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1. ABSTRACT
Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently
stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination
and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence
between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions
like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional
information arising from the analysis of neighboring slide images.

In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing
a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine
resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as
preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by
the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained
and thus multi-modal slides.

We applied our method to ultra thin serial sections (2 µm) of a human lung tumor. In total 170 slides, stained alternately
with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block
perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is
confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying
deformations in tissue structures and exceeds the limitations of globally linear transformations.

2. DESCRIPTION OF PURPOSE
In cancer diagnostics and histology-related basic research, much insight into metabolic interactions, tissue growth, and
tissue organization can be gained by analyzing differently stained histological serial sections. For this procedure, a fixed
tissue block is cut into ultra thin slides which are then examined by microscopy. An inevitable downside of the histological
sectioning is the loss of spacial correspondence between adjacent slides. For this reason, also the 3D information is com-
pletely missing although it is valuable, for example for pathologists and biologists analyzing vascular structure or tumor
dissemination[1]. Furthermore, the cutting process introduces various distortions like cuts, folding, tearing, or local elas-
tic distortions to the tissue. For a high resolution reconstruction of a block and slide-to-slide comparison up to cell-level,
especially elastic distortions of the tissue need to be corrected. Large cuts, folds and tearing can often not be undone and
will not be addressed here. However, smaller of these artifacts need to be handled robustly in order to be able to register
the tissue in their vicinity.

In non-digital histological studies, the combination of different staining chemicals on one slide is necessary but often
difficult due to their mutual reactions. Using different stains on consecutive ultra thin slides, a multi-modal registration
method allows for a virtual double staining of the tissue. Furthermore, additional information can be gained by the visu-
alization and analysis of the three dimensional structure of the tissue. In a recent publication [1, 2] the authors report that
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3D reconstruction enables the automatic detection of tumor islands in lung adenocarcinomas. The authors use the detected
tumor islands as a diagnostic criterion and show a significant decrease in survival rate in patients where tumor islands are
found. In their study, more than 260 histological datasets are manually reconstructed.

Automatic registration in histological imaging and digital pathology in general is an upcoming topic of research. A
few methods have been proposed aiming at automatic 3D reconstructions including [3], [4], and [5] to name just a few.
Especially in histology, images are usually available in a very high image resolution resulting in images with more than
1010 pixels. Some approaches dealing with the large size of histological images will be briefly sketched here.

In [6], the authors describe an algorithm that performs a three dimensional tissue reconstruction of histological sections
that are differently stained. The authors propose a tile based approach previously published by [7] that first computes
a rough globally rigid transformation which is then refined by calculating rigid transformations on smaller tiles of the
image with higher resolution. Multi-modal registration between differently stained sections is achieved by an automated
content classification. A global nonlinear deformation is computed by interpolating between rigidly transformed points on
individual tiles using b-spline transformations. These methods require manual correction in case of failure in the initial
rigid registration. Another way to find correspondences is to detect image features such as blood cells or vessels. In [8] a
tile based approach is combined with SIFT feature detection whereas in [9] red blood cells are identified in mono-modal
images.

3. METHOD
We propose a tile-based method but calculate an elastic deformation instead of affine or rigid transformations. Our method
is fully automatic and does not involve human intervention once the target area has been selected initially. Multi-modality
is dealt with by a flexible distance measure that evaluates similarity of two images based on edges instead of finding point
correspondences or using machine learning approaches.

We consider a given a series of consecutive histological images I1, . . . , In defined on image domains Ω1, . . . ,Ωn

and assume that the images are stained in alternating order. The central component of our reconstruction scheme is the
registration of two consecutive images. Since these images are almost certainly not of the same staining, we assume
this registration problem to be multi-modal. Registering two slide images Ij and Ij+1 we start with a parametric, affine
registration based on a coarse-to-fine scheme. Once this correspondence is established, we continue to zoom in around a
user defined point of interest as seen in [10].

While zooming in in terms of increasing the magnification level, we keep the resolution of the chosen image section
constant at 2048×2048 pixels. The tile size can be determined by the user and is a compromise between visible tissue area
and processing time. The zooming step is repeated until the desired image resolution is reached, resulting in two affinely
registered high resolution tiles from two adjacent whole slide images. See Figure 1 for an illustration of the complete
registration scheme.

To cope with the multi-modality of the images, we choose the NGF [11] distance measure with

NGF [Ij , Ij+1, yj ] =

∫
Ωj

1− ∇Ij+1(yj(x))
T∇Ij(x) + η2√

∥∇Ij+1(yj(x))∥22 + η
√
∥∇Ij(x)∥22 + η

dx. (1)

which is numerically optimized with respect to a deformation yj : Ωj → Ωj+1 that describes the correspondence between
adjacent slides. Using NGF, the distance of two images is expressed by evaluating the alignment of their edges instead
of focussing on absolute pixel values. Due to the normalization term in the denominator, a pure implementation of a
normalized gradient with η = 0 would treat all edges in the image equally. The edge coefficient η acts as a noise filter by
reducing the influence of those image gradients∇I(x) that are significantly smaller than η.

NGF not only allows the registration of differently stained images but also copes nicely with different staining intensities
in same-stain (mono-modal) registration. Though a purely affine model ensures a robust and regular deformation also in
the presence of small artifacts, it does not account for nonlinear distortions.

For further refinement we apply a nonlinear registration to the high resolution image block, minimizing a functional
that combines the NGF distance measure and a regularizer S with respect to the displacement yj :

J [Ij , Ij+1, yj ] = NGF [Ij , Ij+1, yj ] + S[yj ] −→
yj

min. (2)



Figure 1. Flowchart of the implemented registration scheme. After a coarse segmentation based pre-alignment, first affine and consecu-
tively elastic registration is performed.

The regularizer is used to define the deformationmodel assumed in the registration and to ensure smoothness and robustness.
As the local deformations in the slides stem from the sectioning process where the tissue is expected to behavemostly elastic,
we use the elastic regularizer

S[yj ] = α
1

2

∫
Ω

µ⟨∇yj(x),∇yj(x)⟩+ (λ+ µ)(∇ · yj(x))² dx. (3)

In order to optimize the joint objective function J [Ij , Ij+1, yj ], a Gauss-Newton scheme is applied using discretized
analytic derivatives [12].

The 3D reconstruction is computed by a consecutive parametric (affine) registration of neighboring slides which is
refined by applying a nonlinear (elastic) registration to the affinely pre-registered stack. Using the first slide I1 as reference,
all consecutive slides are registered according to the original cutting sequence independently of staining. This order proved
to be successful in a comparison of different slide registration approaches [6]. In order to examine the 3D structure at cell
level which is more important from a clinical perspective, we use the zooming strategy to reconstruct an isolated block of
tissue at high resolution. The position of the reconstructed block can be chosen freely in the dataset.

4. RESULTS
In order to evaluate our algorithm on clinically relevant samples, we applied the reconstruction method to a stack of 202
slides of human lung tumor [13] (non-small cell lung cancer, NSCLC) generated within the LungSys2 consortium*. The
surgically resected material was fixed, sectioned with a slice thickness of 2µm, and immunohistochemically stained alter-
nately with four different stains (CD31, H&E, factor VIII, KL-1). The images {Ij |j = 4z + k, z = 0, . . . , 49} are stained
with CD31 for k = 1, H&E for k = 2, factor VIII for k = 3 and KL-1 for k = 4. The sections were digitized and converted
into an in-house implemented format, making use of a coarse-to-fine multilevel image data structure based on an SQLite
database. In total, 202 whole slide images are available at 40x (KL-1, factor VIII, CD31) or 20x (H&E) magnification.
The zooming step was repeated until a pixel length of 0.45 µm (level 1) was reached. We excluded 32 slides due to heavy
scanning or staining artifacts or due to excessive tissue damage, resulting in 170 slides for the reconstruction.

We evaluated our registration qualitatively by visual inspection and quantitatively bymeasuring the alignment ofmanual
annotations in the image.

The visual inspection of the registered slides was performed on virtual cuts through the reconstructed block which are
shown in Figure 2. The checkerboard overlay of two consecutive slides shown in Figure 3 (left), illustrates precisely aligned

*LungSys2 is funded by the German Ministry of Education and Research, see www.lungSys.de for further information.



Figure 2. 3D reconstruction of the whole image stack (170 slides). Shown is an image section of size 2048 × 2048 at 5x magnifica-
tion, which is cropped by virtual clipping planes. LEFT: Reconstruction after affine registration, RIGHT: Reconstruction after elastic
registration showing smoother appearance of anatomical structures.

Figure 3. LEFT: 20x magnified checkerboard overlay of consecutive slides: CD31 stained slide with elastically registered (i.e. deformed)
H&E stained neighboring slide. A staining artifact in the center of the blue CD31 image does not compromise the registration result.
RIGHT: Calculated elastic deformation field.

structures after elastic registration. Comparing the 3D rendering of virtual cuts of an affine and an elastic reconstruction,
Figure 2 shows vessels and anatomical structures that can be tracked very smoothly through the elastically registered tissue
block, while being hardly noticeable after purely affine registration. The exemplary shown deformation field visualized in
Figure 3 (right) shows both the smoothness of the calculated deformation and also the necessity for nonlinear modeling.

Mapping anatomically corresponding image features onto each other, the registration can be evaluated quantitatively
by measuring the alignment of morphologically prominent image features. As the prominent structures in the images
include mostly alveolas and vessels which are relatively round in shape, the manual placement of landmarks has shown
to be unreliable and had to be discarded as an evaluation criterion. Instead, the borders of two structures were manually



Figure 4. Roundly shaped structure in a factor VIII stained slide with annotation (yellow crosses). Superimposed is the annotation of the
corresponding structure in the previous slide after being deformed by the nonlinear registration result (red dots).

segmented by a smoothed, closed freehand contour in four consecutive slides before registration. An example of such a
segmentation is shown in Figure 4. The results of the linear registration at different zooming levels as well as the result of the
nonlinear registration at the finest zooming level were applied to deform these segmentations for each pair of neighboring
slides.

We choose the Hausdorff distance hd of two segmentations represented by point sets A = {a1, ..., aN} and B =
{b1, ..., bM} for example described in [14] with

hd(A,B) = max{max
a∈A

min
b∈B

∥a− b∥2 , max
b∈B

min
a∈A

∥b− a∥2 }

as error measure. Being intuitive in terms of absolute displacement error, the Hausdorff distance can be interpreted as the
maximum error of the registration result on the (discretized) border of the annotated structure. This is a main advantage over
relative measures such as the otherwise popular dice coefficient [15] which is relative to the annotated area and therefore
unfit to compare results between different annotations or data sets.

The segmentations are represented by discrete point sets of an average distance of 3 µm between adjacent points. For
the first three slide pairs, the registration results were applied to these point sets in the reference image and compared to
the unaltered point sets in the template image. The Hausdorff distance was computed on three levels (5, 3, and 1) after
linear registration and after the final nonlinear registration (level 1). These measurements are shown in Table 1. The
average distance in the annotated structures is 7.73 µm. The measurements show the increase in accuracy after registration
at higher magnification. The results also confirm the additional benefit of the nonlinear registration which lowers the
calculated distance significantly (mean dh is smaller after nonlinear registration than after finest level linear registration,
one-sided t-test, p < 0.05). An evaluation including a higher number of slides is currently in preparation.

The computed distances give a good impression of the registration accuracy but do not replace visual inspection. A
perfect alignment of the annotations is neither possible nor desired. Due to the inaccuracies of manual annotations in tissue,
a zero distance between the annotations is very unlikely, even if the registration was perfect. Furthermore, a registration



resolution level registered slides dh (structure a) dh (structure b)

5 (affine) 1 → 2 8.95 37.94

3 (affine) 1 → 2 9.14 7.58

1 (affine) 1 → 2 8.61 7.76

1 (nonlinear) 1 → 2 8.43 7.19

5 (affine) 2 → 3 20.89 16.69

3 (affine) 2 → 3 7.60 10.80

1 (affine) 2 → 3 7.06 10.74

1 (nonlinear) 2 → 3 6.04 8.97

5 (affine) 3 → 4 14.06 24.56

3 (affine) 3 → 4 8.99 9.45

1 (affine) 3 → 4 8.80 9.31

1 (nonlinear) 3 → 4 7.05 8.72

Table 1. Alignment errors dh of the annotations of two structures (a and b) after registration at different registration levels expressed in
Hausdorff distance. Final results are highlighted in bold. Three slide pairs were annotated. Pixel length at level 1 is 0.45 µm. Mean
Hausdorff Distance after nonlinear registration: 7.73 µm.

that perfectly maps the structures of two slides onto each other would destroy the 3D information encoded in the structural
differences from slide to slide.

Before computationally processing the data, the tissue block undergoes the process of cutting, staining, counter-staining
and scanning. This data acquisition part is by far more time consuming than the final digital 3D reconstruction. However,
fast computation is an advantage, especially in the case of serial histologic sectioning where a high amount of data has to
be processed. The time the presented algorithm needs to process one pair of slides up to 20x magnification (2048× 2048
pixels, 0.45 µm pixel length) is approximately 40 seconds on a dual core laptop computer equipped with an Intel Core
i7-3520M CPU at 2.9 GHz.

5. CONCLUSIONS
We presented a novel method for fast fully automatic high resolution 3D reconstruction of serial sections. The registration
framework includes an affine pre-alignment based on the NGF distance measure including a zooming strategy. NGF
provides the flexibility to register differently stained slide images which was shown on four different immunohistochemical
stains. Finally local elastic distortions introduced to the tissue by the sectioning process are refined in a nonlinear step using
an elastic registration model. After elastic refinement, virtual cuts through the reconstructed tissue block show smooth
structures which were not visible in the affine reconstruction. The computed distances between annotated structures in the
images show the high accuracy of the registration. The presented method allows an easy extension towards a reconstruction
of the whole slide area at high resolutions of up to 20x or even 40x by combining the computed elastic deformations of
neighboring tiles after zooming. Necessary modifications to data storage and handling are currently in preparation.
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