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Abstract

The hypothalamus-pituitary-adrenal (HPA) system is closely related to

stress and the restoration of homeostasis. This system is stimulated in the

second half of the night, decreases its activity in the daytime, and reaches

the homeostatic level during the late evening. In this paper we derive and

discuss a novel model for the HPA system. It is based on three simple rules

which constitute a principle of homeostasis and include only substantial

physiological elements. In contrast to other models, its main components

include, apart from the conventional negative feedback ingredient, a positive

feedback loop. To validate the model, we present a parameter estimation

procedure which enables one to adapt the model to clinical observations.

Using this methodology, we are able to show, that the novel model is capa-

ble of simulating clinical trials. Furthermore the stationary of the system is

investigated. We show that, under mild conditions, the systems has always

a well-defined set-point which reflects the clinical situation to be modeled.

Finally, the computed parameter may be interpreted from a physiological

point of view and thereby gaining connoting insights in diseases like depres-

sion, obesity, or diabetes.

Key words: physiological modeling; parameter estimation; physiological

system; stress system; hypothalamus-pituitary-adrenal system; homeostasis
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Physiology

The hypothalamus-pituitary-adrenal (HPA) system is a neuroendocrine sys-

tem which is closely linked to stress in humans. This system is responsible

for a rapid response to stressful stimuli and for the return to homeostasis

through complex feedback mechanisms. Cortical brain regions, e.g. hip-

pocampus and amygdala, are connected by glutamatergic pathways to the

hypothalamus (1). An activation of the hypothalamic neurons of the par-

aventricular nucleus by glutamate causes a release of corticotropin releasing

hormone (CRH). By this, CRH is secreted into the hypophyseal portal cir-

culation to reach the anterior pituitary, where it subsequently stimulates the

release of adrenocorticotropic hormone (ACTH) into the circulation. ACTH

stimulates the release of cortisol in the adrenals (see Figure 1). Serum cor-

tisol concentration has to be sufficiently regulated within a physiological

range. A hypercortisolism causes depression, diabetes, visceral obesity, or

osteoporosis. Therefore, inhibition of cortisol secretion is an essential com-

ponent of the regulation within this system. The inhibition is partly achieved

by cortisol bindings to glucocorticoid receptors in the amygdala, hippocam-

pus, hypothalamus, pituitary, and adrenals. However, it is also important

to maintain cortisol concentrations above a critical threshold since cortisol

may result in a disturbed memory formation or a life-threatening adrenal

crisis (2, 3).

Two types of corticoid receptors have been described based on biochemi-

cal and functional characteristics (4). The mineralocorticoid receptor (MR)

has a specificity in binding selectively cortisol. In the brain, MR is most
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Figure 1: The HPA system: Glutamate (hippocampus and amygdala) stim-
ulates the release of CRH (hypothalamus), which stimulates the ACTH se-
cretion (pituitary), and ACTH in turn stimulates cortisol secretion (adrenal
cortex). Cortisol provides a feedback signal at all hierarchical levels via
mineralocorticoid (MR) or glucocorticoid receptors (GR).
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densely localized in hippocampal and septal neurons. While MR has a high-

affinity to cortisol, its efficacy in the periphery and lower brain regions is

limited by 11 β hydroxysteroid deshydrogenase 2, which converts intracel-

lularly active cortisol into inactive cortisone. Conversely, the glucocorticoid

receptor (GR) is widely distributed and represents the predominant binding

site for cortisol in hypothalamus, pituitary, adrenals as well as in organs and

tissues in the periphery. However, GR binds cortisol with a lower affinity as

compared to MR. These receptor characteristics complement each other and

put the MR and GR in a position to modulate HPA responses. MR appears

to be sensitive to low and saturates at high cortisol concentrations. On the

other hand, GR generates its dynamics at high, while it appears to be non-

effective at low cortisol concentrations. It is known from the literature that

cortisol binding to GR leads to an inhibitory effect on cortisol secretion (5).

However, it is unclear, how cortisol bound MR affects the HPA system.

The HPA system is a dynamical closed loop system, homeostatically reg-

ulated, and subject to a daily rhythm. In the second half of the night the

HPA system is stimulated during REM sleep phases (6). A maximum of

cortisol and ACTH concentrations is attained in the early morning hours.

The hormones underlie a constant decay in the daytime. However, cortisol

and ACTH concentrations are rising after meals or in a physical or psycho-

logical stress situation. During the first half of the night ACTH and cortisol

concentrations are reaching a homeostatic level (for illustration see Figure

2).

It remains the question, in which way the HPA system regulated and

reaches its homeostatic level. The answer to this fundamental question is
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Figure 2: Daily cortisol rhythm: Typical daily plasma cortisol profile in
humans.

of foremost interest to the treatment of various diseases. This includes,

for example, the defined hypo- or hypercortisolism, such as Addison’s and

Cushing disease. Also its the close connection to the energy and weight

regulation (e.g. obesity, diabetes mellitus and metabolic syndrome) and to

psychological illnesses such as depression is a profound motive to investigate

the mechanisms of the HPA system regulation (7). From an evolutionary

point of view, it is widely accepted that a simple and durable mechanism

had to provide a basis for a homeostatic regulated system. This led us to

the following principle of homeostasis for the HPA system. Its interactions

eventually result in a homeostatic state of cortisol (8).
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Principle of homeostasis

Rule 1 Cortisol binds at low concentrations to the MR and only at high

concentrations to the GR.

Rule 2 Activated MR and GR operate in an opposing manner.

Rule 3 Cortisol raises its own serum concentration via activated MR,

while it reduces it via activated GR.

Note that Rule 3 constitutes a positive feedback of MR on cortisol. In this

way, we introduce a novel aspect in the concept of homeostasis.

The remaining part of this paper is organized as follows. Based on the

three rules we develop a “homeostatic” mathematical model and prove in a

strict sense that this system reaches a stable state over time, that is, in the

present context, the system reaches a homeostatic state or set-point. Next

we establish a parameter estimation procedure which we bring forward to

adapt the new model to clinical data. Finally, we discuss its clinical relevance

and conclude.

Model

While quite a number of mathematical models of the glucose metabolism

were developed and published (9–11), only a small number of models of the

HPA system can be found with rather different aims. The focus of these

HPA models varies from the influence of the inner clock to the self-dynamic

in this system (12, 13). Despite several dissimilarities certain characteristics

of the models are modeled along the same lines. The stimulation of CRH via
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ACTH on cortisol is constructed identically in previous HPA models. Ad-

ditionally, the degradation rates of CRH, ACTH, and cortisol are assumed

to be linear. Interestingly, almost all previous HPA models use only pure

negative feedback elements (14–16). The absence of positive feedback ele-

ments in these models turns out to be a shortcoming since there exist data

indicating a positive stimulus in the HPA system (17). We will now present

a new model, which includes positive as well as negative feedback elements

and which is based on the three rules of homeostasis. Following the first rule

of homeostasis (see box), cortisol (Z) binds to the high affine MR (R1) and

to the low affine GR (R2). Cortisol and MR form a ligand-receptor complex

C1 and cortisol and GR a complex C2, respectively. Denoting the rates of

reaction by k1, k−1, k2 and k−2 the reaction equation can be written as

Z + R1
k1


k−1

C1,

Z + R2
k2


k−2

C2.

Under common assumption of biochemical reaction kinetics and the law of

mass action of competitive bindings (see (18)), we arrive at the following

dose response relations

c1 =
e1z

z + K1
and c2 =

e2z

z + K2
.

Here, z denotes the concentration of Z in the chemical equilibrium. The

coefficients e1 and e2 represent the integrated maximal efficacies of all MRs

and GRs localized in different brain regions (e.g. hippocampus, amygdala,
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hypothalamus, and pituitary) while

K1 :=
k−1

k1
and K2 :=

k−2

k2
,

reflecting the binding affinity of MR and GR respectively (compare Figure

3). While the affinity of MR is higher than the affinity of GR, the inequality

K1 < K2 holds. Following the second rule of homeostasis (see box), we

add the stimulation via the cortisol-MR complex and the inhibition of the

cortisol-GR complex

h(z) =
e1z

z + K1
− e2z

z + K2
= c1(z)− c2(z). (1)

We consider h as a feedback of cortisol in the HPA system (see Figure 3).

We pool the integrated influences of glutamate, CRH and ACTH from differ-

ent brain regions in one molecular cue of the brain/pituitary compartment

named Y (with a physiological interpretation as plasma ACTH) and suppose

that the concentration y gives a positive stimulus on Z. By denoting the

compartment transition of the adrenal cortex to the brain/pituitary com-

partment by a constant b2 ∈ R+, we obtain the time dependent differential

equation

dy

dt
= −b1y(t) +

e1z(t)
z(t) + b2K1

− e2z(t)
z(t) + b2K2

+ p(t), (2)

where we assume Y to have a linear degradation rate b1 ∈ R+. The function

p : R → R+
0 models an external input, e.g. infusion of ACTH. With a linear

degradation rate b3 ∈ R+ of Z and a linear stimulation rate b4 ∈ R+ of Y
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Figure 3: Feedback of the HPA system: Illustration of a competitive an-
tagonism of cortisol and its receptors with e1 = 1, e2 = 2, K1 = 0.01 and
K2 = 0.3 for z ∈ [10−4, 10]. The efficacy (activation) of the cortisol-MR
complex c1 (dashed line) and (inhibition) the cortisol-GR complex (dot-
dashed line), the feedback h(z) = c1(z)− c2(z) arises from an subtraction of
the two complexes (solid line).

on Z we arrive at the closed system of two ordinary differential equations

(ODE)

dy

dt
= −b1y(t) +

e1z(t)
z(t) + b2K1

− e2z(t)
z(t) + b2K2

+ p(t),

dz

dt
= −b3z(t) + b4y(t),

(3)

with some user prescribed initial conditions y0, z0 ∈ R+. Figure 4 dis-

plays the differential equation (3) schematically in a two compartment model

(brain/pituitary and adrenals). By construction, the mathematical model

satisfies the three physiological rules of homeostasis (see box). In addition,

each parameter in our model has a clear physiological interpretation. The

physiological term of homeostasis can mathematically be interpreted as a
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Figure 4: Schematic interpretation of the system of differential equations
(3): The alteration of z over time depends on a degradation rate b3 and
a stimulation rate b4 of y. The alteration of y over time depends on a
degradation rate b1, an external input function p, and a feedback signal h
of z (compare equation (1)).

equilibrium point which is asymptotically stable. A point x∞ is called an

equilibrium point for the differential equation dx
dt = f(x(t)) if f(x∞) = 0 for

all t ∈ [t0,∞). Moreover, x∞ is called Lyapunov stable if for every neighbor-

hood U(x∞) there is a neighborhood V ⊆ U(x∞) such that every solution

x starting in x(t0) ∈ V remains in U for all t ≥ t0, otherwise it is called un-

stable. An equilibrium x∞ is asymptotically stable if it is Lyapunov stable

and, in addition, V can be chosen such that ‖x(t)− x∞‖ → 0 as t →∞ for

all x(t0) ∈ V (see (19)). From a physiological as well as mathematical point

of view it is interesting to investigate the stability of the derived differential

equation (3). The following theorem gives an answer in this direction.

Theorem 1. If the differential equation (3), with p ≡ 0, satisfies the in-

equality

−b1b3

b4
+

e1

b2K1
− e2

b2K2
> 0, (4)

then there exists an unique point (y∞, z∞), with y∞, z∞ > 0, which is
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asymptotically stable. Moreover, the point (0, 0) is unstable.

In other words, provided the inequality (4) is satisfied, the solution of the

differential equations settles over time to set-point. How can the inequality

(4) be interpreted? In this inequality the addend e1
b2K1

is positive and the two

other addends are negative. In comparison, the positive feedback element

has to “dominate” the negative feedback element e2
b2K2

and the relation of

degradation to forward stimulation b1b3
b4

. From a physiological point of view

the inequality holds if and only if a positive stimulus on ACTH and cortisol

for arbitrarily small concentrations of cortisol is provided.

Proof. The equilibrium points of the differential equation (3) (with p ≡ 0)

are precisely the zeros of the function

g(z) := z ·
(
−b1b3

b4
+

e1

z + b2K1
− e2

z + b2K2

)

and the equation y = b3
b4

z. Thus, we either have one equilibrium point(
y(1), z(1)

)
= (0, 0) or three equilibrium points given by

(
y(1), z(1)

)
= (0, 0) ,(

y(2), z(2)
)

=
c2 +

√
c2
2 + 4c1c3

2c1

(
b3

b4
, 1
)

,(
y(3), z(3)

)
=

c2 −
√

c2
2 + 4c1c3

2c1

(
b3

b4
, 1
)

,
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with the setting

c1 :=
b1b3

b4
,

c2 := −c1b2 (K1 + K2) + e1 − e2,

c3 := −c1b
2
2K1K2 + b2 (e1K2 − e2K1) .

Now, inequality (4) states that g has a positive gradient at zero

dg

dz
(0) = −b1b3

b4
+

e1

b2K1
− e2

b2K2
> 0

and since g(0) = 0, there exists an ε > 0 so that g(z) > 0 for all z ∈ (0, ε].

Since the leading coefficient of g is negative, we deduce that limz→∞ g(z) =

−∞. Considering the curvature behavior of g, the differential equation (3)

(with p ≡ 0) has a unique equilibrium point
(
y(2), z(2)

)
with y(2), z(2) > 0

and

dg

dz

(
z(2)
)

= −b1b3

b4
+

e1b2K1(
z(2) + b2K1

)2 − e2b2K2(
z(2) + b2K2

)2 < 0.

Hence (3) (with p ≡ 0) has precisely one positive equilibrium point(
y(2), z(2)

)
. Next we verify that

(
y(2), z(2)

)
is an asymptotic stable point

(y∞, z∞) of the differential equation (3) (with p ≡ 0). Here, it is sufficient

to show that the real parts of the eigenvalues of the Jacobian of the right

hand side of equation (3) with p ≡ 0 are genuinely negative in
(
y(2), z(2)

)
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(see (19)). The eigenvalues (dependent only on z) of the Jacobian

J(z) =

 −b1 ḡ(z)

b4 −b3

 with ḡ(z) :=
e1b2K1

(z + b2K1)
2 −

e2b2K2

(z + b2K2)
2

are given by

λ1,2(z) = −b1 + b3

2
±

√
(b1 − b3)

2 + 4b4ḡ(z)

2
.

For any z ∈ R the real part of λ2 is genuinely negative Re(λ2(z)) < 0. Thus,

it is sufficient to show that Re(λ1(z)) < 0 for z = z(2). From

−b1b3

b4
+ ḡ

(
z(2)
)

=
dg

dz

(
z(2)
)

< 0

it is easy to deduce that

(b1 − b3)2 + 4b4ḡ
(
z(2)
)

< (b1 + b3)2

is valid. Consequently , Re(λ2(z)) < 0 and (y∞, z∞) is an asymptotically

stable point of the differential equation (3) (with p ≡ 0). The point (0, 0)

is unstable since (4) together with ḡ(0) = e1
b2K1

− e2
b2K2

implies Re (λ1(0)) >

0.

Theorem 1 guarantees – under certain conditions that are consistent with

the principle of homeostasis – the uniqueness of the asymptotic stable point

(y∞, z∞). Apart from this important statement, we are able to calculate

the asymptotic stable point of the system of differential equations (3) ana-
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lytically. Furthermore, it should be mentioned that Theorem 1 holds even

in the presence of a smooth external input function p with sufficient decay,

e.g., p from equation (6).

Parameter estimation

It should come with no surprise that the solutions y(t) and z(t) greatly

vary with respect to the parameters b1, b2, b3, b4, e1, e2,K1,K2 and with re-

spect to the external input p(t). It is the goal of this section to show that

these parameters may be chosen such that the resulting mathematical model

closely approximates data stemming from clinical trails. While the constants

b1, b2,K1,K2 in the system of differential equations (3) are known from the

literature (8, 20), the parameters b3, b4, e1, e2 are unknown. The unknown

external input p(t) will be treated separately. We combine the unknown

parameters e1, e2, b3 and b4 with some arbitrary initial conditions of the dif-

ferential equation y0 and z0 into a parameter vector θ := (e1, e2, b3, b4, y0, z0).

The variation of y and z is therefore dependent on θ which is y( · ; θ) and

z( · ; θ). Our goal is to solve the inverse problem: Find a vector θmin so that

resulting concentrations y( · ; θmin) and z( · ; θmin) possess a best fit with re-

spect to given concentrations of ACTH and cortisol given by clinical trials,

among all possible vectors θ. Let ỹi and z̃j , with ỹi, z̃j 6= 0, be clinical data

of the blood plasma concentration of ACTH and blood serum concentra-

tion of cortisol at the times ti and τj with i = 1, . . . , k and j = 1, . . . , `,

respectively. We assume that the data values ỹi and z̃j are associated with

measurement errors, which are independent and normally distributed. To
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define a proper distance measure χ2 : R6 → R+, we make use of the standard

maximum-likelihood-approach (see (21)), that is

χ2(θ) :=
k∑

i=1

(
y(ti; θ)− ỹi

σy
i

)2

+
∑̀
j=1

(
z(τj ; θ)− z̃j

σz
j

)2

. (5)

Here, σy
i and σz

i denote the standard deviations which are assumed to be

given (see Figure 7 below).

At each iteration step the differential equation (3) has to be solved in

order to evaluate the corresponding distance measure χ2. The wanted ap-

proximations of y and z are computed by means of a numerical ODE solver

with respect to approximate initial conditions y(0, θ) = y0, z(0, θ) = z0.

Due to the nature of the underlying equations, we make use of the Matlab

function ode23s, which is based on a modified Rosenbrock formula of order

2 (22). The aim is now to minimize χ2 with respect to θ

χ2(θmin) = min
θ∈R6

χ2(θ).

To solve this unconstrained, nonlinear optimization problem, we employ a

direct search method (a modified Nelder-Mead algorithm). The selected

stop criterion ensures that θmin is a local minimum of χ2. In order to find

the global minimum and avoid local minima, we started the process with

several randomly chosen initial parameter sets θnew and chose the best set

afterwards.

We performed a CRH challenge test for an evaluation of our mathemati-

cal model (see (23)). In this clinical trial we injected twenty healthy subjects
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update θ by θnew

solve ODE (3)
to get y and z

clinical data
{ỹi}i=1,...,k

{z̃j}j=1,...,`

calculate distance (5)
χ2(θ)

optimization step
calculate θnew with
χ2(θnew) < χ2(θ)

stop criterion

result
θmin and χ2 (θmin)

θnew

y(t, θ)
z(t, θ)

θ
χ2(θ)

θnew

χ2 (θnew)

θmin

χ2 (θmin)

θnew

ỹi

z̃j

Figure 5: The flow chart is showing the parameter estimation procedure.

a dose of 1µg CRH per kg body weight at the time t = 0 (4 p.m.). The

blood plasma concentration of ACTH and the blood serum concentration

of cortisol were measured during a time period of four hours (t ∈ [0, 240]).

We refer to ỹi with i = 1, . . . , k (k = 17) as the mean values of the blood

plasma concentration of ACTH and to z̃j with j = 1, . . . , ` (` = 29) as the

mean values of the blood serum concentration of cortisol, while σy
i and σz

j

specify the respective standard deviations, see Figure 7.
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Before we perform the process of parameter estimation, the external in-

put p of CRH on ACTH (i.e. y) has to be identified. In the considerations

for estimating the external input we only take three assumptions into ac-

count. First the separation of external input and feedback and secondly the

feedback on ACTH is only caused by cortisol. Thirdly, we assume that the

external input p can be represented with some b5 ∈ R+ and α ∈ R+ by the

exponential function

p(t; b5, α) = b5αe−αt, (6)

which is a natural impulse (CRH) response (ACTH) curve (see for instance

(11)). Since the effect of CRH on ACTH is unknown, the parameters b5 and

α are to be estimated first. We consider y from the system of differential

equations (3) without feedback, i.e. e1 = e2 = 0. Since b1 is known from

the literature, y can be calculated with some given values of y0, b5 and α.

The feedback of cortisol has to be responsible for the difference of the so

calculated y and some given data ỹi, namely z̃j (separation of external in-

put and feedback and the feedback only caused by cortisol). Therefore, the

parameters b5 and α can be determined in such a way that cortisol concen-

trations have to correspond to the difference of y and ỹi at the best possible

rate. The degradation rate b1 of ACTH is given by b1 = log(2)
20 [min−1] (24).

For the given data (mean values of the mentioned twenty subjects, see Fig-

ure 7) we computed b5 = 25.12 [pmol l−1] and α = 0.0243 [min−1], which

corresponds to a degradation rate of approximately 28 minutes.

After these preparations we are able to apply the process of parameter

estimation to the differential equation (3) and the data of the CRH challenge
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Figure 6: External input function p: The injection of CRH results in the
external input on ACTH. By estimating the parameters b5 and α of the
external input function (6) we get p(t) = 0.61 · e−0.024t with t ∈ [0, 240].

test. As initial values y0 and z0 of the differential equation (3) we picked

the data values y0 = ỹ1, z0 = z̃1, and t1 = τ1 = 0. The parameters b2, K1,

and K2 are well understood and we took b2 = 28, K1 = 0.5 [nmol l−1], and

K2 = 5.0 [nmol l−1], see (5, 20).

The outlined parameter estimation procedure reveals θmin = (0.1290,

0.1633, 0.0336, 2.2234, 2.5345, 148.0701) as the parameter vector with a

distance χ2(θmin) = 6.3410. The dimension units are given by [pmol l−1

min−1] for e1, e2 and [nmol l−1 min−1] for b3, b4. It should be pointed out

that it is not clear whether θmin constitutes a global minimum of the distance

function χ2. However, since we start the parameter estimation procedure

with arbitrary θnew several times and χ2
min is small, it is likely that θmin is

the global minimum. The assumptions of Theorem 1 are fulfilled for the

parameter vector θmin. The left hand side of the inequality (4) is equal to

7.52 · 10−3 and therefore greater than zero. The asymptotic stable point is

calculated to (y∞, z∞) = (1.37, 90.67), where y∞ has the unit of measure-
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Figure 7: Clinical data (error bars) vs. mathematical model (solid lines):
The error bars show the mean values and the standard deviation of ACTH
and cortisol concentration of 20 healthy subjects during a CRH chal-
lenge test. The upper figure shows the plasma ACTH concentration and
the lower figure shows the serum cortisol concentration. The solid lines
represent the estimated function y( · ; θmin) and z( · ; θmin) with θmin =
(0.1290, 0.1633, 0.0336, 2.2234, 2.5345, 148.0701). The distance between the
data and calculated model is χ2(θmin) = 6.3410.

ment [pmol l−1] and z∞ has [nmol l−1].

Discussion and conclusion

We developed a system of differential equations (3) for plasma ACTH and

serum cortisol that fulfills the postulated rules of homeostasis. We proved
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that, under mild assumptions, the system reaches a stable state over time.

The fact that the system stabilizes in a well-defined state resembles the

existence of a set-point for physiological systems that obey the principles

of homeostasis. Despite its appealing simplicity, we were able to tune the

parameter of the model, such that it fits remarkable well to clinical data.

We deliberately abstained to add further compartments to our math-

ematical model. Nevertheless, it is imaginable to split the compartments

brain/pituitary up into two (e.g. first hippocampus/amygdala/hypotha-

lamus and second pituitary) or three compartments (e.g. first hippocam-

pus/amygdala, second hypothalamus, and third pituitary) without chang-

ing the substantial implications of Theorem 1. Since in clinical trials brain

glutamate and CRH signals cannot assessed in living humans and as three

or four compartments cause more unknown parameters to estimate, we used

the two-dimensional system of differential equations.

One notes that no additional signals (e.g. glutamatergic stimulus from

different brain regions) are needed to generate a stable HPA system. With

a loss of such stimuli from other systems or outer influences our modeled

system does not collapse like purely negative feedback systems (e.g. in

(14, 15)) would do. From the physiological point of view the HPA system

cannot be regarded as an isolated system. However, on the assumption

of the homeostatic rules related systems within the organism may serve as

modulators and not as indispensable regulators. The positive feedback via

MR is therefore the crucial component to self-stabilize this dynamic system.

One should notice that the asymptotic stable point (y∞, z∞) could be used

as an indicator for disorders such as depression, obesity, and diabetes.
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In (8) we tested a slightly modified system of differential equations refer-

ring to various clinical trials. Despite the simple structure of that system of

differential equations, the process of parameter estimation performs strongly

to various even pathological-clinical trials. Especially in pathological cases

our model is in high agreement with clinical data, while purely negative

models e.g. (8, 17, 23) result in a poor approximation. Thus, the presented

model has a wider scope of validity than purely negative feedback systems.

The approach to compute the parameter vector θmin enables us to classify

the feedback parameters, to calculate the asymptotic stable point (y∞, z∞),

and to identify potential pathological states in any subject individually.

Receptors with high and low affinities acting on the same ligand can be

found throughout the entire organism (25). It therefore appears plausible

that other control systems in the organism are regulated by a similar mech-

anism. There is physiological evidence that the rules of homeostasis and

the structure of our mathematical modeling might be transferred to other

homeostatic biological systems (7, 8).
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