is possible by adding additional characteristic functions to the
objective function, but comes with some additional numerical overhead. Second, more
sophisticated algorithms than Gauss-Newton could be used to cope with the nonlinear
data term. An interesting candidate to do this could be the iPiano Algorithm [109],
which is based on the heavy-ball method. iPiano extends the gradient descent for
the primal variable x by an additional inertial term, which theoretically causes the
algorithm to jump over small local minima. However, since the current numerical
results are convincing, we only expect minor improvements by employing these adapted
methods.
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5 Joint Methods and Coupled Dynamic

Models

In this chapter we show, how the structure of dynamic models can be exploited by
adding additional parameters the estimation. Speci�cally, we introduce a joint ap-
proach for T1 estimation which combines estimation of T1 with a simultaneous motion
correction of the data. Based on ideas which were originally employed to register a time-
series of DCE-MRI images, we will use guesses of the parameters (T1,M0) to simulate
a motion-less dataset, which can itself be used to improve the deformation parameters.
To cope with noise e�ects, we additionally incorporate smoothness constraints for the
parameter maps. Additionally to this iterative approach, we will propose an approach
where estimation of dynamic parameters and deformation parameters is performed
simultaneously. Results for simple a�ne deformations have been published in [H2].
In this work we will additionally describe an extension of this approach to nonlin-
ear deformations. We will also present results, where incorporation of spatial coupling
improves parameter estimation results by up to 30%. As another example of how
additional parameters can be included in the estimation, we will show how the Patlak-
Rutland Model can be used to estimate not only pharmacokinetic parameters but also
the arterial input function. These results have been published in [H1]. Note that some
results of this chapter have preliminary character, as the uneven impact of the di�erent
variables often introduced instabilities during the optimization.

5.1 Joint Motion Correction and T1 Estimation

As outlined in Section 1.2.4, a main source of error in T1 estimation for abdominal
imaging is spatial misalignment of the data. Image registration might hence be a key
factor to improve T1-estimation [69]. However, registration of variable �ip angle data
is a challenging task since image contrast might di�er signi�cantly between di�erent
�ip-angles, see Figure 5.1 for examples of such data. Conventional approaches for reg-
istration would hence aim to �rst register the data, using a contrast-invariant distance
measure like Mutual Information or Normalized Gradient Fields [103, 102] and then
obtain T1 using a parameter �t. Since usage of dynamic models would give us addi-
tional means to determine how image intensities change, we will include this knowledge,
which would be discarded in standard approaches, in the registration process.
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5 Joint Methods and Coupled Dynamic Models

Note that the problem to register variable �ip angle data is structurally similar to the
registration of of DCE-MRI images. Here approaches which couple parameter estima-
tion and registration are capable to improve results of conventional approaches with
respect to deformation as well as parameter errors. However, to the best of the author's
knowledge the employment of such algorithms is not wide-spread in the community.
In the case of DCE-MRI, two main challenges might be responsible for that: First,
to create a model-simulation, at least two di�erent models need to be concatenated:
First, dynamic-parameters need to be converted to CA concentrations and second,
CA concentrations need to be converted to MRI signal intensities. Since both of these
models are frequently exponential [136], this can lead to numerical instabilities which
are di�cult to handle. Additionally, error analysis is complicated since a failure of the
method needs to be traced back to failure of one or both of the two models. A second
problem is that pharmacokinetic models are usually only valid for very speci�c kinds of
tissue [138, 137]. If they are to be used to simulate a complete 3D dataset, this requires
either prior segmentation and accurate knowledge of corresponding pharmacokinetic
models or a strategy to discard the e�ects of tissue with unknown pharmacokinetic
response. To cope with the latter issue, established approaches often assume a broad
validity of a single mode [23, 11]. Although this might work for speci�c body regions,
it is not clear if this approach can be generalized arbitrarily.

In order to better understand the behavior of joint approaches, we have thus decided
to con�ne to a simpler setting: In this section, we propose a joint approach for T1

estimation from variable �ip angle data. Note that as compared to registration of DCE-
MRI images, this is a simpler task. First, T1 estimation requires the usage of only one
model. Second, the model is valid on the complete image. In this work we will take
advantage of these simpli�cations to point out the positive e�ects of additional spatial
coupling, which might have been lost in the more complicated setting. A joint approach
for T1 estimation has been proposed previously for a�ne deformations [69]. Since those
results had been published only few months earlier than ours, our �rst approaches for
joint parameter estimation and registration were developed independently. Among
minor technical di�erences, the most important additional feature of our method is
the introduction of a spatial coupling term, which additionally stabilizes the parameter
estimation. As our experimental results indicate, this term can have signi�cant positive
e�ect on both parameter estimation and registration.

This section is structured as follows: We start by introducing a framework for the
joint approach, which will be called Coupled Model-based Parameter Estimation and
Registration (COPTER). Since this modeling will lead to a large-scale optimization
problem, we will subsequently discuss di�erent strategies to solve the problem. Exper-
imental evaluation on software phantom data, where ground-truth is available, will be
performed in Section 5.2. Real data Experiments can be found in Section 7.3.
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5.1 Joint Motion Correction and T1 Estimation

5° 8° 15° 25°

Figure 5.1: Figure showing MRI scans of a right human kidney obtained with variable
�ip angles. Scan sequence was TWIST with parameters TR = 2.51 ms,
TE = 0.83 ms, isotropic voxel size 1.8 mm and matrix size [256,192]. Large
di�erences in contrast can be observed. Since the scan was obtained during
multiple breathholds, only small motion artifacts along the diaphragm can
be observed.

Algorithm 2 Conventional Approach (y, p) = ConventionalApproach (d, α,TR, λ, µ)

1: Initialize �rst deformation as identity, i.e. y1(x) = x.
2: for i = 2 to k do
3: Estimate transformations yi = argminy D(di−1(yi−11), di(y)) + µR(y)
4: end for
5: Apply deformations to dataset dy = (d1(y1), d2(y2), . . . , dk(yk))
6: Estimate parameters p = argminpDSSD(M(p), dy) + λ C(p)
7: Concatenate y = (y1, . . . , yk)
8: return (y, p).
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5 Joint Methods and Coupled Dynamic Models

5.1.1 A Brief Introduction to Image Registration

We start with a brief introduction to image registration, closely following [103, 102].
Let us assume that R, T : Ω → R are two (continuous) images, which are de�ned on
a domain Ω ⊂ R3. Let us additionally assume that both R and T display the same
object in the presence of motion. Image registration can be formulated as the task of
�nding a suitable transformation y : Ω→ R3 such that the energy de�ned by

D(T ◦ y,R) (5.1)

is minimal. Here D is a distance measure, which evaluates the similarity between
the two images and T ◦ y denotes the transformed image T . Concerning the distance
measure D, a straight-forward extension of the modeling described in Section 3.2.1
leads to sum-of-squared di�erences

DSSD(T ◦ y,R) :=

∫
Ω

(T ◦ y(x)−R(x))2 dx.

An inherent assumption of this metric is that T ◦ y and R admit comparable image
intensities. In the case, that R and T are obtained using di�erent modalities or scan-
parameters, several other metrics exist, see [103] for an overview.

Since the above problem is ill-posed [45], suitable regularization of the deformation
�eld has to be established. One way to do this is to restrain it to simple linear models
where y(x) = Ax + b for A ∈ R3×3 and b ∈ R3, which yields a better conditioned
problem. This is the case for rigid or the more general a�ne transformations. As the
example of motion in the abdominal area shows, there are many scenarios where rigid
or a�ne transformations do not need to apply. In this case, non-linear registration
can be a remedy for this problem. In non-linear registration, the transformation y is
estimated voxel-wise. To make the problem well-posed, (5.1) can be extended by a
regularizer R, which measures the energy of the transformation according to some
deformation model. This can be formulated as the following problem:

Minimize

J(y) := D(T ◦ y,R) +R(y − yref),

where yref enables a bias towards a particular solution, e.g. yref(x) = x. A popular
choice for R is for example elastic regularization as proposed by Broit [19], which is
given by

Relas(z) =
1

2

∫
Ω
µ〈∇z,∇z〉+ (λ+ µ) (div(z))2 dx.

Here λ, µ ≥ 0 are the so-called Lamé constants and Relas approximates the elastic
energy of the transformation. A mechanical interpretation of this energy and extensive
additional information on image registration can be found in [103]. Various extensions
of this energy exist, which can e.g. enforce invertible transformations and additionally
allow control on volume and surface changes introduced by the transformation [24,
128]. However, since we expect transformations to be limited in scale, we will again
keep the setup as simple as possible and con�ne to the standard elastic model.
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5.1 Joint Motion Correction and T1 Estimation

5.1.2 COPTER: Coupled Model-based Parameter Estimation and
Registration

In this section we will model joint approaches for T1 estimation from variable �ip-angle
(VFA) data. We will assume that intra-image motion artifacts are negligible or have
been included in the reconstruction process. Instead, our modeling will account for
motion occurring between di�erent breath-holds [69, 23, 11].

We start by introducing the modeling of the motion for the case of T1 estimation.
For ease of presentation, let us assume a continuous setting in this section. Let p̄ =
(T1,M0) : Ω → R2 denote the ground-truth parameter maps for the image domain
Ω ⊆ R3. Corresponding MRI measurements with k �ip-angles will be denoted by
d̄ = M(p̄) for d̄ : Ω→ Rk, for details see Section 2.3. As an extension of the previous
modeling, in this section we will assume that d̄ is not only degraded by noise, but
instead is in�uenced by both noise and motion e�ects. Following [23, 11, 69] we may
assume that for each measurement there is a transformation yi : R3 → R3 such that
di = d̄i(yi) + n, where i ∈ {1, . . . , k}. To simplify notation, we will use the short-
hand notation d(y) := (d1(y1), . . . , dk(yk)) and y := (y1, . . . , yk). We will estimate the
quality of a given set of parameters p and transformations y by

DSSD(M(p), d(y)) := ‖M(p)− d(y)‖22 . (5.2)

Based on the proposed distance measures and the modeling introduced in Chapter 4
and [23, 11, 69], we propose to recover parameters as well as deformations by solving the
following joint problem, Coupled Model-based Parameter Estimation and Registration
(COPTER):

Minimize:

J(p, y) := DSSD(M(p), d(y)) + λ C(p) + µR(y)
(5.3)

where D is the data�t term proposed previously, C is a coupling functional for the
parameter maps proposed in Chapter 4 and R is a regularization term for the trans-
formations, see Section 5.1.1. Again the parameters λ, µ ≥ 0 are control parameters
which determine the amount of regularity of the deformations and parameter maps. A
variant of this approach has been published previously for the choice λ = 0, an a�ne
deformation model and the linear data�t term in [69]. The choice of the regularization
parameters λ, µ is delicate: Large values often yield fast convergence and solutions
which ful�ll the imposed regularity assumptions heavily. However, these parameters
also often coincide with a less accurate data�t and thus fail to explain the data. In
order to determine optimal parameters, there are various automatic strategies [70, 67].
However, since for our the phantom experiments ground-truth data will be available,
we will determine these parameters experimentally.

Let us consider problem (5.3) more thoroughly: We can interpret the joint recon-
struction as a parameter �tting problem with the possibility to adjust not only the
parameters p, but also to rearrange the datapoint locations to improve the �tting.
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5 Joint Methods and Coupled Dynamic Models

Instead of �tting M(p(x))i to di(x), the �tting might also be performed with respect
to nearby data point di(y). Since this problem naturally becomes ill-posed, regularity
of both the parameter maps and the transformations are controlled by the coupling
and regularization terms C and R.

5.1.3 Solution Strategies for COPTER

We will now discuss various solution strategies to obtain a solution of (5.3). Most
notably, we will introduce a fully coupled approach, where the objective function in
(5.3) is optimized with respect the variable x := (y, p), and an alternating approach,
where subsequent optimizations with respect to y2, . . . , yk and p are performed. An
experimental comparison of the approaches on phantom data will be performed in Sec-
tion 5.2, showing convergence of both approaches. However, since in the fully coupled
approach it takes a signi�cant amount of time to solve a linear system, we will use the
alternating approach in our later applications.

Fully Coupled Approach

In the fully coupled approach, the variables y and p are concatenated and optimization
of (5.3) is performed with respect to x := (y, p). For optimization standard methods
like steepest descent or Gauss-Newton methods might be used. Pseudo-code for the
fully coupled optimization approach can be found in Algorithm 3. We will demonstrate
in Section 5.2 that this approach indeed converges quickly to a solution of the problem.
However, note that for second order methods this approach can come with signi�cant
computational overhead. First, the dataterm DSSD(M(p), d(y)) introduces a coupling
between the deformations and the parameter maps, causing the need to solve the
Hessian system as a whole and rendering decoupling methods impractical. Additionally,
x has size (k − 1)nDef + m · n, where nDef ∈ N is the number of parameters of a
deformation �eld, m ∈ N is the number of parameter maps and n ∈ N is the number
of voxels. Especially in the case of nonlinear deformations, this leads to large linear
systems and a slow solution of the systems, also see Section 5.2. However, as it turns
out, for linear models and quadratic coupling terms there is an e�cient method to
reduce the number of free variables and to perform the optimization only with respect
to y, the so-called Variable Projection Method.

The Variable Projection Method

The Variable Projection Technique [62, 36] is a method to optimize objective functions
which are quadratic in one set of variables and both non-quadratic and nonlinear in
another. As it turns out, in such cases there is a way to reduce the dimensionality of
the problem by optimizing the objective function on a sub-manifold of the complete
variable space which is simple to parametrize. Optimization can then be performed
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5.1 Joint Motion Correction and T1 Estimation

with respect to a smaller set of variables, thus yielding a lower dimensional, but also
a possibly highly-nonlinear problem. In [36], the variable projection technique was
experimentally compared to a standard, fully coupled approach for super-resolution,
which is a methodologically closely related problem. Since results have shown an im-
proved convergence speed, we will use VarPro to to optimize (5.3) for the linear model
for T1 estimation.

To explain the variable projection technique, let us assume that the objective function
is quadratic in the parameter maps p. The main leverage of the variable projection
technique is that in this case, given transformations y, optimal dynamic parameters
p̄ =: p(y) can be determined e�ciently by solving a simple least-squares problem. This
means that instead of optimizing J(y, p) we can instead optimize J̃(y) := J(y, p(y)),
which depends only on the transformations. On the �rst glance, it looks like this
strategy comes with a additional technical di�culties: Gradient-based optimization
strategies will require access to the derivative ∇yp(y), which might be di�cult to
obtain. However, the following calculation shows that indeed ∇J̃(y) = ∇yJ(y, p(y)),
meaning that the derivative of J̃ is equal to the derivative of J with respect to y:

∇J̃(y) = ∇yJ(y, p(y)) + [∇yp(y)]>[∇pJ(y, p(y))] = ∇yJ(y, p(y)),

since by construction ∇pJ(y, p(y)) = 0. As proposed in [36], we used a Gauss-Newton
approximation of the Hessian to obtain a second order method. Pseudo-code for the
variable projection technique can be found in Algorithm 4.

Alternating Optimization

Another way to solve (5.3) is to use an alternating optimization strategy: If some
estimate yl of the transformations is known, an estimate pl of the parameters can
be obtained by solving pl = argminpDSSD(p, yl) + λ C(p). Solving for p hence be-
comes a standard parameter estimation problem for the transformed data d(yl). Like-
wise, if some estimate pl of the parameters is available, y can be updated by solving
yl = argminv DSSD(M(pl), d(y)) + µR(y). This time the resulting problem becomes a
standard registration problem where the data d is registered to the simulationsM(pl).
Also alternating optimization strategies usually are considerably slower convergence
than coupled optimization strategies [10], we will see in Section 5.2 that the sub-
problems can indeed be solved faster yielding an overall improved convergence speed.
Pseudo-code for the alternating optimization approach can be found in Algorithm 5.

Further Implementation Details

To increase robustness of the registration and to avoid local minima, which might pre-
vent large deformations in the transformation �eld, we added a multi-level approach
from coarse to �ne: We start with down sampled data at a coarse resolution, which
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allows us to capture large deformations and to initialize the parameter �t in the ap-
proximate range. We then subsequently re�ne the resolution until we reach the image
resolution with our �nal results. For di�erentiable objective functions, we again used a
variant of the Gauss-Newton algorithm which incorporate the constraints 1 ≤ T1 <∞
and 1 ≤ M0, which ensured a well-posed parameter �t (cf. Section 3.3.2). Also note,
that only deformation parameters y = (y2, . . . , yk) will be estimated, since the problem
becomes ill-posed for y = (y1, . . . , yk).

Conclusion

We have proposed di�erent optimization schemes, which might be applied to obtain
a solution of (5.3). Most prominently, we have distinguished between a fully coupled
approach, where optimization is performed with respect to x := (y, p) and an alternat-
ing approach, where optimization is performed iteratively with respect to y2, . . . , yk
and p. For the fully coupled approach and a linear model formulation, we have addi-
tionally presented a technique to reduce the dimensionality of the problem (variable
projection technique). In the following sections we will present evidence which clari�es,
under which circumstances COPTER is superior to conventional techniques and which
optimization scheme is most suitable for practical applications.

Algorithm 3 Joint Optimization (y, p) = COPTER_Joint(d, α,TR, λ, µ)

1: Setup multilevel data dminLevel, . . . , dmaxLevel.
2: Initialize p0,minLevel by a nonlinear parameter �t to the unregistered data.
3: Initialize y0,minLevel := (y0

2, . . . , y
0
k) as identity transformations.

4: Concatenate x0 := (p0,l, y0,l)>.
5: for l = minLevel to maxLevel do
6: Initialize objective function J l for current level:
7: J l(x) := DSSD

l(M(p), d(y)) + λ Cl(p) + µRl(y).
8: repeat
9: Get Gradient dJ i at xi

10: Get Gauss-Newton approximation H i of the Hessian at xi

11: Solve H iui = −dJ i
12: βi = ArmijoLinesearch(ui, xi, J)
13: xi+1 = xi + βiui

14: until convergence
15: Prolong to next level x0,l+1 ← xi+1,l

16: end for
17: return (yi+1,maxLevel, pi+1,maxLevel).
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Algorithm 4 Variable Projection Technique (y, p) =
COPTER_VarPro(d, α,TR, λ, µ)

1: Setup multilevel data dminLevel, . . . , dmaxLevel.
2: Initialize y0,minLevel := (y0

2, . . . , y
0
k) as identity transformations.

3: for l = minLevel to maxLevel do
4: Initialize function pl(y) which maps y onto optimal p.
5: Initialize objective function J̃ l for current level:
6: J̃ l(y) := DSSD

l(M(p(y)), d(y)) + λ Cl(p(y)) + µRl(y).
7: repeat
8: Get Gradient dJ̃ i at yi

9: Get Gauss-Newton approximation H i of the Hessian at yi

10: Solve H iui = −dJ̃ i
11: βi = ArmijoLinesearch(ui, yi, J̃)
12: yi+1 = yi + βiui

13: until convergence
14: Prolong to next level y0,l+1 ← yi+1,l

15: end for
16: return (yi+1,maxLevel, pl(yi+1,maxLevel).

Algorithm 5 Alternating Optimization (y, p) = COPTER_Alt(d, α,TR, λ, µ)

1: Setup multilevel data dminLevel, . . . , dmaxLevel.
2: Initialize identity transformations y0,minLevel := (y0

2, . . . , y
0
k).

3: for l = minLevel to maxLevel do
4: Initialize functions DSSD

l(M(p), d(y)), Rl(y), Cl(p) for current level.
5: repeat
6: Estimate parameters pi+1,l = argminpDSSD

l(M(p), d(yi,l)) + λ Cl(p)
7: Estimate transformations yi+1,l = argminy DSSD(M(pi+1,l), d(y)) + µR(y)
8: until convergence
9: Prolong deformations to next level y0,l+1 ← yi+1,l.

10: Prolong parameter maps to next level p0,l+1 ← pi+1,l.
11: end for
12: return (yi+1,maxLevel, pi+1,maxLevel).
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5.2 Results: COPTER for Software Phantom Data

We now proceed to evaluate COPTER on phantom data. Real data experiments can
be found in Section 7.3 We start by clarifying the boundaries, where joint parameter
estimation and registration can be expected to be superior to standard approaches,
where these steps are combined. Our experiments indicate that for both simple data
and simple deformations, only minor advantages of the joint approach can be expected.
However, note that for slightly more complex data results of [69] already show signif-
icant improvements by the use of joint approaches. We will �nd that although joint
optimization yields minor improvements in parameter errors, results from alternating
optimization are comparable. For the following experiments we hence proceed to use
the alternating approach. Finally, we present results on phantom data which indicate
that employment of spatial coupling is capable to improve both T1 estimation and
motion correction as compared to uncoupled methods by about 30%.

5.2.1 Comparison of COPTER with Conventional Approaches on
Simple Data

In order to analyze joint approaches for parameter estimation an registration, we start
by comparing conventional approaches, where data is registered �rst and parameter
estimation is performed subsequently, with joint approaches, which combine these
steps. In this section we will demonstrate, that for simple data and simple deformations
conventional and joint approaches are yielding comparable results. Note that this is
promising especially from a practical perspective, since standard software might be
used to estimate parameters and deformations separately. However, it has been shown
in [69] that for more complicated data joint approaches can signi�cantly improve results
as compared to conventional approaches. Indeed, we will demonstrate in the next
section that the results of [69] can be improved even further if coupling terms for
parameter maps are introduced into the parameter estimation. However, note that
parts of the employed modeling in this section were early drafts which later turned
out to be sub-optimal for more general problems. Speci�cally, in this section coupled
parameter estimation will be performed in the (E1, N) coordinate system, which later
was determined unsuitable due to exponential e�ects, see Section 4.4. Also, in this
section we will consider an additional stabilization term, which is based on L2 distances
of di�erent images and thus ill suited for di�erent �ip angles. We nevertheless found
positive e�ects by including the latter in our setting. These parts will be improved in
the next section. Results of this section have been published in [H2].

Objective Function

We start by clarifying the estimation model. Based on the linear reformulation of
T1 estimation (see Section 3.2.4) and an a�ne transformation model, in this section
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we will study the following problem to recover p = (E1, N) from motion and noise
degraded data:

Minimize:

J(y, p) := DSSD(A(y)p, b(y)) + µR(y) + λ C(p),
such that

R(y) =
k∑
i=2

D(di(yi), di−1(yi−1)),

λ C(p) = λ1‖∆hp1‖2 + λ2‖∇hp2‖2,
yi(x) = Tix+ si for Ti ∈ R3,3 and si ∈ R3.

(5.4)

As described in Section 3.2.4, we can then recover T1 = − log(E1)/TR from p. A
straight forward comparison with (5.3) shows that the above problem falls in the class
of joint approaches with a speci�c choice for the regularizer R(y): The data-terms
D(di(yi), di−1(yi−1)) can be regarded as stabilization terms for the transformations,
since they are forcing additional constraints for the deformations. However, note that
due to the intensity di�erences usage of an SSD distance is sub-optimal and will be
discarded in later experiments. Nevertheless we have found that for our data this term
has had positive e�ects on the parameter estimation. For the coupling term C(p),
we denote by ∇h ∈ Rn,n a discrete Gradient- and by ∆h ∈ Rn,n discrete Laplacian
Operator. the Laplacian stabilization in E1 is chosen to account for the bias introduced
by the exponential scaling. Optimization is performed using the Variable-Projection
technique described in Section 5.1.3.

A Software Phantom with A�ne Deformations

We used the XCAT phantom [133] to obtain ground truth data of an axial 2D scan
of a human body with voxel size 1.8 mm3, matrix size 256 × 256 and TR = 2.51 ms.
Flip angles α := (5◦, 8◦, 15◦, 25◦) were chosen to simulate signals the following areas
using (2.19): Kidney (medulla/cortex/pelvis), spleen, liver, bone marrow, fat and air.
T1-values for these structures were taken from [8]. Since no data for the steady-state
magnetization M0 was at hand, we used the constant value M0 = 1500 for all tissue
types as previously proposed in [33], although this value is expected to vary with the
tissue. The static phantom was then perturbed by small a�ne deformations, yielding
a dataset ddef (cf. Figure 5.2). Finally Rician noise, as expected in MR data (cf.
Section 6.2.1), was created by adding white Gaussian noise to the real and imaginary
part of the Fourier-transformed data. We created multiple noise and motion corrupted
datasets at various Signal to noise ratios, de�ned as SNR := µ(ddef)/µ(d−ddef) where
µ denotes the mean value of the respective signals.

107



5 Joint Methods and Coupled Dynamic Models

Reference Methods

We have compared the proposed algorithm to two conventional approaches to recover
T1-Maps. These consist of registration and subsequent parameter estimation. We begin
by outlining the registration methods:

1. A sequential registration. Here the registration was performed sequentially di →
di−1 with an implementation from FAIR [102].

2. A sequential stabilized registration. Here the registration was performed by min-
imizing J(v) :=

∑k
i=2 ‖di(yi)− di−1(yi−1)‖2. The method was chosen to investi-

gate possible advantages introduced by the coupling of registration parameters
in (5.4).

For the subsequent parameter estimation, parameter maps (E1, N) were calculated by
solving

Minimize: J(z) := ‖Az − b[yopt]‖2 + α1‖∆dE1‖2 + α2‖∇dn‖2),

where yopt denotes the optimized deformation parameters. Following the parameter
estimation, T1 was reconstructed from E1 by calculating T i1 = −TR/ log(Ei1). Since
changing to logarithmic scale can introduce large outliers, the relative error in T1

(realT1 := ‖T rec
1 − T true

1 ‖2/‖T true
1 ‖2) was calculated only on areas with constant T1

(cf. Figure 5.2). We experimentally determined parameters α1 = 105, α2 = 10−1 and
β = 1 for all experiments including noise. For the experiment without noise we chose
α1 = α2 = 10−3.

Results

Evaluation was performed with respect to the maximal deformation error (maxDE),
meaning the maximal error of all four deformations with respect to the mean defor-
mation in pixels. Results for various SNRs are displayed in Table 5.1. It can be seen,
that the parameter error in T1 mildly pro�ts from the joint approach. Relative errors
in T1 are reduced slightly from 0.4253 to 0.4049. However, improved reconstruction
was possible regardless of larger deformation errors. Reasons for this behavior might
be linked to smoothing e�ects resulting from the spatial coupling in (E1, N).

5.2.2 An Extension of COPTER to Nonlinear Deformations

In this section we show how the stabilized reconstruction introduced in (5.3) can be
used to achieve higher precession in T1 reconstruction in the presence of nonlinear
deformations. The main contribution of this work lies in the introduction of spatial
coupling for the parameter �t. For the regularization of the deformation we chose an
elastic regularizer for all experiments, see [103, 102] for details.
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Figure 5.2: Phantom data and reconstruction results. Left images: Ground-truth sig-
nals and noisy signals for minimal and maximal �ip-angles α1 = 5◦ and
α4 = 25◦. Right images: Ground-truth (GT) and Reconstructed (Rec) T1-
Maps for SNR=4.80 as well as the area of comparison to calculate the
relative error.

Table 5.1: Results for various SNRs. For the initial deformation we measured
maxDE=9.6766 with respect to the identity-transformation. Deformation
errors are expressed in pixels.

Joint Seq Seq-Stab
SNR maxDE reT1 maxDE reT1 maxDE reT1

∞ 0.3149 0.0076 0.2256 0.0029 0.2552 0.0039
10.66 2.0685 0.3045 0.4710 0.3108 0.5262 0.2848
5.38 2.8197 0.3692 1.6124 0.4062 3.0644 0.3836
4.80 3.2040 0.4049 2.3348 0.4381 3.4063 0.4253

Let us begin by stating the model equations for the discrete setting: Assume that a
discrete motion and noise corrupted dataset d = (d1, . . . , dk)

> ∈ Rkn is given, where
di ∈ Rn. We aim to reconstruct p ∈ R2n and y ∈ Rndef ,k−1, where ndef is the number
of deformation parameters and for our model in the order of 3n. In the experiments
we will do this by minimizing one of the following functionals:

JCOPTER(p, y) := DSSD(M(p), d(y)) + α CTP(z) + βRElas(y), (5.5)

JRef(p, y) := DSSD(A(y)p, b(y)) + βRElas(y). (5.6)

Note that the reference method JRef is the direct extension of the method originally
presented in [69] to nonlinear transformations and is hence formulated for the linear
model described in Section 3.2.4. Since we expect bene�ts from using the nonlinear
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5° 8° 15° 25°

Figure 5.3: Figure showing a 2D slice of the 3D software phantom with nonlin-
ear motion at 9% noise. Signals were simulated with �ip angles α =
(5°, 8°, 15°, 25°) and nonlinear motion. For details see text.

data�t as well as spatial coupling of the parameters, we propose to minimize the
stabilized variant JCOPTER instead. Note that an extension to di�erent stabilizers
is straight-forward. However, due to the heavy computational load for 3D data, we
con�ne to Tikhonov-Philips coupling.

A Software Phantom with Nonlinear Deformations

A ground-truth T1 parameter map displaying the human kidney was set up as as de-
scribed in Section 3.6.1. After that, k − 1 motion �elds were generated by setting up
spline transformation with three random coe�cients per voxel (standard deviation was
0.015) [102]. The motion �elds were then applied to k − 1 copies of T1 and M0 using
linear interpolation to simulate partial volume e�ects. As we were mainly interested to
study the impact of the spatial coupling, we obtained the �nal ground-truth deforma-
tion �eld by registering the undeformed T1 map to the T1 maps deformed with spline
coe�cients using an elastic regularizer. This ensures that the ground-truth deforma-
tion maps are physically meaningful deformations. Finally, we used the signal-equation
to simulate MR signals with sequence parameters S4, which are the same as the real
data (Section 3.6.1). After that Rician noise was added at with an average of 0%, 9%
and 15% of the signal strength.

Results and Conclusion

The T1 estimation was evaluated using the voxel-wise relative error in T1, which was
then averaged over the cortex and medulla of the kidney. The regularization parame-
ters were determined manually for each noise level individually. Results are shown in
Figure 5.4. One can see that the alternating optimization and the joint optimization
strategy yield comparable results. For the highest noise level, results from the alter-
nating approach are even superior to the fully coupled approach. This is possibly due
to the simpler optimization: For the fully coupled approach we have found that it is
di�cult to cope with e�ects of di�erent variables and the coupling. Here additional
experiments are necessary to further improve the optimization and to �nd strategies
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to deal with the di�erent scaling of the variables: Changes in the parameter maps are
expected to have a signi�cantly larger e�ect on the objective function that changes in
the deformation parameters. Since experiments for the a�ne deformation model have
not shown these e�ects, we suspect the signi�cantly reduced number of parameters to
be responsible for this behavior. This e�ect might also be responsible for the non-zero
error for the zero noise data.

As compared to the uncoupled approach where Jref is minimized, one can see that
parameter errors are signi�cantly lower. This is also re�ected in a visual inspection of
the recovered T1 maps, where large outliers for the recovery using Jref can be observed.
Note that concerning the estimation of the deformation �eld, growing structures can
be observed in the unstabilized approach. In these regions the model parameters are
emulating motion, leading to a inferior motion correction. Note that this behavior is
reduced by employing spatial coupling. In conclusion, one can see that for the given
data spatial coupling is indeed capable to improve both reconstruction and registra-
tion results. Nevertheless we suggest to perform additional experiments, where data is
registered �rst and parameters are estimated subsequently. These experiments could
help to determine causes for the non-zero errors in the presence of no noise, which
might be linked to the large deformations appearing in the model. Real data results
for these approaches can be found in Section 7.3.

5.3 Blind Parameter Estimation for the Patlak Model

In this section we will propose a novel method to compute a voxel-wise map displaying
the local �ltration of the kidney using the Patlak Rutland Model. Most notably, the
described method will not require knowledge of the plasma concentrations ca, the so-
called arterial input function (AIF). A variant of this method has been published by
the author in [H1].

A well-known challenge of this and other pharmacokinetic models for GFR estimation
lies in the dependency of the model on the AIF [38, 99, 32]. As outlined in Section 2.2,
the AIF is usually estimated directly from the DCE-MRI data by measuring the plasma
concentration in a feeding vessel of the kidneys. However, since there is no standard
protocol to select the AIF and GFR results are highly dependent on the choice of the
region, this approach is di�cult in practice and requires experienced users [99, 38].
Since these factors make AIF selection a nuisance, di�erent approaches have been pro-
posed to cope with this issue, most common the approach to use standardized AIFs
[156, 113]. However, as the results from [113, 99] show, the AIFs between patients
can di�er signi�cantly. Another class of approaches exploits explicit knowledge of pa-
rameters for speci�c tissue [85, 162, 146]. Here di�erent methods have been employed
recover the AIF from such tissue. In this work we will follow a similar approach which
was �rst proposed in [121]. Here the AIF was introduced as a further unknown in
the parameter estimation. It was assumed that multiple tissue curves were available
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Noise JRef COPTER_Alt COPTER_Joint

0% 0.1455 0.1020 0.0980
9% 0.1832 0.1208 0.1201
15% 0.2061 0.1379 0.1395
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Figure 5.4: Table showing the mean relative error in T1 for registration of 3D phantom
data. Also shown are registration results for slice 35 of the phantom data
at 9% noise and �ip-angles α2 = 8°, α3 = 15° as well as slice 35 of the
recovered T1-maps estimation. Results show that both the unstabilized
and the stabilized approach accurately capture motion whereas improved
results for parameter estimation are obtained in the stabilized method.
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which all could be explained with the same AIF. This allows to formulate a joint
optimization problem, where not only the pharmacokinetic parameters are estimated
but also one AIF which couples all tissue curves. However, our experiments show that
in the presence of noise and low-quality data the proposed method shows a lack of
stability. In this paper, we suggest to extended the approach [121] by adding spatial
coupling for the parameter maps and a normalization constraint on the AIF to cope
with non-uniqueness of solution.

Our results indicate that this additional stabilization indeed yields improved results
of up to 45 percent for Ktrans in the presence of strong noise. However, we also �nd
that stabilization in the coupled setting is di�cult: Sine one parameter determines the
other, regularity constraints on one parameter will impact on the other as well. Our
experiments indicate that hence not only stabilization of both parameters (AIF and
parameter maps) is necessary, but that additionally some estimate of one parameter
needs to be available. We will thus assume that an estimate of the AIF is available,
which can be given by noisy measurements or a population based average as proposed
in [113]. Although our method can deal with a variety of pharmacokinetic models, for
ease of presentation and computation we focus on the so-called Patlak-Rutland model
[116, 115, 127]. We start this section by repeating the Patlak-Rutland Model which
has been introduced in Section 2.2 and in Section 3.2.3. For a continuous arterial input
function ca : [0, T ) → R with discrete counterpart ca := (ca(t1), . . . , ca(t1))> this is
given by

M(p, ca) = vaca(t) +Ktrans

∫ t

0
ca(s) ds

≈ p1ca + p2(Lca)

where L ∈ Rk,k is a lower triangular matrix which describes the integration (see
Section 3.2.3).

5.3.1 A Heuristic Motivation for Joint Approaches

We start by motivating the notion behind joint approaches from the perspective of
linear systems: Given data d ∈ Rk our usual goal is to parameters p ∈ Rm such
that J(p) := ‖M(p) − d‖2 is minimal. However, let con�ne to linear systems since
our standard technique for parameter estimation is to use a Gauss-Newton technique
where the residue is linearized:

Minimize J(p) := ‖Ap− b‖2, where

A := [∇pM(p0)] and b := ∇pM(p0)p0 + d−M(p0).

In the following let us assume that A ∈ Rk,m has full rank, meaning that the p0 is
identi�able. Indeed, in this case standard theory implies that this problem has a unique
solution if k ≥ m, which in our situation means that there are more measurements
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than parameters. However, in many cases it even holds that k >> m and the resulting
system is heavily overdetermined. This motivates the idea that it could be possible
to estimate additional variables by extending the model. In the case of the Patlak
Model we will include the arterial input function ca as an additional variable with
k unknowns in the parameter estimation. Combined with the standard parameters
p ∈ R2 this yields a new vector of parameters (p, ca)> ∈ R2+k. However, if only one
data curve d ∈ Rk is available, the resulting system is underdetermined and hard to
solve. If on the other hand more data curves (d1, . . . , dn) ∈ Rnk are available, we will
have roughly kn equations for 2n + k unknowns. If k > 2, this system will still be
overdetermined for n > k/(k − 2) data-curves.

5.3.2 Joint AIF and Parameter Estimation

We assume that discrete concentration values d ∈ Rnk are available. Following Sec-
tion 3.2.3 and the introduction of this section, we need to �nd for each location i
parameters pi := (va,i,K

trans
i ) such that M(pi, ca) ≈ d, where ca ∈ Rk is the arte-

rial input function. As for all compartment models, it is assumed that there is one
global AIF for all compartments. Following the approach in [139], we neglect local
delays in the arrival time and assume the AIF to be constant for all voxels. We will
recover the parameters and the AIF by minimizing the following objective function
J : R2n × Rk → R:

J(p, ca) := DSSD(M(p; ca), d) + α1 C(p) + α2 S(ca),

s.t. p ≥ 0, ca ≥ 0 and 〈e, ca〉 = 1.
(5.7)

In our experiments we chose C(p) := CTP(p) and S(ca) = ‖W · F(ca)‖2, where W :=
1/|caref | are the inverse amplitudes of a Fourier transform of a reference AIF. The
latter constraint gives an additional bias onto a pre-de�ned arterial input function,
which might be corrupted measurement or a population-based AIF. The vector e is an
integration vector, which forces a �xes scale of the model: To see the necessity for this
constraint, we note that the Patlak-model is invariant with respect to scale σ ∈ R, if
both p and ca are estimated. This can be seen from

M(p, σca) = vaσca(t) +Ktrans

∫ t

0
σca(s) ds = M(σp, ca)

This means that results of the approach will be independent of the scale-factor σ. Of
course, various modi�cations of this model are possible.

The minimization of (5.7) with the modi�ed Gauss-Newton optimization on a unit
simplex, see [9]. Results for this reconstruction are displayed in Section 5.4.
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5.4 Results: Joint AIF and Parameter Estimation for

Software Phantom Data

In this section we will present results which show how joint methods can improve
parameter estimation, if no or only a low-quality AIF is available. Speci�cally we will
evaluate the method which was proposed in Section 5.3.

In a �rst step, we show results for a controlled environment, where the true solution is
known. Here, we use a software phantom to create numerical data from given parameter
maps and added various amounts of white Gaussian noise. Note that we have assumed
a Gaussian Noise model for contrast agent concentrations, since to the best of the
authors knowledge no analytic relationship between noisy data and contrast agent
concentrations has been established yet. We compared our method to the constrained
version of an unregularized method proposed in [121], which is most closely related.
We �nd that in the presence of noise the spatial stabilization improves robustness of
the parameter estimation.

5.4.1 Phantom Data

We simulated 11679 uptake curves with a software phantom using the AIF measured
by Parker et al. [113] and the Patlak model. We set the parameters for the two regions
(Cortex and Medulla) constantly to pCortex1 = 0.08, pCortex2 = 0.25 and pMedulla

1 =
0.01, pMedulla

2 = 0.16, respectively, thereby approximating real kidney parameters. To
simulate partial volume e�ects, the parameter maps were smoothed with a Gaussian
�lter. The result is displayed in Figure 5.5. The uptake curves were generated in a
time interval [0s, 40s] at a time resolution of 0.1s. Afterwards the MR measurements
were simulated by taking only every 25th value, which corresponds to a measurement
every 2.5s. White Gaussian noise was added to the simulated uptake curves at various
signal-to-noise ratios (SNRs). With the arithmetic mean µ(C) and the noise standard
deviation σNoise, we use SNR := µ(C)/σNoise as an indicator of quality.

Results

We compared our results by the following relative error and relative standard devi-
ation RE(q) := ‖qtrue − q‖2/‖qtrue‖2, SD(q) := σ(qtrue−q)/µ(qtrue). The regularization
parameters were determined experimentally and were �xed at α1 = (1, 2), α2 = 1.
Using the novel method, stable reconstruction with a relative error less than 6% was
possible up to a noise level of SNR = 6. In order to remove the dependency on scale,
we renormalized the integral of the estimated AIF after the calculation to be the same
as the integral of the AIF of the ground truth. Results are displayed in Figure 5.5 and
Table 5.2.
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Table 5.2: Reconstruction results for software phantom data, 11, 679 spatial locations,
16 time points. The relative errors and standard deviations of the parameter
maps p and q obtained by the method of [121] and the new regularized
method are summarized.

uncoupled model [121] coupled model
RE(p1) RE(p2) RE(p1) RE(p2)

no noise 0.0317 0.0059 0.0307 0.0454
SNR = 6 0.1791 0.1127 0.0583 0.0476
SNR = 4 0.9510 0.6400 0.0971 0.0734

p1true
p1Opt 

 RE in p1: 0.1791

p2true
p2Opt 

 RE in p2: 0.1127

p1true
p1Opt 

 RE in p1: 0.0583

p2true
p2Opt 

 RE in p2: 0.0476

Figure 5.5: Reconstruction of p and q maps by the unregularized method [121] com-
pared to the new regularized method. Phantom data with SNR = 6.
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Conclusion

A simulation shows that it is indeed possible to estimate parameters for the Patlak
Model, even if only a low-quality measurement of the AIF is possible and parameters
are degraded by severe noise. Compared to the unregularized method [121], the relative
error in noisy data is reduced by up to 45 percentage points for Ktrans. However, note
that that it was not possible to remove the dependency on the AIF completely and
we still rely on a low-quality estimate of the AIF. If only the parameter maps were
stabilized, we found that results were highly dependent on the stabilization parameter.
We assume that reasons for this are linked to the coupling of ca and p: Since in
the double-blind setting one parameter determines the other, systematic errors in
one lead to systematic errors in the other. In this case best results were achieved if
all stabilization parameters were set to zero. This sensitivity needs to be taken into
account especially for clinical data. Another problem is that due to the underlying
model our method cannot yet estimate parameters uniquely. A proper scaling approach
has still to be identi�ed, but could exploit knowledge of some tissue parameters [146]
or knowledge of the approximate integral of the arterial input function as in [53]. Note
that this problem is delicate, since this unknown is a direct scaling constant. This
problem a�ects especially the evaluation on clinical data, see Section 7.4.

However, we have found that if an approximations of the arterial input function is
available, the introduction of spatial coupling yielded signi�cantly reduced errors in
parameter maps were observed on our test dataset. Also, our method has the advantage
of being easily extendable to other compartment models, di�erent regularization such
as TV and time delay or smoothness assumptions on the AIF. Evaluation on real data
will be performed in Section 7.4.
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In this chapter we will demonstrate limitations of traditional dynamic models to re-
cover perfusion in coupled systems. We will show that, although dynamic models are
powerful concepts which have been used with great success, the inherently local design
has limitations if blood �ow is expected to pass through a coupled system. Speci�cally,
we will show that traditional dynamic models will overestimate perfusion if they are
applied to only parts of a such a system. In the experimental evaluation in Section 6.3
we will additionally present real data which indicates that such e�ects can also be
found in coarse scale on real data. All results of this chapter have been submitted to
the IEEE Transactions on Biomedical Engineering [S4].

We will start in Section 6.1 by introducing a novel continuous model for contrast agent
propagation through a tissue patch with a highly developed capillary system. We will
later show, that a discretization of this continuous model can equivalently be described
by coupled traditional models. The simulation of the contrast-agent propagation will
be performed in two steps, which are depicted in Figure 6.1: We start by modeling
steady-state blood �ow through a tissue patch under the assumption that the �ow is
mainly driven by pressure di�erences (Darcy's law). Having obtained a �ow-�eld, we
then model the contrast-agent propagation through the �ow �eld in a second step. As
compared to established approaches, which model contrast agent propagation through
blood vessels [26], our modeling is based on porous media theory. It thus additionally
incorporates the assumption that only fractional parts of the tissue are accessible for
�uid, which is a basic assumption for live tissue.

We will then relate the novel, continuous model to the traditional Meier-Zierler Model,
which describes the average contrast agent concentration in a tissue patch by

C(t) = Pa

∫ t

0
ca(s)R(t− s) ds.

In Section 6.2.1 we will show that a discretization of our model can be equivalently de-
scribed by coupled traditional dynamic models for perfusion. Speci�cally, we will �nd
that each voxel of the continuous model can also modeled as a well-mixed compart-
ment, see Section 2.1. We will also describe perfusion estimates of the deconvolution
method, if it is applied to only parts of the system.

In Section 6.2.2 we will show that the medical concept of perfusion is ill-suited for
strongly coupled systems as the one described above. We show that for the above case
recovered perfusion scales with the inverse voxel volume and thus extend the results
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Figure 6.1: Displayed are the two steps for setting up the software phantom. First, a
steady-state �ow-�eld is simulated using Darcy's law and standard mod-
eling for incompressible �uid. Second, contrast agent propagation through
the �ow-�eld from (Step 1) is simulated using porous media modeling.

of [72], where a generic argument for such overestimation is presented. Nevertheless
we introduce a tailored notion of perfusion for the PDE model, which is in-line with
the medical one. However, we predict overestimations of perfusion if the traditional
models are applied to only parts of the system.

The experimental evaluation of this section can be found in Section 6.3.

6.1 A Synthetic Model for Capillary Flow

Structurally, the assumptions for the convolution model as well as the maximum slope
model for CBF estimation presented in Section 2.1.4 are similar. The validity of both
methods rely on a ROI having only one inlet and one outlet and that transition times
are prescribed by some probability distribution. In fact, the assumption of one inlet and
one outlet may easily be violated when we locally describe contrast agent propagation
through a larger area with a highly developed capillary system. For this type of model
system we expect instead a set of coupled equations where each voxel can be regarded
as an inlet for surrounding voxels. Hence, in order to make a realistic synthetic model
for capillary �ow, we decided to describe the contrast agent propagation as a spatially
coupled transport process, i.e. using partial di�erential equations (PDE) for transport.
We will use this PDE �eld model for the validation of the traditional methods for
perfusion estimation in such systems.
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We start by introducing the modeling of a directional �ow �eld in the simulated patch,
see Figure 6.1 for such a �ow-�eld. Within the porous capillary system we expect the
blood �ow to be driven mainly by pressure di�erences. We therefore set up a PDE �ow
model using the continuity equation as well Darcy's law [40]. Additional parameters
represented in the model were blood viscosity and a possibly anisotropic permeability.
For sake of argument, permeability was assumed to be isotropic and constant in our
experiments. A major di�erence of the described �ow-model model and traditional
tracer kinetic modeling is the normalization of the �ow �eld. In traditional tracer ki-
netic modeling normalized �uid �ow is normalized with respect to volume and has thus
units [mm3/(s mm3)] (perfusion). However, we will demonstrate in Section 6.2.2 that
the concept of perfusion is discretization dependent. For the current �ow simulations
we instead used vector valued surface �uid �ux q = q(x) with units [mm3/(s mm2)],
in agreement with geoscience and porous media simulation theory. The �uid �ux is a
vector �eld describing the volume of �uid per unit time �owing across a sliced unit
area of the sample. A novel model to convert vector valued �ux to scalar valued per-
fusion with units [mm3/(s mm3)] will be introduced in Section 6.2.2. Apart from the
normalization with respect to surface, the assumptions of linearity and stationarity
in the �uid �ux are in complete agreement with standard pharmacokinetic modeling
[137].

Having obtained a 3D directional �ow �eld, we proceed to simulate contrast agent
propagation proportional to the �ow using linear transport equations. In the modeling
of the transport we account for fractional blood volume as well as conservation of
contrast agent mass. Since we assume that contrast agent propagates along the vessels,
we decided to neglect di�usive e�ects.

Whereas propagation of contrast agent through major blood vessels based on Navier-
Stokes equations has been performed earlier [26], our modeling additionally considers
fractional cerebral blood volumes (porosities) di�erent to one. Speci�cally, our mod-
eling of the transport and �uid �ow is in line with standard porous media theory [1]:
We assume that within a tissue-patch Ω ⊆ R3 not all areas are accessible for �uid.
Speci�cally, we assume that Ω is partitioned by

Φ : Ω→ {0, 1}

x 7→

{
1 if x is accessible for �uid,

0 if x is not accessible for �uid.

Since our later modeling will be tailored to describe average concentrations on small
subdomains (voxels) V ⊆ Ω, we furthermore de�ne the porosity for subsets of Ω,

φ : P(Ω)→ [0, 1]

V 7→
∫
V

Φ(x) dx / Vol(V ).
(6.1)

We start by introducing the modeling of blood �ow through a patch of tissue with a
highly developed capillary system.
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6 Perfusion in Coupled Systems

6.1.1 Modeling Capillary Blood Flow

For the time being, we will not consider the contrast agent concentrations, but rather
the �ow of �uid in general. The modeling will be tailored for porous media systems,
where locally only fractions of the system are accessible for �uid.

Let Ω ⊆ R3 be an open, bounded domain, through which a �uid with density ρ :
Ω× [0, T ]→ R [mg/mm3] is propagated. We furthermore assume that �uid-transport
follows a �ow-�eld q : Ω → R3 [mm3/(s mm2)]. We will describe the amount of �uid
passing through an arbitrary control volume Ωi ⊆ Ω with porosity φΩi := φ(Ωi). Let
ρΩi(t) [mg/mm3] be the average density of the �uid in Ωi at time point t. Assuming
conservation of mass and a source/sink-term Q̃ : Ω→ R [mg/(mm3 s)], where �uid is
introduced into Ωi, leads to the following modeling:∫

Ωi

(φiρi)t dx = −
∫
∂Ωi

〈qρ, ν〉 dσx+

∫
Ωi

Q̃dx,

where ν(x) is the outward unit normal of ∂Ωi. Assuming incompressibility of the �uid
and stationarity of the �ow-�eld q leads to

0 = −
∫
∂Ωi

〈q, ν〉 dσx+

∫
Ωi

Qdx,

for the new source/sink term Q := Q̃/ρ [mm3/(s mm3)], which is now independent of
�uid an given as normalized volume �uid �ow. Note that this equation is in local form
consistent with ∣∣∣∣∣div(q) = Q, x ∈ Ω

〈q, ν〉 = 0 x ∈ ∂Ω

∣∣∣∣∣ (6.2)

where Q is a volume �ux, only non-zero within the source or the sink locations.
Note that Q is closely related to the perfusion PΩ of the tissue, which has also units
mm3/(s mm3). Since perfusion PΩ by de�nition describes the amount of blood being
delivered to Ω per unit time, we �nd that

PΩ =

∫
Q>0Qdx

Vol(Ω)
.

For details on perfusion see Section 2.1.

Since (6.2) is ill-posed even for known Q, we now proceed to �nd further constraints
to �nd an explicit expression for q. Low velocity �uid �ux in porous media is usually
assumed to be driven by pressure di�erences and described by Darcy's law in the
absence of gravitational forces [40]:

q = −k

µ
∇p. (6.3)
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6.1 A Synthetic Model for Capillary Flow

Here k : Ω → R3,3 [mm2] is the permeability tensor, p : Ω → R [Pa] is the pressure,
and µ : Ω→ R [Pa s] is the viscosity of the �uid. For sake of argument we will assume
that k(x) is a positive de�nite and diagonal tensor. Equations (6.2) and (6.3) can be
combined, yielding the following elliptic partial di�erential equation in the pressure-
�eld p, ∣∣∣∣∣∣−div

(k
µ
∇p
)

= Q, x ∈ Ω

〈p, ν〉 = 0, x ∈ ∂Ω.

∣∣∣∣∣∣ (6.4)

Here p : Ω→ R is unknown, Ω ⊆ Rn is a bounded domain, k : Ω→∈ Rn,n is a positive
de�nite diagonal tensor �eld and µ : Ω → R+ and Q : Ω → R are scalar functions.
Note that the assumption µ > 0 and k positive de�nite are ensuring that the �ow
is still following the negative gradient of p. Also note that the Neumann-Boundary
condition was added to ensure an isolated system.

To illustrate (6.3), let us consider some properties of its solutions. From a physical
perspective, one would expect that the total amount of �uid entering the system must
equal the amount of �uid leaving the system, since Neumann-Boundary condition
were assumed. The following Lemma veri�es this guess and additionally shows, that
we cannot expect a unique solution:

Lemma 20. Let p ∈ C1(Ω) be a solution of (6.4). Then it holds that

1. p(x) + c is a solution for any c ∈ R

2.
∫

ΩQ(x) dx = 0.

Proof. Let p ∈ C1(Ω) be a solution of (6.4).

1. Let c ∈ R be arbitrary and p̃(x) := p(x)+c. A straight-forward calculation shows
that p̃(x) is another solution of (6.4).

2. A direct application of the divergence theorem shows that∫
Ω
Qdx =

∫
Ω

div
(k
µ
∇p
)

dx

=

∫
∂Ω

(k
µ
∇p
)
· ν dσx

=

∫
∂Ω

k

µ
pν dσx = 0.

since pν = 0 on ∂Ω. �
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Figure 6.2: Porous media (PM) �ow model with a source in the upper left corner and
a sink in the lower right corner. (a) Pressure map p obtained by solving
(6.4). (b) Flow q := −k/µ∇p, given by (6.3).

Experiments

Equation (6.4) was solved numerically using two-point �ux-approximation (TPFA),
well known within porous media simulations [31, 50]. We simulated a tissue patch Ω
with dimensions 3 mm × 3 mm × 1 mm, within the same order as the characteristic
length of the capillary bed or individual capillaries, ranging from 0.1 mm to 3 mm [34],
or 0.25 mm to 850 mm [149]. The source term was assigned to the upper left voxel and
the sink term was assigned to the lower right voxel. The source can be understood as the
arterial compartment, the sink as the venous compartment, and the remaining �eld of
view as the capillary system. We assumed that a total perfusion of 50 ml/s/100ml for Ω,
which is within the average range reported for brain perfusion [108, 134]. Permeability
was chosen to be isotropic and constant throughout the domain k = kI for the identity
I and k = 5× 10−6 mm2. Dynamic blood viscosity was chosen as µ = 5× 10−6 Pa s
according to [124]. Porosity (e.g. CBV) was assumed to be φ = 0.05, in line with
measured CBV of the brain [134]. Results for the pressure map p and the �ow-�eld q
are depicted in Figure 6.2

Conclusion

In this section we have derived a basic model for blood �ow through a tissue patch with
a highly developed capillary system. We have assumed that the patch can be modeled
as a porous medium, where the �ow is driven by pressure as expressed by Darcy's law.
With the additional assumption of steady-state and incompressibility of the �uid, we
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6.1 A Synthetic Model for Capillary Flow

have shown that the �ow-�eld follows the general modeling for incompressible �uid-
�ow with div(−k̃∇p) = Q, for a source/sink �eld Q and a pressure map p, although we
were modeling �ow in a porous medium. We now proceed to describe contrast agent
propagation through the �ow-�eld.

6.1.2 Modeling Indicator Dilution

In the previous section we have introduced a model which describes blood �ow by �uxes
and pressure �elds. The introduced framework does not relate �ow to propagation of
a contrast agent. This section describes a model for contrast agent propagation in
the tissue as it is dissolved in the evolving �uid. We assume that the contrast agent
is entering the domain along with the �uid �owing in via the source, and similarly
extracted at a sink. The resulting contrast agent concentration map is a simulation of
the contrast agent concentration one would observe within real MRI measurements.

In order to de�ne meaningful and continuous contrast agent concentrations, we �rst
describe the average contrast agent concentration in an (arbitrarily) small tissue patch
Ωi ⊆ Ω. Assume that Vi is the volume of Ωi and vi the blood volume within Ωi. By
de�nition (6.1), porosity re�ects the relative space within the vascular system, and
is given by φi = vi/Vi. Let Ci(t) denote the contrast agent concentration in Ωi with
respect to the whole volume Vi at time point t. The contrast agent concentration with
respect to the blood volume vi is denoted by ci(t). From the de�nition of ci, Ci and φi
we obtain the relation Ci(t) = φici(t). Since we expect mainly transport and marginal
di�usion, the change in tracer mass within Ωi occurs only from advective �ow and the
source and sink �eld Q. Let us write the source- and the sink term as Q = Qsi +Qso

where Qsi < 0 is the sink and Qso > 0 is the source, and zero elsewhere. Both are
assumed to be zero everywhere except at in the respective source and sink locations.
Note that

∫
ΩQdx = 0, cf. Lemma 20. The change in contrast agent at time point t

from �uid entering the control volume can be written as

−
∫
∂Ωi

ci(t)(qi · n) ds+

∫
Ωi

ca(t)Qso,i dx+

∫
Ωi

ci(t)Qsi,i dx, (6.5)

where n is the outward unit normal on ∂Ωi. In standard pharmacokinetic modeling, ca

is referred to as the arterial input function (AIF). From the principle of conservation
of tracer molecules it must hold that∫

Ωi

φi
dci
dt

dx+

∫
∂Ωi

c(t)(qi · n) ds

=

∫
Ωi

ca(t)Qso,i dx+

∫
Ωi

ci(t)Qsi,i dx. (6.6)

Now, let the contrast agent concentrations, porosity, volume �uxes, and surface �ux
be continuous functions of space and time. Letting the |Ωi| → 0 shows that equation
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t = 0 s t = 2 s t = 4 s t = 6 s

t = 8 s t = 11 s t = 13 s t = 15 s

Figure 6.3: Figure showing simulated contrast agent propagation through the �ow �eld
q using (6.6). The actual simulation was carried for 30 s, out until all
contrast agent had left the system.

(6.6) is consistent with the continuity equation on local form∣∣∣∣∣∣φ
∂c

∂t
+∇ · (cq) = caQso + cQsi x ∈ Ω, t > 0,

c(x, t) = 0 x ∈ Ω, t = 0.

∣∣∣∣∣∣ (6.7)

where we also added the initial value c(x, 0) = 0 to ensure existence. Equation (6.7)
is a linear transport equation in c(x, t). Following [49], equation (6.7) admits a unique
local solution.

Experiments

The transport of contrast agent described in (6.6) was implemented using �rst order
upwinding [60, 89], yielding a discrete 2D+time contrast agent concentration map
C(xi, tj). For arterial input, we chose a standard function [111], the gamma-variate
function ca(t) := D0(t−t0)αe−(t−t0)/β for default parameters α = 3,D0 = 1 mmol/(l s),
β = 1.5 s and t0 = 0 s. Porosity (e.g. CBV) was assumed to be constant φ = 0.05, in
line with measured CBV of the brain [134]. Snapshots of the simulated contrast agent
propagation can be found in Figure 6.3

Conclusion

Based on the assumption that pure capillary system can be modeled as a porous
medium, we have introduced a model which describes contrast agent propagation
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6.2 Relating the Synthetic Model and Traditional Models

through such a system. Whereas a similar modeling has been applied to simulate
contrast agent �ow through the aorta, we additionally consider porosities other than
one and thereby generalize the approach taken in [26]. Although our experiments made
use of simple parameters, the modeling can be extended to a more complex structure
easily. Since the analysis in the next section will be mostly independent of �nal struc-
ture of the model, we will con�ne to the simple setting described above. In the next
section we will proceed to relate the novel model for blood �ow with the traditional
models, as e.g. the Meier-Zierler model.

6.2 Relating the Synthetic Model and Traditional Models

In this section we will describe connections between traditional models for perfusion
and the novel continuous model which was introduced in the previous section. We
start by showing that a discretized version of (6.7) can equivalently be described by
coupled versions of traditional models for �ow through a well-mixed compartment (see
Section 2.1.3). Based on this understanding we will analyze which CBF results are to
be expected if traditional deconvolution models are used on local patches of the PDE
simulation. Here we will describe two cases: CBF results of the deconvolution model
using the global AIF of the patch and CBF results of the deconvolution model using
a local AIF.

We then proceed to discuss conceptual di�erences of physical �ux and medical perfu-
sion. We will demonstrate that the medical notion of perfusion is ill-suited for coupled
systems, since normalization of the �ow is performed with respect to volume and not
to surface. Furthermore we will introduce a ground-truth for perfusion for coupled
systems, which is in-line with the medical understanding of perfusion.

We conclude by showing that traditional models are accurately describing the blood
volume in the complete system but will yield unrealistically high results in coupled
systems.

6.2.1 Relating the PDE Model with the Meier-Zierler Model

In this section we will describe how the continuous model is related to the traditional
deconvolution model. More speci�cally, we will show that in the continuous model each
voxel can be described by a traditional model with arterial input determined by the
adjacent upstream voxels. Additionally, we will consider the e�ect of deconvolving a
voxel curve Ci of the continuous model with the global arterial input function ca of
the tissue. We will show that in this case the resulting residue function will depend
on the perfusion of all upstream voxels. Note that this e�ect makes the application of
standard deconvolution techniques di�cult in coupled systems, since perfusion results
will depend on the �ow in feeding tissue.
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6 Perfusion in Coupled Systems

Relating the Continuous Model with Traditional Models I

Let us start by modeling the contrast agent concentration in a given voxel using
traditional models. This section will perform the modeling for continuous variables.
To further illustrate the derivation, the next section will perform the same modeling
for a discrete system. Let us consider the continuity equation for one voxel (6.6). For
sake of simplicity let us assume that Qso,i = Qsi,i = 0. Note that it is possible to
extend the following approach also to voxels where Qso,i 6= 0 or Qsi,i 6= 0. We will
now show that (6.6) can equivalently be described as a traditional one-dimensional
equation for a well-mixed compartment. First, let us de�ne the areas of in�ow and
out�ow over the boundary by Sin := {x ∈ ∂Ωi : qi(x) · n(x) < 0} and Sout := {x ∈
∂Ωi : qi(x)·n(x) > 0} respectively. In order to de�ne a single arterial input rather than
an arterial input which depends on the location, we de�ne cin as a weighted average
of the concentrations at the boundary:

cin(t) :=

∫
Sin
c(t)(qi · n) ds∫
Sin
qi · n ds

(6.8)

We now de�ne the perfusion of the voxel Ωi as follows:

Pin :=
−1

Vol(Ωi)

∫
Sin

qi · n ds, Pout :=
1

Vol(Ωi)

∫
Sout

qi · n ds (6.9)

Let us now assume that the �ow-�eld q is divergence-free and the amount of �uid
entering the region is the same as the amount of �uid leaving it. Then it holds that
Pin = Pout and hence equation (6.6) can be reformulated as

(φici)
′(t) = Pin(cin(t)− cout(t)). (6.10)

Note that in the proposed upwinding discretization described in Section 6.1.2, it is
assumed that the contrast agent concentration at the out�ow Sout equals the concen-
tration within the voxel and that the concentration at the in�ow is the concentration at
the adjacent voxels. In this case In this case it follows that (6.10) reduces to standard
equation for a well-mixed compartment C ′i(t) = Pin(cin(t)− ci(t)) with solution

Ci(t) = (Ii ∗ cin)(t) for Ii(t) = Pine
−Pin/φit. (6.11)

The arterial input cin is determined by (6.8), which recursively depends on all upstream
voxels until the global arterial input is reached.

Relating the Continuous Model with Traditional Models II

To further illustrate this derivation, let us now derive (6.10) for the discrete setting.
We assume that voxel i is fed by upstream, adjacent neighbors j ∈ J with absolute �ow
pj [ml/s] from voxel j to voxel i and that for each voxel it holds that

∑
j∈J pj = 0 Also
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6.2 Relating the Synthetic Model and Traditional Models

assume that the contrast agent �ow is proportional to the upstream concentration,
which is in-line with the upwind discretization used in our experiments. In this case it
follows that

(φici)
′(t) =

1

Vol(Ωi)

∑
j∈J

pjcj(t)−

∑
j∈J

pj

 ci(t)


=
∑
j∈J

Pjcj(t)− Pci(t)

= P ( 1
P

∑
j∈J

Pjcj(t)− ci(t))

= P (cin(t)− ci(t))

Here Pj := pj/Vol(Ωi) the corresponding perfusion for feeding voxel j and P :=∑
j∈J Pj the total perfusion for the voxel and

cin(t) := 1
P

∑
j∈J

Pjcj(t)

is the local arterial input for voxel i.

Numerical Veri�cation

To verify relationship between the discretized continuous and the traditional models
numerically, we simulated a tissue curve Ci(t) using both the continuous PDE model
as well as analytical recursive convolution by (6.11). We refer to the latter approach as
local convolution. The two curves have an almost perfect match, as seen in Figure 6.4
(left).

As a direct consequence, it follows by recursion that the concentration at a voxel i
can be written as a convolution of the (global) arterial input function with a weighted
average of all upstream impulse response functions. Deconvolving a tissue concentra-
tion Ci with the global AIF will yield an impulse response function which depends
not only on the local �ow and porosity, but on �ow and porosity of all upstream
voxels. This relationship was also con�rmed experimentally: Figure 6.4 (right) shows
the impulse response function determined by analytical recursive convolution and the
numerically achieved impulse response function obtained from deconvolving a tissue
curve of the continuous model with the global arterial input function. The simulation
was performed at location (1,20) of the software phantom. The two curves coincide
almost perfectly, highlighting the validity of the established theory.

These results show that the PDE model and the convolution model are equal in terms
of local, voxelwise �ow estimates if the convolution model is applied with the local
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Figure 6.4: Left: Red curve shows the tissue concentrations (C) of the continuous PDE
model at location [32,35]. Blue curve shows recursive convolution by (6.11)
with experimental value of Pv = 5328 ml/s/100ml at the given location
and cin taken locally from upstream voxels around the simulated voxel. The
two curves have an almost perfect overlap. Note that the numbers used for
the perfusion is unrealisticely high since normalization is performed with
respect to the volume of only one voxel. Right: Red curve shows the com-
puted impulse response functions (IR) at location [1,20] using the global
arterial input function. Blue curve shows the analytic impulse response
function given by a convolution over all upstream �ow. The two curves
have an almost perfect overlap. These numerical experiments support that
the computed impulse response function by traditional methods is not the
directly feeding impulse response function, but rather a recursive impulse
response function depending on all upstream voxels.

arterial input. Also, the impulse response function obtained by convolution of the
global arterial input function is identical to an analytical recursive convolution along
all upstream voxels. This clearly demonstrates that the perfusion which is recovered by
traditional models will depend on all upstream �ow. However, for meaningful interpre-
tation of the perfusion the entire streamline length within the capillary system needs
to be taken into consideration, where the blood is providing the tissue with nutrients
and oxygen.

6.2.2 Converting Flow to Perfusion

The model described in (6.4) uniquely determines the �ux �eld q(x). However, in
pharmacokinetic modeling the parameter of interest is usually the CBF, which we will
denote by P (x) as the voxel wise �eld of perfusion. The surface �ux and perfusion are
physically distinct, and there are at least two di�erences between q(x) and P (x). First,
the �ux is a vector �eld and the perfusion is a scalar �eld. Second, the �ux is normalized
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6.2 Relating the Synthetic Model and Traditional Models

to a surface area and the perfusion is normalized to a volume. Thus, the surface �ux
and the perfusion are strictly, mathematically di�erent but still conceptually related.
In the following we describe a method for converting �ux into perfusion, motivated
by the need to compare the ground-truth �ux �eld to the scalar valued perfusion �eld
obtained by traditional methods.

The common understanding of perfusion or volume �ux P (x) is the amount of blood
feeding a tissue volume per unit time, with units [mm3/(s mm3)]. One obvious approach
for converting �ux into perfusion could be to estimate the perfusion as the total in�ow
(or out�ow) of �uid (e.g. arterial blood) into a control region per unit time, and then
normalizing with the control region volume. This is a valid approach only if the control
regions are not feeding each other, and is therefore well-founded for the entire organ.
Such understanding of perfusion is in line with the theoretical foundation of traditional
compartment models for perfusion where a control region has its own source of feeding
arterial blood, independent of the neighbor regions.

On the other hand, if the control region is a single voxel or a sub-division of an organ
with sequentially feeding arterial blood, the traditional model assumptions are violated
since every control region will feed its neighbours, thus becoming a coupled system of
�ow. Simply summing the total in�ow into a voxel and dividing by the voxel volume
will strongly over-estimate the perfusion since the normalization would refer to the
wrong volume. This phenomenon is demonstrated in Figure 6.5 where the volume on
the left has the true perfusion of P1 = F0/(2V ) for an incoming �ow F0 [mm3/(s mm3)]
and distribution volume 2V [mm3]. However, for another discretization as shown in
the middle, the perfusion within each of these sub-volumes becomes P2 = F0/V = 2P1.
Taking the average across the two sub-volumes, it is clear that the perfusion is over-
estimated with a factor of two. A discretization dependent perfusion estimate is not
recommendable, and the perfusion estimate of P2 is clearly wrong, see also [72].

In the following paragraph will introduce a meaningful notion of perfusion for the
continuous model. To do this, we will consider distribution volumes which are following
the streamlines. For each point of a streamline we will select a small perpendicular
disk with radius chosen in such a way that the total �ow over each disk is constant
along the streamline. These disks will form a small tube with varying radii around the
streamline with constant �ow over each cross-section. Since the total �ow over each
disk is constant, we can de�ne the perfusion for each voxel by the traditional model,
obtaining a perfusion value which is constant along the streamline. To obtain a truly
local perfusion, we will let the radii of the disks go to zero.

More precisely, let us consider an arbitrary streamline S ⊆ Ω ⊆ R3 of length l > 0,
parametrization s : [0, l]→ Ω and let us additionally assume that Q = 0. We start by
calculating the total �ow over a small 2-D disk which is perpendicular to the streamline.
Let y ∈ S be an arbitrary location along the streamline. The total �ow over a 2-D disk
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F0 F0 ∆F0

2V

V

V
∆V

Figure 6.5: Perfusion within a small volume. Left: A compartment with volume 2V is
exposed to a �ow F0 [mm3/(s mm3)] of �uid. By de�nition, the perfusion
within this compartment becomes P1 = F0/(2V ). Middle: The same vol-
ume is divided into two compartments (e.g. voxels), and the perfusion for
each of the compartments becomes P2 = F0/V = 2P1. The discrepancy
between the two discretizations occurs because the �ow is counted twice as
it is fed from one voxel to the other. Right: As a solution to the described
problem we rather pick out a true distribution volume ∆V (area in this 2D
sketch), which is a small area around a given streamline along the centre
line of the grey area. This is the true distribution volume (area in this 2D
sketch) which is fed with arterial blood from the incoming fractional �ow
∆F0. The correct perfusion within ∆V is therefore ∆F0/∆V . The entire
compartment can further be divided into similar in�nitesimal distribution
volumes, thus providing locally correct perfusion estimates.
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Br(y) perpendicular to the �ow-�eld q(y) is given by

F (y, r) =

∫
Br(y)

q(x) · ν dx where ν := q(y)/|q(y)|.

In order to calculate the perfusion, we need to establish the volume of a small tube
around the streamline. We will not consider a tube with constant radius, but one with
spatially varying radii r : S → R+. The total volume of such a tube surrounding the
streamline is given by

V (r) =

∫ l

0
r(s(u))2π du

We de�ne the perfusion at an arbitrary point y ∈ S by

P (y) := lim
ε→0

F (y, εr(y))

V (εr)
for r(y) := 1/

√
|q(y)|.

Note that the radii r are chosen in such a way that in the limit ε→ 0 the total �ow is
constant along the streamline. To see this, let us assume that q is di�erentiable with
Jacobian J . Using the Taylor expansion of q(x) = q(y)+J(ξ)(x−y) for some ξ ∈ (0, x)
as well as a change of coordinates z = (x− y)/(εu) yields for u := r(y)

F (y, εu) =

∫
Bεu(y)

ν>q(x) dx

=

∫
Bεu(y)

ν>q(y) + ν>J(ξ)(x− y) dx

= ε2π +

∫
B1(0)

ν>J(ζ)z(uε)3 dx

= ε2

(
π + εu3

∫
B1(0)

ν>J(ζ) dx

)

where ξ ∈ (0, x), ζ := (ξ − y)/(εu) and simpli�cations are due to u = 1/
√
|q(y)| and

ν := q(y)/|q(y)|. Note that since V (εr) = ε2V (r) it follows that

P (y) =
1∫ l

0 r(s(v))2 dv
(6.12)

Equation (6.12) is independent of the spatial location y and an explicit formula for
converting �ux into perfusion.

We have simulated comparison of local perfusion (6.9) and perfusion along the stream-
lines (6.12) is performed in Figure 6.6. Streamlines were recovered from the �ow-�eld
q using a simple explicit tracking, which is also used in tractography for di�usion
tensor imaging [106]. It can be observed that local perfusion varies with discretization
and thus yields unrealistically high values. As (6.11) shows, this can nevertheless be
regarded a valid de�nition of perfusion since it models the feeding of arterial blood in
the voxel.
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Figure 6.6: Comparison of di�erent concepts of perfusion for the synthetic model. (a)
Local (voxel-wise) perfusion according to (6.9). (b) Perfusion along the
streamlines according to (6.12). It can be seen that the voxel-wise de�nition
yields unrealistically high values since normalization is performed with
respect to the wrong distribution volume.

6.2.3 A Method to Estimate Local Porosity

Porosity and CBV have the same de�nition, and we can therefore state that φ ≡ CBV.
It is known from literature on traditional models [137] for perfusion that CBV for the
entire compartment can be expressed as

φ =

∫∞
0 C(s) ds∫∞
0 ca(s) ds

. (6.13)

It is not obvious that (6.13) is valid also for a one-compartment �eld model where the
voxels are feeding each other. We will now show that this is indeed the case.

Let us switch to a discrete setting let the following assumptions hold (see Section 6.2.1
for details):

(A1) The concentration in any voxel can be written as∫ ∞
0

ci(s) ds =

∫ ∞
0

(Ji ∗ cin,i)(s) ds. (6.14)

and Ji, cin,i : [0,∞)→ R is speci�ed in (A2).

(A2) In (A1) Ji : [0,∞) → R ful�lls
∫∞

0 Ji(s) ds = 1 (straight forward calculation)
and the local arterial input cin,i(t) is a weighted average of adjacent, upstream
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6.2 Relating the Synthetic Model and Traditional Models

voxels cj(t), where J is the set of adjcacent, upstream voxels and ca(t), if the
voxel lies in the source �eld:

cin,i(t) = 1
P

(
p0ca(t) +

∑
j∈J

pjcj(t)
)
, (6.15)

where p = p0 +
∑

j∈J pj and p0 6= 0 if voxel i lies within the source/sink �eld.
Consistent with (6.8) pj is absolute �ow.

(A3) q is a uni-directional �ow �eld across each voxel face and there is no �ow inter-
action between voxels in the same layer.

Lemma 21. Assume (A1)-(A3). Then
∫∞

0 Ci(s) ds = φi
∫∞

0 ca(s) ds for all voxels.

Proof. We use induction to show that
∫∞

0 ci(s) ds =
∫∞

0 ca(s) ds, then the claim
follows. Let Ik denote the set of voxels which have k layers of upstream voxels. E.g.
I0 is the set of all voxels, which have no upstream voxels, I1 is the set of voxels which
are fed by I0 and so on. Induction will be carried out over k.
Induction Basis:
Let k = 0 and let i ∈ I0 be arbitrary. Following (A1) and (A2) it holds that ci(t) =
(Ji ∗ ca)(t). Since the area under the convolution of two functions equals the product
of the area of its factors,

∫∞
0 ci(s) ds =

∫∞
0 ca(s) ds and the claim follows.

Induction Assumption: The claim holds for arbitrary k ∈ N.
Induction Step:
For any voxel at location i ∈ Ik+1 which has the voxels J ⊆ Ik as their upstream
neighbors, we �nd the following expression:∫ ∞

0
ci(s) ds

(A1)
=

∫ ∞
0

(Ji ∗ cin,i)(s) ds

=

∫ ∞
0

cin,i(s) ds

(A2)
= 1

P

∫ ∞
0

(
p0ca(s) +

∑
j∈J

pjcj(s)
)

ds,

= 1
P

(
p0

∫ ∞
0

ca(s) ds+
∑
j∈J

pj

∫ ∞
0

cj(s) ds
)
,

I.A.,

(A3)
= 1

P

(
p0 +

∑
j∈1
pj

)∫ ∞
0

ca(s) ds,

=

∫ ∞
0

ca(s) ds.

Hence the claim (6.13) follows. �

135
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6.2.4 Discussion

In this section we have related traditional one compartment models with the novel
synthetic model for contrast agent propagation in a tissue patch with highly developed
capillary system. Equation (6.11) shows, that for each voxel Ωi the contrast agent
concentration can be expressed as

Ci(t) = (Ii ∗ cin)(t) for Ii(t) = Pine
−Pin/φit.

In this equation the local arterial input function cin(t) is a weighted average of the
adjacent, upstream voxels and (6.9) shows that local perfusion is given by

Pin =
p

Vol(Ωi)
.

where p [ml/s] describes the absolute in�ow into Ωi. These two relationships can be
interpreted as follows: First, they show that if Ci is deconvolved with the (correct)
local arterial input function, we expect to recover perfusion Pin, which is highly scale-
dependent. Second, a recursive application of the �rst relationship shows, that cin =
(J1 ∗ · · · ∗Jl) ∗ ca, where Ji are impulse-response functions of all upstream voxels. This
means that we expect dispersion of the arterial input, which can cause underestimation
of the local perfusion Pin [26].

We have additionally argued that the scale dependency is caused by the normalization
with the wrong distribution volume. To cope with this problem, we have proposed
an alternative de�nition of perfusion for coupled system which normalizes �ow with
respect to the streamline. However, note that such a de�nition is impractical for most
clinical applications, since a directional �ow �eld is often unknown.

In the next section we will experimentally validate, how the two e�ects �namely under-
and overestimation of the true perfusion� relate.

6.3 Results: Reconstruction of Perfusion on Synthetic

Data

In this section we will demonstrate experimentally that local application of traditional
models for perfusion will cause a scale dependent overestimation of perfusion. We
start by outlining the detailed setup of the software phantom we used to carry out the
experiments.
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6.3 Results: Reconstruction of Perfusion on Synthetic Data

6.3.1 Experiments on Phantom Data

We tested the convolution based traditional model (bSVD) (2.2) as well as maximum-
slope (MS) model (2.8) for their capability to recover perfusion for the continuous
phantom described in Section 6.1. Prior to reconstruction, the contrast agent con-
centration map C(xi, tj) was downsampled to a time-resolution of 0.1 s. In order to
simulate di�erent spatial resolutions of the scanning process, the data was averaged
using di�erent block-sizes ranging from (1, 1) pixel (i.e. same resolution as the PDE
model) to (64, 64) pixels (i.e. entire domain). Success of restoration was measured in
terms of averaged relative error of the recovered perfusion with respect to the ground
truth perfusion, RE := (Prec − Ptrue)/Ptrue · 100%. The recovered perfusion Prec were
compared against the two perfusion maps Ptrue = {Pv, Ps} depicted in Figure 6.6.

The local perfusion map Pv was set up according to (6.9). Since normalization is
performed with respect to voxel size, the values are unrealistically high and will vary
with the discretization. As (6.11) shows, this can nevertheless be regarded a valid
de�nition of perfusion since it models the feeding of arterial blood to a control region.

The global perfusion map Ps was set up using the de�nition along the streamlines
(6.12). This de�nition most accurately re�ects the physical perfusion at a given location
and shows plausible perfusion values, cf. Figure 6.6. As an internal control, the average
of Pv was found to be 49.59 ml/s/100ml, for all practical means identical to the global
input perfusion of 50 ml/s/100ml. However, we do not expect the traditional models to
be able to recover these values either. To quantify the errors occurring by traditional
methods, the global arterial input function was used for the deconvolution, as measured
in the source.

Results from deconvolution by traditional methods are displayed in Table 6.1. For the
complete domain (i.e. block size 64×64), both the MS method as well as the convolution
method were able to restore the ground truth perfusion of 50 ml/s/100ml accurately
with errors of < 1% and < 4% respectively. However, the errors are increasing as
methods are applied to smaller blocks of the system. If compared to Pv, one can
see that results are improving with increasing block size. Note that the block size
of (0.5, 0.5)mm is within the range of resolution available on clinical scanners today,
and is therefore clinically interesting. Also a clear advantage of the bSVD method as
compared to MS can be observed for larger block sizes.

Results from reconstructing the porosity φ (i.e. CBV) according to (6.13) are also
shown in Table 6.1. The errors are low, independent of block size.

6.3.2 Discussion

We have studied the accuracy of traditional one compartment models for perfusion
reconstruction in a coupled system of blood �ow in the capillary system. To establish
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6 Perfusion in Coupled Systems

Table 6.1: Mean relative error RE and standard deviation (both in %) of reconstructed
perfusion compared to the ground truth values Pv, CBV, and Ps from the
digital phantom. Both reconstruction models MS and bSVD are able to re-
store the perfusion for the entire domain, but fail when dividing the domain
into smaller block sizes. For larger block sizes the bSVD model restores the
perfusion more accurately than the MS model. However, the blood volume φ
is recovered accurately, independent of block size. Ps is only de�ned within
a coupled system having streamlines and can therefore not be compared
with restored perfusion for the entire domain.

block size (mm)
(0.05,0.05) (0.23,0.23) (0.47,0.47) all

Pv
bSVD -93%±4% -67%±16% -50%±23% 4%
MS -98%±2% -88%±6% -79%±11% <1%

CBV <1% <1% <1% <1%

Ps
bSVD 753% ± 926% 650% ± 757% 476% ± 507%
MS 124% ± 79% 114% ± 66% 103% ± 51%

ground truth values, we developed a PDE based digital phantom to simulate blood
�ow as porous media �ow within a slab of capillary tissue.

Our results strongly support the usage of traditional models for entire regions which
are exclusively fed by the measured arterial input. However, they also show that if
traditional models are applied only to parts of the system, they tend to overestimate
the actual perfusion. Although there is awareness in the community of such e�ects
[72], studies reporting voxel wise perfusion maps without discussing their possible
limitations are continuously published [104, 79]. Thus, a major motivation for our
study is to stimulate the awareness around this topic and to push the development of
more appropriate models for future applications.

There are at least two issues related to the overestimation of perfusion. The �rst
issue is that blood passing through a voxel without being locally delivered to the
capillary tissue will contribute to arti�cially high perfusion values. The second issue is
thoroughly studied in this work, and relates to estimation of the correct distribution
volume used for computing the perfusion. As soon as there is dependency of capillary
�ow between adjacent voxels, the correct distribution volume used for normalizing
the absolute �ow into perfusion (i.e. ml/s/100ml) is not known and over-estimation of
perfusion will occur. Using local arterial input functions is no remedy for this problem,
since the resulting perfusion will depend heavily on the voxel size and overestimate
the actual �ow, cf. Figure 6.5 and (6.11).

The results from the digital phantom are supported by real data experiments, where
we showed local overestimation of perfusion for small voxel-sizes as compared to an
averaging of concentrations for the entire volume of interest. Regarding the CBV es-
timates, one can observe from Table 6.1 that estimation of blood volume is far more
stable, and even various block sizes had little impact on the results. These results
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6.3 Results: Reconstruction of Perfusion on Synthetic Data

are in well agreement with the analytical considerations in Section 6.2.3, stating that
(6.13) is valid for entire organs as well as for single voxels. Thus, these results support
the usage of (6.13) for computing the CBV with high accuracy for any type of block
size, including single voxels.

Furthermore we have introduced two theoretical de�nitions of voxelwise perfusion.
The perfusion Ps models perfusion along the streamlines and most accurately re�ects
the physical notion of volume �ow within the correct distribution volume according to
mathematical de�nitions. We showed that Ps is a global quantity along the streamline,
and scales with streamline length and geometry. Theory and experiments show that the
traditional models cannot recover this perfusion. The usage of Ps for reconstruction
of perfusion in real data might as well be challenging as the entire geometry and
microscopical �ow patterns would have to be known to track the streamlines. However,
for our purpose, the concept of Ps was useful to clarify the de�nition of perfusion as
a �ow that must be normalized along its entire capillary length, where the blood
undergoes a transition from arterial to venous blood. For future developments of �eld
models, multi compartment models as suggested in [140] might be more applicable,
where the perfusion was suggested as the non-zero divergence of the arterial �ux.

Perfusion Pv was set up based on the interpretation of a coupled system between ad-
jacent voxels. Theory and examples show that this de�nition of perfusion does not
comply with the physical understanding of perfusion since it depends heavily on the
discretization. However, we have shown that traditional models would restore this
local value if the local arterial input function was selected. We have additionally ana-
lyzed, both analytically and experimentally, the impact of selecting a further upstream
arterial input function. Speci�cally, we have justi�ed that traditional perfusion mea-
surements based on convolution will identify the recursive impulse response function
for all upstream voxels (see Section 6.2.1). Locally, the correct distribution volume
is not accounted for and the obtained perfusion will be overestimated compared to
the actual perfusion. The coupling between the continuous model and the convolution
model in Section 6.2.1 demonstrates that the two approaches physically provide the
same results, and there is no contradiction between them. The problematic issue of the
traditional models is related to physical interpretation and normalization with respect
to correct distribution volume.
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7 Real Data Results

Whereas evaluation of the proposed methods on software-phantom data has been per-
formed in the respective sections, in this chapter we will present real data evaluation.
As a brief overview, we will present results for the following methods:

� Optimal linear weights for T1 estimation (Section 3.5).

� Coupled T1 estimation with vector-�eld coupling (Section 4.3).

� COPTER: Coupled Model Based Parameter Estimation and Registration (Sec-
tion 5.1).

� Blind Parameter Estimation using the Patlak Model (Section 5.3).

� Limitations of Traditional Models for Perfusion (Section 6).

We start in Section 7.1 by presenting results which demonstrate, that the novel op-
timized weights are yielding similar results as the nonlinear weights on real data. In
Section 7.2 we will show how the coupling methods for vector �elds which have been
introduced in Section 4.3 are improving T1 estimation from variable �ip angle data. In
Section 7.3 we will show how joint motion correction and registration as proposed in
Section 5.1 are improving both registration and parameter estimation. First Real-Data
results for the joint AIF and parameter estimation as described in Section 5.3 can be
found in Section 7.4. We conclude this chapter with Section 7.5, where we will demon-
strate that established methods for blood �ow estimation will overestimate blood �ow
in coupled systems, see Chapter 6.

Note that evaluation of parameter estimation methods on real data is delicate, since
there is a general lack of ground truth: Most dynamic parameters cannot be measured
directly, since they depend on the tissue type and on individual patient characteristics
[8, 139]. For real data, ground-truth parameter maps are hence generally not available.
To cope with this issue, we compared our results with literature values, unless stated
otherwise. However, note that even literature values only provide a rough estimate of
the true parameters, as parameters might vary between patients considerably. Unless
stated otherwise, results will be given in terms of an averaged absolute relative error,
which was de�ned as

RE := 1
Vol(I)

∑
i∈I

|pi − pref
i |

|pref
i |

.

where I is set of voxels of interest (e.g. voxels in the kidney cortex) and Vol(I) its
cardinality.
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For evaluation, we relied on two datasets: Real kidney data came from a study on the
function of the human kidney [74] and was made available by courtesy of Jarle Rørvik
from the Haukeland University Hospital in Bergen, Norway. The brain perfusion data
which was used to demonstrate limitations of traditional models for perfusion was
made available by courtesy of Rashindra Manniesing from the DIAG group of the
Radboud University Medical Center in Nijmegen, the Netherlands.

7.1 Linear Approximations for T1 Estimation

We now present results for the linear approximations in T1 estimation, which were
introduced in Section 3.5. Since we are lacking ground-truth values, we will compare
the (novel) optimized weights and the (traditional) linear weights with the nonlinear
weights, which are generally considered most stable [154].

Data came from a study on the function of the human kidney [74]. Three healthy hu-
man volunteers were scanned with di�erent �ip angles, but otherwise constant acqui-
sition parameters. Image acquisition was performed on an Avanto 1.5 T using TWIST
with �ip-angles α = (5°, 8°, 15°, 25°), TR = 2.51 ms, TE = 0.89 ms isotropic voxel-size
(0.5 mm)3 and matrix size [256, 192]× 52. For each �ip angle a total of 3 images was
obtained during a single breathhold per �ip-angle. To cope with motion artifacts, the
data was pre-aligned using COPTER with a di�usive stabilizer, as described in Sec-
tion 5.1. Note that this approach thus incorporated some mild regularity constraints
for the parameter maps.

Results

For each �ip-angle one of the three available datasets was used for reconstruction, which
was performed with the nonlinear, linear and optimized weights. Results are depicted
in Figure 7.1, where sample reconstructions and relative errors, given in percent, with
respect to the nonlinear method are shown. Evaluation was performed on a 2D slice of
each dataset, where kidney cortex and medulla were segmented by a medical expert.
It can be seen that also on real data the optimized weights perform similar to the
nonlinear weights. Whereas the traditional linear weights are yielding errors of up to
10%, it can be observed that the linear weights are yielding similar estimates, even in
the medulla region, where high T1 are making the recovery di�cult.

The real data experiments thus con�rm that the results obtained with optimized
weights are indeed high quality approximations of the ones obtained with the non-
linear weights even for real data. However, a visual inspection shows that in the lung
region estimated parameters from the optimized and the nonlinear weights still di�er.
This is since parameter estimation in this area is highly ill-posed due to the low signal
intensity, see Chapter 3.3 for details. The approximations are thus expected to work
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Cortex Medulla
Lin Opt Lin Opt

D1 left 9.60 0.99 23.70 2.21
right 9.61 1.00 13.66 1.76

D2 left 2.62 0.19 10.32 0.39
right 8.97 0.38 15.17 1.30

D3 left 2.14 0.19 05.46 0.52
right 3.29 0.15 08.97 0.44

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

ωLin ωNL ωOpt

Figure 7.1: Figure displaying results of the nonlinear, linear and the optimized recon-
struction for real data. Given is the mean relative error of T1 in percent
as compared to the results of the nonlinear reconstruction. Weights were
obtained by solving (3.9) with T1 = (1412, 966), M0 = (3000, 3000) and
f = (0.5, 0.5). The images depict the reconstruction of T1 for D1, left kid-
ney. Note that T1 cannot be estimated reliably in regions with zero signal
intensity, as it is the case for the lung, see Section 3.3.2. Visual inspection
con�rms the close agreement of the nonlinear and the optimized approach.

best for the area, where the weights were �ne-tuned, see Section 3.5 for details on the
recovery method.

7.2 Spatial Coupling for T1 Estimation

We will now present real data results which con�rm, that coupled recovery is capable
to improve T1 estimation for low quality real data or sequences, where the �ip angles
were not optimized for the expected range or T1.

We begin by demonstrating that coupling of (T1,M0) is superior to coupling of only T1

[155] or simple denoising. We then proceed to demonstrate that usage of tailored vector-
�eld coupling terms has further positive impact on the recovery. Whereas Section 4.4
has shown that this e�ect is clear for phantom data, real data improvements will be less
obvious. Note, however, that the lack of gold standard makes the evaluation di�cult.
Whereas numbers show only small improvements, visual inspection of the parameter
maps will show a tighter coupling of the recovered parameters, thus indicating overall
improved estimation.

Real kidney data was acquired with the same parameters as outlined in Section 7.1.
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7.2.1 Superiority of Fully Coupled Estimation

To highlight the positive impact of fully coupled methods, we compared uncoupled
nonlinear recovery with various forms of coupled recovery. Speci�cally, we chose a
Total Variation term and compared coupling in (T1,M0) with only coupling in T1 and
a standard denoising approach. Optimal parameters were determined with respect to
visual plausibility of the parameter maps for all methods separately.

Visual inspection clearly shows that compared to the purely nonlinear approach, all
coupled methods yield more homogeneous results. Advantages of the two parameter
approach can be observed mainly in reconstruction in the medulla, where T1 is high
as compared to the cortex. Numerical evaluation was done with respect of the mean
relative error on cortex on medulla. Since we were lacking a ground-truth, the relative
error was calculated voxel-wise with respect to the mean of an unstabilized approach
in the respective region of interest. Also in numerical evaluation, we found positive
impact of the fully coupled approach as compared to the denoising approach. We
found the largest impact of coupling for high T1, see Figure 7.2. This is expected as it
is di�cult to estimate high T1 stably, see Section 3.3.2.

7.2.2 Impacts of Vector Field Coupling

Additionally, we tested the coupling terms which were tailored for vector �elds on
real data. Note that this time recovery was performed not on 2D slices but on the
complete 3D datasets, where cortex and medulla were again segmented by a med-
ical expert. To highlight the merits of this work, comparison was performed with
respect coupling methods described in [114, 155]. Speci�cally we considered CTP(p) :=∫

Ω |∇T1|2 dx+
∫

Ω |∇M0|2 dx and CTV(p) :=
∫

Ω |∇T1|dx respectively. Note that results
from the previous section already indicate that the latter approach might be inferior,
since only one parameter is considered in the coupling.

Results are shown in Figure 7.3. Given is the mean relative error with respect to T1 from
literature (Cortex ≈ 966 ms, Medulla ≈ 1412 ms). Again in all cases spatial coupling
yields signi�cantly improved results as compared to no coupling. However, the bene�t
of vector �eld coupling techniques is on real data not as clear as on phantom data.
Here only slight advantages of the vector-�eld coupling techniques can be observed.
To further illustrate our results, RGB maps were created by using T1 in the red,
and M0 in the green channel. This visualization highlights joint properties of T1 and
M0 and allows to visually inspect the amount of coupling of T1 and M0. Here again
clear advantages of methods which couple both (T1,M0) can be observed. However,
improvements of the tailored vector-�eld terms CNuc and CFro as compared to the
decoupling CTP are minor, but nevertheless present.
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Cortex Medulla
Simul. Denoising No Stab. Simul. Denoising No Stab.

# Parameters 1 2 1 1 2 1
D1 left 24.17 22.76 25.74 29.02 19.15 17.92 33.47 36.73

right 21.97 21.21 27.10 30.62 26.44 23.23 42.38 45.53
D2 left 31.76 28.02 32.18 33.48 12.80 12.40 18.12 19.06

right 18.33 15.13 20.38 21.15 13.84 10.90 18.01 18.84
D3 left 16.03 15.19 15.67 16.31 12.51 11.64 13.25 14.62

right 10.52 9.71 10.61 11.15 11.24 6.59 13.80 14.12

Joint Denoising No Stab.
1 2

T
1

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

M
0

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000

Figure 7.2: Figure displaying the impact of spatial coupling on real data. The error
was computed voxel-wise with respect to the mean of the nonlinear recon-
struction over the area of interest and is given in percent. Comparison was
performed with respect to: Uncoupled nonlinear recovery, joint recovery
with coupling in (T1,M0), joint approach with coupling in T1 and denois-
ing approach. An example of the reconstruction is given for dataset D3,
right kidney.
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Cortex Medulla
No Coupl. CTP CTV CFro CNuc No Coupl. CTP CTV CFro CNuc

D1 left 19.2 15.6 16.3 15.1 14.9 37.8 10.8 12.8 10.6 10.4
right 27.0 21.7 22.4 21.2 21.0 37.0 19.6 21.1 19.0 18.6

D2 left 20.4 19.2 19.1 19.7 19.2 24.6 10.7 12.7 14.0 10.2
right 29.7 14.9 21.7 16.0 15.4 49.1 7.8 9.8 8.0 7.3

D3 left 35.2 22.2 19.0 23.3 22.8 149.5 11.9 28.8 14.0 12.9
right 71.0 22.2 21.5 15.5 14.3 108.8 10.3 16.4 10.4 9.7

No Coupl. CTP CTV CFro CNuc

Figure 7.3: Parameter estimation results for vector �eld coupling on real data. Given
is the mean relative error in percent over cortex and medulla with respect
to T1 from literature (Cortex ≈ 966 ms, Medulla ≈ 1412 ms). Also depicted
are color images for dataset D3 (right), where T1 was in the red and M0

and the green channel.
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7.2.3 Discussion

Both real data results demonstrate that coupling of both (T1,M0) has clear advantages
as compared to methods which use spatial coupling only for T1. However, whereas
results of Section 4.4 have shown clear advantages of vector-�eld coupling methods
for software phantom data, only minor bene�ts could be observed for real data. A
reason for this might be the lack of ground-truth parameters for T1. Also, manual
segmentation of cortex and medulla is challenging for poor data quality. Nevertheless
as expected a visual comparison shows clearer contours for the vector-�eld coupling as
compared to standard coupling.

Based on these �ndings, we advocate spatial coupling of both variables (T1,M0) in
T1 estimation in the following cases: if data quality is poor, if only limited �ip-angles
are available or if �ip-angles were not chosen optimally for the expected range of T1.
If computational aspects are no issue, tailored vector-�eld coupling terms might yield
additional improvements. Nevertheless our results indicate that standard Tikhonov-
Philips coupling can already lead to major improvements as compared to uncoupled
approaches. The main parameter for choosing the coupling term is the expected struc-
ture of the tissue: For data where large partial volume e�ects are expected, CTP is a
suitable choice. However, in modern scanners resolution is constantly increasing and
sharper edges which separate anatomical structures are expected in the images. In
such cases CNuc or the computationally less demanding CFro could be better choices.
However, we expect coupling to have most impact for poor quality data: For well-
designed sequences with good SNR we expect only minor improvements using spatial
coupling.

7.3 Joint T1 Estimation and Registration

We now present preliminary real data results which highlight the merits of joint reg-
istration and parameter estimation for nonlinear transformations. As in Section 5.2.2
we compared the uncoupled approach of minimizing JRef with the coupled approach
of minimizing JCOPTER.

Real kidney data was acquired with the same parameters as outlined in Section 7.1.
For each �ip-angle we chose the �rst two of the three available datasets, yielding
eight 3D datasets for one T1 recovery. Note that since the data was acquired with one
breath-hold per �ip-angle, motion artifacts could be observed mainly between di�erent
�ip-angles.

As proposed in [69], for the reference method the data was pre-processed with gaussian-
smoothing. The standard deviation was experimentally determined to be half voxel-
width. To avoid outliers, the reconstructed T1 was cut-o� at 2000 ms. This clipping was
only necessary for the uncoupled approach, the coupled approach yielded reasonable T1

throughout the recovery. For the coupled approach the parameters γ were determined
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Table 7.1: Estimated T1 [ms] for the di�erent registration methods. Given are mean
and standard deviation over cortex and medulla. Reference values from [8]
were 966 ms (cortex) and 1412 ms (medulla) [8].

Cortex Medulla
Dataset Ref COPTER Ref COPTER

D1 left 1231± 421 891± 170 1563± 405 1323± 194
right 995± 403 855± 243 1214± 424 1230± 278

D2 left 919± 324 802± 153 1298± 427 1228± 140
right 1338± 471 1025± 206 1660± 379 1465± 133

D3 left 1006± 469 834± 233 1273± 439 1266± 194
right 1515± 478 1183± 257 1751± 316 1628± 194

experimentally: For D1 we chose γ = 1 × 10−6, for dataset D2 γ = 5 × 10−6 and
for dataset D3 γ = 1 × 10−6. Again we decided to use the alternating optimization
strategy, since it was computationally more e�cient and it performed similar to the
joint strategy on phantom data, see Section 5.2.2 for details. For the evaluation, cortex
and medulla were manually segmented in the dataset acquired with �ip-angle 8°, which
had best contrast with respect to these structures. We calculated the mean and the
standard deviation for both structures. The mean was compared to reference values
given in [8].

Results

Our preliminary �ndings, where we compared the reference approach (minimize JRef)
with the proposed coupled approach (COPTER) are shown in Table 7.1 and Figure 7.4.
The table shows clearly that the coupled approach yields a signi�cantly reduced stan-
dard deviation of T1. However, as expected it can also be observed that it comes in
parts with signi�cantly reduced mean. Whereas on the kidney cortex in half of the ex-
periments the standard method was slightly superior, on the medulla the novel method
yields improved results in four out of six cases. This indicates that the stabilized ap-
proach is capable to improve T1 estimation for large T1 values, which are generally
more di�cult to determine. This notion is supported by the visual evaluation of the
recovered T1 maps in Figure 7.4. It can readily be observed, that at many points
constraints are active in the uncoupled method and large motion artifacts can be ob-
served. The results from the coupled methods on the other hand show more structure:
Medulla and cortex can be distinguished in the reconstruction. However, improved re-
sults can also be observed in the motion �eld. Here the checker-board evaluation shows
that both methods can account for small nonlinear motion, as in the left side of D2.
Di�erences can be observed for larger motion, as in the case of the right side of D2.
Here it can be observed better motion correction is achieved for the coupled method.
In the unstabilized method, motion artifacts above the liver can be observed both in
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7.3 Joint T1 Estimation and Registration
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Figure 7.4: Estimated T1 maps and checkerboard evaluation of the registration. Dis-
played slice 34 of dataset D2. Checker-board evaluation is with respect
to �ip-angles 5° and 8°. Compared to the uncoupled reference method,
COPTER yielded smoother T1 maps and thus improved recovery. For the
uncoupled approach the checker-board evaluation shows residual motion
artifacts above the liver both in T1 and in the transformed data, which
was prevented by COPTER.
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7 Real Data Results

the transformed data and in the recovered T1. This means that T1 is reconstructed
in such a way that motion is simulated by the model. However, the spatial coupling
prevents larger jumps and recovers more suitable transformations.

Discussion

It can be observed, that spatial coupling has the potential to improve parameter es-
timation in the joint setting. For the inclusion of coupling a balancing between speed
and accuracy is necessary: Coupling in the (E1, N) coordinate system as proposed in
Section 5.2.1 allows to exploit the linear structure of the objective function. In this case
the optimization can be sped up by using the variable projection method described in
Section 5.1. However, as the results show, coupling in (E1, N) is di�cult and lead for
our data only to minor improvements in T1 estimation, see also Section 4.4.

In order to obtain more accurate results for T1 estimation, the obtained results in-
dicated that coupling of (T1,M0) might be preferable. Whereas phantom data ex-
periments indicated that the coupled joint approach yields improved results, numer-
ical evaluation of the joint approach showed only minor improvements for real data.
However, again the lack of gold-standard parameters complicates the evaluation. Our
experiments show that spatial coupling is capable to improve both registration and
parameter estimation: Whereas in the uncoupled approach model parameters might
be selected which simulate movement, this unwanted e�ect seems to be suppressed in
the coupled version.

As described in Section 5.2.2, the coupled approaches are expected to yield most im-
provement for low-quality data and more than two �ip-angles: Other, not documented,
experiments indicated that for only few �ip-angles and high-quality data, reconstruc-
tion using the joint approach without stabilization yields comparable results.

7.4 Blind Parameter Estimation for the Patlak-Rutland

Model

In this section we will present results which show how joint methods can improve
parameter estimation, if no or only a low-quality AIF is available. Speci�cally we will
give �rst real data results of the method which was proposed in Section 5.3.

Data again came from a study on the human kidney [74]. However, this time we
used the DCE-MRI sequence to test our algorithm. One healthy human volunteer was
scanned on a 1.5T MRI system (Siemens Avanto, Siemens, Erlangen, Germany) using
a TWIST sequence after injection of 4ml MultiHance injected as a bolus at a rate of
3 ml/s. A time sequence of 49 images with variable spacing between 2.5s during �rst-
pass and 60s in the late-phase was acquired. The DCE-MRI images were registered
and contrast agent concentrations were calculated from the MRI data. Afterwards,
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7.4 Blind Parameter Estimation for the Patlak-Rutland Model

p1 coupled, p1 uncoupled, p2 coupled, p2 uncoupled,
p1 ∈ [0, 0.51]. p1 ∈ [−0.07, 0.61]. p2 ∈ [0, 0.55]. p2 ∈ [0.01, 5.36].

Figure 7.5: Shown in slice 34 of the recovered p1 and p2 of the kidney data from the
Haukeland clinic. The regularization and constraints help to reduce outlier
and to enforce a narrower range of parameters. However, also a possible
oversmoothing in p2 can be observed.

the kidney medulla and the cortex were segmented. For details on the scan and the
postprocessing pipeline see [74]. For validation, an arterial input function was measured
in the descending aorta, slightly above the renal artery, see Figure 7.6. Since the Patlak
model is only valid in the early uptake phase, recovery was performed for the time
interval t ∈ [1, 1.7]min, see [68] for details. We employed our new regularized method
to calculate the 3D parameter maps for p1 and p2 as well as the AIF.

Slice 34 of the 3D dataset is shown in Figure 7.5. It can be observed that combined
coupling and constraint optimization help to reduce outliers and to enforce a narrower
range of parameters. The most prominent e�ect can be observed in p2, where maximum
parameters were reduced from 5.36 ml3/(s ml3) to 0.55 ml3/(s ml3). However, since the
coupling parameters were tailored for the phantom, also a possible over-smoothing in p2

can be observed. Larger di�erences between the unstabilized and the stabilized method
can be observed in the arterial input function, depicted in Figure 7.6. The integral was
normalized to one for visualization. To calculate the GFR, the maximum peak was
adjusted to �t the maximum peak of the measured arterial input function. It can be
observed that the uncoupled method predicts negative concentrations, whereas these
e�ects are removed due to the constrained optimization. Nevertheless both methods
are giving a false prediction of 0 concentration at time point t = 1 min, possibly leading
to an underestimated GFR of 21.6 ml/min for the coupled method.

Discussion

Our simulations show that whereas experimental results on phantom data in Sec-
tion 5.4 were promising, transfer to real data is still di�cult. Reasons for this behavior
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Figure 7.6: Comparison of a measured arterial input function with estimated arte-
rial input functions, which obtained from coupled and uncoupled recov-
ery. In the recovered arterial input functions, a false prediction of 0 at
time point t = 1 min can be observed, leading to an underestimated
GFR of 21.6 ml/min for the uncoupled method (reference approximately
105 mL/min for both kidneys using Iohexol clearance).

might be manifold. We suspect them to be linked mainly to the problem of scale:
Due to the underlying model, our method cannot yet estimate parameters uniquely
and thus a proper scaling approach has still to be identi�ed. Note that this scale
factor has a direct anti-proportional e�ect on the calculated GFR. This problem com-
plicates especially the evaluation on clinical data, where the gold-standard GFR of
105 mL/min was determined using Iohexol clearance and was thus given with respect
to both kidneys [74]. Whereas the latter problem could be overcome using novel data
from the Haukeland University Hospital, where donor patients with only one kidney
were scanned, reasonable methods to determine scale still need to be identi�ed, see
Section 5.3 for a brief outline of state-of-the art methods to do this.

7.5 Limitations of Traditional Models for Perfusion

In this section we will present real data results which indicate that traditional models
will overestimate perfusion if applied to coupled systems. In order to illustrate that this
e�ect also may be observed on a complete dataset, we applied the deconvolution model
to a clinically acquired human perfusion CT dataset of a 56 years old male admitted
with suspicion of stroke to the Radboud University Medical Center in Nijmegen, the
Netherlands. The perfusion scan was obtained using a Toshiba Aquilon ONE scanner,
pixel-size 0.43 mm×0.43 mm, slice thickness 0.5 mm, contrast agent 50 ml Xentix 300,
total scan-time 114 s, time resolution ranging from 2.1 s in the early- to 30 s in the
late phase of contrast agent uptake. To cope with motion artifacts, the data was pre-
aligned using rigid transformations. The arterial input function was manually selected
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Figure 7.7: Results from real-data experiments. (a) AIF manually selected from
the MCA. (b) One slice of the voxel-wise scaled CBF-reconstruction
[ml/min/100mg] for a 3D volume of interest. (c) Mean concentration curve
for the complete 3D volume of interest and the curve approximation by
bSVD.

by a medical expert in the middle cerebral artery. Since we expected to see local over
estimation e�ects mainly for small voxel sizes, the data was processed at full resolution
(512×512×320) voxels. However, in order to deal with noise it was necessary to apply
a prior gaussian smoothing with standard deviation of 1 voxel. Relative concentrations
were estimated from the CT signal assuming a spatially independent proportionality
constant. The brain tissue was segmented automatically and used as ROI for the
perfusion analysis.

CBF was then estimated voxelwise using an own Matlab implementation of bSVD,
yielding an average scaled CBF of 64.357 ml/min/100mg with a global threshold of 4%.
Furthermore, we estimated the perfusion for the whole volume of interest by averaging
the concentration values �rst and then performing the bSVD using the same threshold,
yielding a total scaled CBF of 24.791 ml/min/100mg. Voxelwise results are depicted
in Figure 7.5.
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8 Conclusion

Although traditionally dynamic models were designed to describe the response of a
single system, such models are used increasingly to recover parameters from spatially
structured data. In this work we have shown how such estimations can be improved
and have narrowed down boundaries under which such estimation produces physically
meaningful results.

First and foremost we have focused on improving parameter estimation using dynamic
models from spatially arranged, low-quality 4D data. Although there are various pub-
lications which have used coupled dynamic models for parameter estimation [114, 155,
135], these approaches were often either using coupling of only one parameter or were
simple sums of established coupling terms for scalar functions. As such, regularity
was only introduced in space but not between di�erent parameter maps. In this work
we have presented a family of coupling terms for parameter estimation which intro-
duce both coupling in space and between di�erent parameters. For the example of
T1 estimation from high-resolution data we have shown that the proposed approaches
are capable to improve parameter estimation from low-quality data considerably, see
Section 4.4. Parts of these results are to appear in the Journal of Algorithms and
Computational Technology [S3].

Next to standard parameter recovery, we have also shown that spatial coupling can
improve joint methods, in which data redundancy is exploited to estimate additional
parameters such as motion or control parameters of the pharmacokinetic model. Here
the results indicate that especially joint motion correction and parameter estimation
[23, 11, 69] can pro�t from spatial stabilization. As outlined in Section 5.2 and Sec-
tion 7.3, we assume that this is the case since spatial regularity prevents the dynamic
models to adjust in such a way that motion is emulated. For double-blind approaches
[121] we have found that spatial coupling can improve results, but that results will
be especially sensitive to the chosen stabilization parameter, see Section 5.3. These
results have been published in the Proceedings of the BVM [H1, H2].

Finally we have presented boundaries under which one-dimensional dynamic models
produce meaningful results if coupling of the models is expected, see Section 6.3 and
Section 7.5. In the case of blood �ow estimation we have shown that in pure capillary
tissue one-dimensional dynamic models produce scale dependent results, see also [73].
More speci�cally, we have presented a novel PDE model which describes perfusion
in pure capillary tissue and have connected this model to traditional one-dimensional
dynamic models for perfusion estimation. For simple parameters we have further given
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8 Conclusion

explicit expressions for the perfusion which is expected to be recovered from such data
using dynamic models. We have also shown both analytically and experimentally that
in this case the recovered �ow will depend heavily on the discretization. Addition-
ally, we have presented real-data results which indicate that such e�ects might be
observed on coarse scale in real-life applications. These results are submitted to the
IEEE Transactions on Biomedical Engineering and are currently under review [S4].

We will now start a more detailed discussions of the obtained results:

Linear Approximations of Nonlinear Weights

To improve T1 recovery from noisy variable �ip-angle data in MRI, we have introduced
a uni�ed framework for T1 estimation from such data. The framework consists of a
family of weighted parameter estimation techniques and includes the two most com-
monly used ones, namely the linear and the nonlinear approach, as special cases. We
have established sensitivities of the parameter estimation for a gaussian noise model
for all members of the proposed family. For the linear and the nonlinear estimation,
our sensitivity results coincide with the ones obtained in [154, 43]. The obtained sensi-
tivities were then used to determine a set of weights which allows for linear estimation
of T1 with lower relative errors than the original linear method. We have evaluated
the proposed approach both on phantom and on real data. The results presented in
Section 3.6 and Section 7.1 show that the optimized weights allow to reconstruct T1

with similar errors as the nonlinear estimation, which is most robust [43, 33]. The op-
timized weights can hence be used for both fast and robust estimation of T1, avoiding
the computational overhead of nonlinear optimization. Results for synthetic as well as
real data con�rm improvements in T1 estimation of up to 24% as compared to stan-
dard linear estimation. However, it was also found that the amount of improvement
depends both on the sequence and the expected T1: If the linear and the nonlinear
method have similar sensitivities, only minor improvements could be observed. Matlab
code to determine the optimized set of weights has been made publicly available un-
der http://www.mic.uni-luebeck.de/people/constantin-sandmann.html. A code
example can be found in Listing 8.1
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Spatial Coupling for Parameter Estimation

We have found that T1 reconstruction becomes increasingly ill-posed for low signal
intensities, see Lemma 10. This makes estimation especially of high T1 delicate, since
for T1 weighted sequences low signal is often the result of high T1, see (2.19). To
cope with such problems we have additionally analyzed the impact of spatial coupling,
where information on the expected spatial structure of the T1 maps is included in the
recovery.

Results on phantom data presented in Section 4.4.1 indicate that fully coupled recovery
might only be superior to standard denoising techniques if both variables T1 andM0 are
stabilized. Note that some approaches for T1 recovery apply coupling only with respect
to T1 [155]. Our results both on phantom and on real data suggest that improved
parameter estimation is possible by using coupling of both variables. Additionally, we
have investigated the impact of coupling in the (E1, N) coordinate system, which is
widely used if the linear method is used for T1 estimation. Here it was found that
coupling in (T1,M0) is superior, as the change of coordinates introduces systematic
biases for large T1.

We have found that best results in recovery can be achieved, if di�erent coupling
parameters are used for T1 and M0. Since this is both tedious and impractical for
real data, we have additionally introduced tailored coupling methods for vector �elds,
which were inspired by RGB denoising techniques. The proposed coupling terms are
based on lp norms of the singular values of the Jacobian, the so-called Schatten-p-
norms. Here we have found that best recovery results can be achieved if the low-rank
inducing Schatten-1-norm is used, since common edges in recovered parameter maps
are enforced. It was demonstrated on phantom data, that these terms have additional
advantages with respect to errors in T1 reconstruction, see Section 4.4. Note that the
proposed terms have been studied for for RGB denoising extensively [61, 88, 105] and
are currently increasingly used for joint image reconstruction [148, 81]. However, we
have not found indications that these terms have yet been proposed for T1 estimation
or even parameter estimation in general.

As expected we have also found that spatial coupling can come with underestimation of
the parameters for large stabilization parameters. Strategies to cope with this problems
could be to use an L1 related distance measure, see the outlook for details. Also, the
choice of coupling is heavily dependent of the data: The proposed coupling terms are
designed to recover sharp edges in the parameter maps. These are hence best suited for
high resolution scans of anatomical structures which are expected to be clearly distinct.
For other cases a Tikhonov-Philips coupling which recovers smooth solutions might
be preferable. We also stress that the impact of spatial coupling naturally depends
on the quality of the data: For high-quality data with good SNR we expect only
minor improvement by spatial coupling. Also note that the proposed Schatten-norm
based stabilizers require computationally more complex optimization methods, which
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Listing 8.1: Matlab code demonstrating the calculation of optimized weights for
T1 recovery. The documentation of the function is omitted. The code
is publicly available under http://www.mic.uni-luebeck.de/people/

constantin-sandmann.html.

1 function wOpt = getOptimalWeights(T1Exp,flips,TR,varargin)

2 %if no input is given: show help and run an minimal example

3 if nargin == 0

4 clc

5 help(mfilename);

6 runMinimalExample;

7 return;

8 end

9 %default parameters

10 L = numel(T1Exp); %number of expected T1

11 M0 = 3000*ones(L,1); %default M0

12 r = ones(L,1)/L; %default weights in obFun

13 tolJ = 1e−4; tolY = 1e−4; tolG = 1e−4; %stopping criteria

14 maxIter = 1000; LSMaxIter = 20; %maximum iterations

15 regH = 1e−5; %parameter for Levenberg−Marquardt
16 %overwrites default parameter

17 for j=1:2:length(varargin),

18 eval([varargin{j},'=varargin{',int2str(j+1),'};']);

19 end

20 %prepare variables

21 T1Exp = T1Exp(:);

22 M0 = M0(:);

23 flips = flips(:);

24 k = numel(flips);

25 %check input

26 assert(numel(T1Exp)==numel(M0),'M0 and T1 must have an equal

number of elements');

27 assert(max(abs(flips))<pi ,'Flip angles must be given in RAD.')

;

28 %prepare optimization

29 obFun = @(w) obFunMultiT1(w,T1Exp,M0,flips,TR,r);

30 wLin = ones(k,1);

31 paraOpt = {'tolJ',tolJ,'tolY',tolY,'tolG',tolG,...

32 'maxIter',maxIter,'LSMaxIter',LSMaxIter,...

33 'regH',regH};

34 %do the optimization

35 wOpt = GaussNewtonSimplex(obFun,wLin,paraOpt{:});

36
37 end
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might be slower than optimization methods which can be used for Tikhonov-Philips
coupling.

Joint Parameter Estimation and Motion Correction

Another part of this work has been concerned with joint methods, where dynamic
parameters are to be estimated from both motion and noise corrupted data, see Sec-
tion 5.1. The results which were obtained in Section 5.2 and Section 7.3 indicate that
spatial coupling can also improve parameter estimation in this joint setting. Note that
our results indicate that for simple data (a�ne deformations, clear structure of the
data) joint approaches only lead to negligible improvements in parameter estimation
and registration, see Section 5.2.1. From a practical perspective this is promising, as
conventional techniques can be employed for recovery. However, for more complicated
data results of [69] indicate that joint approaches indeed come with advantages. In
this case our results from Section 5.2.2 show that spatial coupling can additionally
improve both parameter estimation and registration: To demonstrate these improve-
ments, we have compared an unstabilized approach with a stabilized approach both on
phantom and on real data. We have found that in the unstabilized approach dynamic
parameters are recovered which emulate motion. Since this often leads to parameter
maps with large outliers, such e�ects are mitigated by spatial coupling. On real data
we have observed both clearer parameter maps and improved motion correction by
using spatial coupling. We have also found that spatial coupling is capable to im-
prove parameter estimation especially for di�cult to recover high T1, see Lemma 10.
However, both the coupled and the established uncoupled method failed to recover
the parameters accurately even in the presence of no noise. Reasons for this behavior
need to be investigated further and might be linked to the considerable deformations
which were simulated. For the actual optimization, we have compared two optimiza-
tion strategies: A coupled approach, where optimization is performed with respect to
all variables at once, and an alternating approach, where subsequent registration and
parameter estimation are performed. Here we have found no large di�erences between
the coupled and the subsequent approach. Since the subsequent approach is easier
to implement and has more stable convergence, we conclude that the subsequent ap-
proach is more suited for applications. Note that in our experiments we have used only
Tikhonov-Philips coupling since we found our implementation of the Schatten-norm
based stabilizers to be too slow for real 4D data. We nevertheless expect improved
results for the more advanced coupling strategies. Again, as already described above,
both the type and impact of the coupling terms will depend on the data. Also note
that in the case of only two �ip-angles we do not expect the joint approach to work,
since any two data points completely determine the dynamic parameters. The impact
of coupling in such setting yet needs to be determined.
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Blind Parameter Estimation for the Patlak Rutland Model

Additionally to joint models which are used to recover dynamic parameters and mo-
tion, we have also analyzed joint models which are used to recover dynamic parameters
and control parameters of the model, see Section 5.3. Here we have focused on joint
estimation of the arterial input function and pharmacokinetic parameters and have
again extended the established approach [121] by a spatial coupling term. Results from
Section 5.4 indicate that also in this setting, spatial coupling can improve parameter
estimation especially at low SNR. In the software phantom experiments we have mea-
sured improved results of up 45% percent for Ktrans, which is the main parameter to
recover the GFR. However, in this method we have found di�erent challenges: First,
the selection of stabilization parameters is di�cult, since in a double-blind setting
one variable determines the other: Both too high coupling and too low coupling will
introduce errors in the arterial input function, which again will lead to errors in the
parameters. This implied that we could not eliminate the dependency of the arterial
function completely and still rely on estimate, which could be given by a low-quality
measurement or a population-averaged arterial input function as in [113]. Addition-
ally the problem of scale remains: Since in the double-blind setting both variables can
only be estimated up to a scaling constant, external criteria need to be found to de-
termine the scaling factor. Other approaches are using either reference values for the
pharmacokinetic parameters [146, 162] or using the integral of nearby arterial concen-
tration [53]. Note that if one is only interested in relative values to distinguish local
functionality this normalization can be omitted.

Limitations of Traditional Models for Perfusion

Our results described in Section 6.3 and Section 7.5 show that if traditional methods
for perfusion estimation are applied to a coupled system they perform well if applied to
averaged snapshots of the system, but tend to fail when they are applied to only parts
of the system. This e�ect was demonstrated both analytically and experimentally. We
have illustrated this e�ect in detail in the case of high resolution phantom images
where the voxel size reaches the spatial dimension of the capillary systems, but also
showed the e�ect on coarse scale real data. The reason for this failure is not numerical
instabilities in the deconvolution, but rather that perfusion becomes overestimated
since traditional models will not account for the correct distribution volume. Whereas
the the scaling e�ect for generic volumes has been described in [72], we have presented a
real-life example and additionally performed an exact quantitative analysis for coupled
systems. This scaling problem is expected to become more pronounced in future as
imaging hardware is constantly improving in spatial resolution. We expect to �nd
overestimation also in pathological tissue, where �uid is passing through multiple,
adjacent voxels, and recommend to be take this e�ect into consideration in clinical
evaluation of the data. To account for this problem, the development of new �eld
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models for perfusion is therefore highly demanded, in line with approaches described
in [140, 101].

Outlook

Although this work has clari�ed assets and drawbacks of one-dimensional dynamic
models in coupled settings, there are still multiple open questions which can be ad-
dressed in future work:

Most prominently, the ideas of joint motion correction and parameter estimation could
be extended to concentration recovery and motion correction for DCE-MRI. Multiple
approaches have been taken to extend the joint approaches for motion estimation and
dynamic modeling to such data [23, 11]. To the best of the author's knowledge, none
of these approaches is currently used in everyday clinical practice. Possible reasons for
this have been outlined in Section 5.1 and include the resulting, highly nonlinear joint
model: Given a T1 map, a straight-forward approach would consider the concatenated
signal equation and dynamic model. Unknown parameters would thus be the deforma-
tion �elds and the dynamic parameters for each time point. As a �rst step, one could
seek to improve only the estimation of contrast agents without including the dynamic
modeling. Results from [69] and recent evaluations from the University of Bergen have
shown that better recovery of contrast agent concentrations from DCE-MRI images
might be the key for more accurate estimation of pharmacokinetic parameters. Note
that this step already requires registration, since each image needs to be related to
the baseline. Our results indicate that spatial coupling might have important in�uence
for accurate registration and concentration estimation. In a non-coupled approach,
increasing the contrast agent concentration at a given point every signal intensity be-
longing to a shorter T1 can be emulated, which might simulate motion. The work to
extend such joint approaches to DCE-MR images is subject of a current grant appli-
cation of the Institute of Mathematics and Image Computing with several partners.

Another extension of our results could concern the problem that regularization param-
eters in spatial coupling can lead to underestimation of the parameters. Here e�ects of
an L1 based distance could be investigated: In the current setting we have combined
a squared distance with a non-squared stabilizer. Both terms thus scale signi�cantly
di�erently. As results from [30] indicate, in the denoising setting L1 based distances al-
low for perfect recovery for a whole range of stabilization parameters without any loss
of contrast. This might be tried for parameter estimation as well. Connected to this
problem are di�erent optimization schemes for the primal-dual objective functions:
We have found that the PDHG yields both fast and accurate results. Nevertheless ap-
proaches such as iPiano [109], which are using ideas from the heavy-ball optimization
method, might converge even more rapidly and help to avoid possible local minima.

Another idea is to use the vector-�eld stabilizers for CBF estimation with the Meier-
Zierler model: By coupling each component of the residue functions, more reliable CBF
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results might be obtained. A �rst implementation of this approach could be easily done,
since it would lead to a linear data-term D(R) := ‖L̃R−C‖2 for R ∈ Rkn), C ∈ Rkn,
L̃ := kron(idn, L) and L ∈ Rk,k as in Section 3.2.2. However, this does not address the
question of how to include monotonicity of R.

Concerning CBF estimation, our experiments show that spatially coupled models for
perfusion might be more suitable for higher scanner resolutions. A spatially coupled
model for blood �ow which accounts both for spatial propagation and multiple com-
partments has been proposed recently [140]. However, since the proposed model is
highly complex, experimental evaluation is still pending. Further work on this topic is
highly advised and subject of a recent grant application of the University of Bergen.

In this work we have proposed various strategies to improve parameter estimation
from voxel-wise 4D data with a focus on the role of spatial coupling. We have trans-
ferred state of the art modeling from applied mathematics to such problems and have
found that in some applications these methods are indeed capable to improve param-
eter results. Further, we have used the modeling to demonstrate and to test limits
of established methods for parameter recovery. We thus conclude that especially for
voxel-wise applications and one-dimensional dynamic models, coupling is an essential
ingredient if stable results are to be estimated. Nevertheless, we also hope that with
the development of continuous methods for contrast agent propagation as e.g. in [140],
coupling will be an inherent component and will not need to be included externally.
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