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CHEBYSHEV APPROXIMATION VIA POLYNOMIAL MAPPINGS AND THE
CONVERGENCE BEHAVIOUR OF KRYLOV SUBSPACE METHODS ∗

BERND FISCHER † AND FRANZ PEHERSTORFER ‡

Abstract. Let ϕm be a polynomial satisfying some mild conditions. Given a set R ⊂ C, a continuous function
f on R and its best approximation p∗

n−1 from Πn−1 with respect to the maximum norm, we show that p∗
n−1 ◦ϕm

is a best approximation to f ◦ ϕm on the inverse polynomial image S of R, i.e. ϕm(S) = R, where the extremal
signature is given explicitly. A similar result is presented for constrained Chebyshev polynomial approximation.
Finally, we apply the obtained results to the computation of the convergence rate of Krylov subspace methods
when applied to a preconditioned linear system. We investigate pairs of preconditioners where the eigenvalues are
contained in sets S and R, respectively, which are related by ϕm(S) = R.

Key words. Chebyshev polynomial, optimal polynomial, extremal signature, Krylov subspace method, conver-
gence rate.
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1. Notations and statement of the problem. Let R ⊂ C denote a compact subset of
the complex plane and let C(R) be the set of continuous functions on R. For f ∈ C(R) we
denote by ‖f‖R := maxz∈R |f(z)| the uniform norm on R. Furthermore, let g1, g2 . . . , gn ∈
C(R) be linearly independent functions with Vn := span{g1, g2 . . . , gn}. Then the best
approximation g∗ of f with respect to Vn on R is the solution of the complex Chebyshev
approximation problem

‖f − g∗‖R = min
g∈Vn

‖f − g‖R.(1.1)

It is well-known, that g∗ exists for any R and is unique provided that R contains at least n
points.

Now, let Πn := {p(z) =
∑n

j=0 ajz
j | aj ∈ C} denote the set of all polynomials of

degree up to n and let ϕm ∈ Πm \Πm−1 be a polynomial of exact degree m.
R and ϕm may be used to define the set (cf. Figure 1.1)

S = S(R, ϕm) = {s ∈ C : ϕm(s) ∈ R}.

In other words, we have ϕm(S) = R and S = ϕ−1
m (R), respectively.

By construction, it is clear that

min
g∈Vn

‖f ◦ ϕm − g ◦ ϕm‖S = min
g∈Vn

‖f − g‖R.

However, if Vn is a space of polynomials, e.g., Vn = Πn−1 or Vn = (z − c)Πn−1, one may
ask the question whether even the following equations

‖f − p∗n−1‖R = min
pn−1∈Πn−1

‖f − pn−1‖R

= min
pmn−1∈Πmn−1

‖f ◦ ϕm − pmn−1‖S = ‖f ◦ ϕm − p∗n−1 ◦ ϕm‖S(1.2)
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FIG. 1.1. (ϕ3)−1(R) (left) for various ellipses R (right) and ϕ3(z) = z3 + 2z2 + 0.25z − 3.

hold true. In Section 2, we will give a complete answer to this question. We remark that
the case where S is the inverse image of equipotential lines under a polynomial mapping has
been considered in Peherstorfer [9].

Furthermore, we will investigate the convergence behavior of Krylov subspace methods
when applied to the linear system

Ax = b, A ∈ C
N×N .

Actually, this application, to a certain extent, provided the motivation for the discussion of
Chebyshev approximation problems connected via the polynomial mapping ϕm. As we will
describe in Section 3, the convergence rate of Krylov subspace methods may be given in
terms of so-called optimal polynomials. For a given parameter c 6∈ R (typically c = 0), such
a polynomial P R

n is the solution of the constrained Chebyshev approximation problem

‖P R
n ‖R = ‖1− (z − c)q∗n−1(z)‖R = min

qn−1∈Πn−1

‖1− (z − c)qn−1(z)‖R,(1.3)

where typically R is a set which contains all eigenvalues of the given matrix A.
When using iterative methods, preconditioning is an important issue. Here, one is look-

ing for a preconditioning matrix M such that the new system M−1Ax = M−1b is easier
to solve than the original system Ax = b. Let S denote a set which contains all eigenvalues
of M−1A. Naturally, one is interested in studying the convergence properties of the precon-
ditioned system as compared to the original system. It turns out that for certain classes of
preconditioners and certain linear systems the eigenvalue inclusion sets and sometimes even
the eigenvalues themselves are related via R = ϕm(S). Thus, our analysis enables one to
relate the corresponding convergence rates to each other. See Section 3 for details.

Finally, we note that it is often easier to compute the Chebyshev Polynomial T R
n than the

optimal polynomial. It is the solution of the Chebyshev approximation problem

‖T R
n ‖R = ‖zn − p∗n−1‖R = min

pn−1∈Πn−1

‖zn − pn−1(z)‖R.(1.4)

Observe that the scaled Chebyshev polynomial T R
n (z)/T R

n (c) always provides an upper
bound for the norm of the optimal polynomial

‖P R
n ‖R ≤

∥

∥

∥

∥

T R
n

T R
n (c)

∥

∥

∥

∥

R

,
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where equality holds for some sets R. Examples of such sets include single intervals (cf.
Markoff [8]) and certain ellipses (cf. Fischer and Freund [4]).

2. Best approximations and extremal signatures on inverse images of polynomial
mappings. Throughout this section we assume that ϕm ∈ Πm \ Πm−1 is a polynomial
of degree m with leading coefficient am. Moreover, let zj ∈ C be a given point, then we
denote by zj,1, zj,2, . . . , zj,m the zeros of ϕm(z) − zj . We always assume that these zeros
are simple, i.e., ϕm has a full set of inverse branches zj,l = ϕ−1

m,l(zj). This assumption, for
example, implies that we have the partial fraction expansion

1

ϕm(z)− zj
=

m
∑

l=1

1

ϕ′m(zj,l)

1

(z − zj,l)
.(2.1)

For the proof of our first theorem, the following well-known characterization of best
approximation will be useful (cf. Rivlin and Shapiro [11]). The function g∗ is a best
approximation of f with respect to Vn (cf. (1.1)) if, and only if, there exist r extremal
points z1, z2 . . . , zr ∈ {z ∈ R : |(f − g∗)(z)| = ‖f − g∗‖R} and positive numbers
µ1, µ2, . . . , µr ∈ R+ (r ≤ 2n + 1 in the complex case and r ≤ n + 1 in the real case)
such that

r
∑

j=1

µjsgn (f − g∗)(zj)gk(zj) = 0 for k = 1, 2, . . . , n.(2.2)

The set {(zj , µjsgn (f − g∗)(zj))| j = 1, 2, . . . , r} is called an extremal signature for
f − g∗ on R with respect to Vn.

THEOREM 2.1. Let R ⊂ C, f ∈ C(R), and S = S(R, ϕm) be given. If p∗n−1 is the best
approximation of f with respect to Πn−1 on R

‖f − p∗n−1‖R = min
pn−1∈Πn−1

‖f − pn−1‖R,

then p∗n−1 ◦ ϕm is the best approximation of f ◦ ϕm with respect to Πmn−1 on S

‖f ◦ ϕm − p∗n−1 ◦ ϕm‖S = min
pmn−1∈Πmn−1

‖f ◦ ϕm − pmn−1‖S .

Furthermore, if {(zj , µjsgn (f − p∗n−1)(zj))| j = 1, 2, . . . , r} is an extremal signature for
f − p∗n−1 on R, i.e.,

r
∑

j=1

µjsgn (f − p∗n−1)(zj)z
k
j = 0, for k = 0, 1, . . . , n− 1,(2.3)

then

r
∑

j=1

m
∑

l=1

µjsgn (f − p∗n−1)(ϕm(zj,l))z
k
j,l = 0, for k = 0, 1, . . . , nm− 1,

where zj,1, zj,2, . . . , zj,m denote the zeros of ϕm(z) − zj , for j = 1, 2, . . . , r. That is,
{(zj,l, µj,lsgn (f − p∗n−1)(ϕm(zj,l)))| j = 1, 2, . . . , r, l = 1, 2, . . . , m}, with µj,l := µj , is
an extremal signature for (f − p∗n−1) ◦ ϕm on S with respect to Πnm−1.
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Proof. For convenience we set

µ̂j := µjsgn (f − p∗n−1)(ϕm(zj,l)) = µjsgn (f − p∗n−1)(zj).

We then have to show that

r
∑

j=1

µ̂j

m
∑

l=1

zk
j,l = 0, for k = 0, 1, . . . , mn− 1.

To start with, we note that by construction the points zj,l are extremal points for (f −p∗n−1)◦
ϕm. Furthermore, in view of (2.1) and (2.3) we obtain

r
∑

j=1

µ̂j

m
∑

l=1

1

ϕ′m(zj,l)

1

(z − zj,l)
=

r
∑

j=1

µ̂j

ϕm(z)− zj

=

r
∑

j=1

µ̂j

(

∞
∑

k=0

zk
j

ϕm(z)k+1

)

=

∞
∑

k=0





r
∑

j=1

µ̂jz
k
j





1

ϕm(z)k+1

= O

(

1

zm(n+1)

)

,

as z →∞. On the other hand, we have

r
∑

j=1

µ̂j

m
∑

l=1

1

ϕ′m(zj,l)

1

(z − zj,l)
=

∞
∑

k=0





r
∑

j=1

µ̂j

m
∑

l=1

zk
j,l

ϕ′m(zj,l)





1

zk+1
,

and consequently

r
∑

j=1

µ̂j

m
∑

l=1

q(zj,l)

ϕ′m(zj,l)
= 0, for all q ∈ Πm(n+1)−2.

For the special choice q(z) = zkϕ′m(z) we obtain

r
∑

j=1

µ̂j

m
∑

l=1

zk
j,l = 0, for k = 0, 1, . . . , mn− 1,

which concludes the proof.
With f(z) = zn we immediately arrive at the following corollary.
COROLLARY 2.2. Let R ⊂ C, and S = S(R, ϕm) be given. If T R

n denotes the Cheby-
shev polynomial with respect to R (cf. (1.4)), then the Chebyshev polynomial of degree mn
with respect to S is given by

T S
mn(z) =

1

an
m

T R
n (ϕm(z)).

We remark that one may also find Corollary 2.2 in Kamo and Borodin [6]. Their proof,
however, is based on Kolmogorov’s criterion and therefore does not provide an extremal
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signature for T R
n ◦ ϕm. Furthermore, we note that the above theorem includes the result of

Lebedev [7] for the case where S is the union of finitely many intervals on the real line.
Next, we turn our attention to the computation of optimal polynomials or, more general,

to the case of constrained Chebyshev approximation. For constrained Chebyshev problems
on two and several intervals see, for example, Fischer [2], Peherstorfer and Schiefermayr [10]
and references therein.

The proof of the next theorem is along the lines of the proof of Theorem 2.1 and is
therefore omitted.

THEOREM 2.3. Let R ⊂ C, c 6∈ R, f ∈ C(R), and S = S(R, ϕm) be given. If
Q∗n−1 = (z − c)q∗n−1 is the best approximation of f with respect to (z − c)Πn−1 on R

‖f −Q∗n−1‖R = min
qn−1∈Πn−1

‖f − (z − c)qn−1‖R,

then Q∗n−1 ◦ ϕm = (ϕm(z)− c)q∗n−1 ◦ ϕm is the best approximation of f ◦ ϕm with respect
to (ϕm(z)− c)Πmn−1 on S

‖f ◦ ϕm −Q∗n−1 ◦ ϕm‖S = min
qmn−1∈Πmn−1

‖f ◦ ϕm − (ϕm(z)− c)qmn−1‖S.

Furthermore, if {(zj , µjsgn (f(zj)−Q∗n−1)(zj))| j = 1, 2, . . . , r} is an extremal signature
for f −Q∗n−1 on R, i.e.,

r
∑

j=1

µjsgn (f(zj)−Q∗n−1)(zj)(zj − c)zk
j = 0, for k = 0, 1, . . . , n− 1,

then, for k = 0, 1, . . . , nm− 1,

r
∑

j=1

m
∑

l=1

µjsgn (f(ϕm(zj,l))−Q∗n−1(ϕm(zj,l))(ϕm(zj,l)− c)zk
j,l = 0,

where zj,1, zj,2, . . . , zj,m denote the zeros of ϕm(z) − zj , for j = 1, 2, . . . , r. That is,
{(zj,l, µj,lsgn (f(ϕm(zj,l))−Q∗n−1(ϕm(zj,l))))| j = 1, 2, . . . , r, l = 1, 2, . . . , m}, with
µj,l := µj , is an extremal signature for f ◦ ϕm −Q∗n−1 ◦ ϕm on S with respect to Πnm−1.

The special case f(z) = 1 gives rise to the following corollary.
COROLLARY 2.4. Let R ⊂ C, c 6∈ R, and S = S(R, ϕm) be given. If P R

n = 1− (z −
c)q∗n−1 denotes the optimal polynomial with respect to R and to c (cf. (1.3)), then we have

‖P R
n ◦ ϕm‖S = min

qmn−1∈Πmn−1

‖1− (ϕm(z)− c)qmn−1‖S .

It is worth noticing that the corollary above in general does not imply that P R
n ◦ ϕm is

the optimal polynomial for the set S. This would be the case, if

‖P R
n ◦ ϕm‖S = ‖1− (ϕm(z)− c)q∗n−1 ◦ ϕm‖S = min

qmn−1∈Πmn−1

‖1− (z − e)qmn−1‖S,

where e is a zero of ϕm(z)− c.
In the remaining part of this section we will further investigate polynomial mappings ϕ2

of degree two. We start with the case where S is the union of two disjoint intervals on the
real line.

THEOREM 2.5. Let R = [a, b], a < b ∈ R, and c ∈ R \ [a, b] be given. Furthermore,
let ϕ2 be such that S = S(R, ϕ2) is the union of two intervals and let e1, e2 denote the
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zeros of ϕ2(z) − c. If P R
n denotes the optimal polynomial with respect to R and to c, then

P S
2n = P R

n ◦ ϕ2 is the optimal polynomial with respect to S and to e1 and e2, respectively,

‖P R
n ◦ ϕ2‖S = min

q2n−1∈Π2n−1

‖1− (z − e1)q2n−1‖S

= min
q2n−1∈Π2n−1

‖1− (z − e2)q2n−1‖S.

Moreover, P S
2n is even optimal for Π2n+1, i.e., we have P S

2n+1 = P S
2n.

Proof. Let T R
n denote the Chebyshev polynomial with respect to R. By Corollary 2.2 we

have that the Chebyshev polynomial with respect to S is given by T S
2n(z) = T R

n (ϕ2(z))/a2
2.

Since T R
n is a shifted version of the classical Chebyshev polynomials on the unit interval, it

has precisely n + 1 extremal points on R. Now, Theorem 2.1 implies that T S
2n has 2(n + 1)

extremal points on S. Finally, the assertion follows from Theorem 4.3 in Fischer [2], which
states that the optimal polynomial with respect to S is a scaled Chebyshev polynomial

P S
2n(z) =

T S
2n(z)

T S
2n(e1)

=
T S

2n(z)

T S
2n(e2)

,

if T S
2n has 2n+2 extremal points on S. Actually, the fact that T S

2n has one additional extremal
point also implies that P S

2n+1 = P S
2n, cf. Corollary 3.3.6(b) in Fischer [3].

Next, we analyze the special mappings ϕ±2 (z) = ±z(z − 1).

THEOREM 2.6. Let R ⊂ C, 0 6∈ R, and S± = S(R, ϕ±2 ) with ϕ±2 (z) = ±z(z − 1)
be given. If P R

n denotes the optimal polynomial with respect to R and to 0, then the optimal
polynomials of degree 2n and 2n + 1 with respect to S± and to 0 and 1, respectively, are
given by

P S±

2n+1 = P S±

2n = P R
n ◦ ϕ±2

with

‖P S+

2n+1‖S+ = ‖P S+

2n ‖S+ = ‖P R
n ‖R = ‖P S−

2n ‖S− = ‖P S−

2n+1‖S− .

Proof. We only consider the case ϕ2 = ϕ+
2 with S = S+. We start by noting that the

polynomial ϕ2 satisfies the symmetry relation ϕ2(l(z)) = ϕ2(z) with l(z) = 1− z. Hence,
by construction, we have S = l(S). From the fact that the optimal polynomial is uniquely
defined and

max
z∈S

|P S
k (z)| = max

z∈S
|P S

k (l(z))|,

we obtain the identity P S
k (z) = P S

k (l(z)). For odd degree polynomials this symmetry rela-
tion implies that the leading coefficient vanishes, because P S

2n+1(z) = α2n+1z
2n+1+ · · · and

P S
2n+1(l(z)) = α2n+1(1−z)2n+1+ · · · = −α2n+1z

2n+1+ · · ·. Now, let us consider the even
degree case k = 2n. Here, we deduce from the symmetry relation P S

2n(z) = P S
2n(l(z)) that

all zeros of P S
2n come in pairs P S

2n(zj) = P S
2n(l(zj)) = 0, j = 1, 2, . . . , n. Let qn denote

the polynomial with the zeros yj = ϕ2(zj), j = 1, 2, . . . , n, and constant term 1. Since
P S

2n − qn ◦ ϕ2 ∈ Π2n has 2n + 1 zeros, namely zj , l(zj), j = 1, 2, . . . , n and zn+1 = 0, we
conclude that P S

2n = qn ◦ ϕ2, which proves the assertion.
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3. Application. In this section we will analyze the convergence of iterative methods
when applied to the solution of a non-symmetric, nonsingular linear system

Ax = b, A ∈ C
N×N .

Throughout this section we assume for convenience that A is diagonalizable. Some of the
most effective iterative methods available are those of Krylov subspace type which have in-
built minimization properties. Here we consider minimal residual methods, whose iterates
minimize the Euclidian norm of the residual rn at each step. More precisely, for the methods
under consideration the nth residual rn may be written as

rn = b−Axn = pn(A)r0,

where pn ∈ Πn is a polynomial of exact degree n satisfying the interpolatory constraint
pn(0) = 1. The polynomial pn and consequently the iterate xn are uniquely determined by
the minimization property

‖rn‖2 = min{‖p(A)r0‖2; p ∈ Πn, p(0) = 1}.

The actual implementation of such a method depends on the properties of the given coeffi-
cient matrix A. Among the most well-known methods belonging to this class are CR (for A
symmetric and positive definite), MINRES (forA symmetric but indefinite) and GMRES (for
A non-symmetric) (cf., e.g., Saad [12]).

Let V denote the eigenvector matrix of A. Then the 2-norm of the residual may be
bounded by the following standard estimate

‖rn‖2
‖r0‖2

≤ κ2(V ) min
p∈Πn, p(0)=1

max
λ∈σ(A)

|p(λ)| = κ2(V )‖P σ(A)
n ‖σ(A),(3.1)

where σ(A) denotes the spectrum ofA and κ2(V ) denotes the condition number of the eigen-
vector matrix V . In conclusion, to bound the convergence rate of minimal residual methods
one is tempted to compute the norm of the optimal polynomial P

σ(A)
n (cf. (1.3)) with respect

to σ(A) and to 0.
In the remaining part of this section we will identify matrices A and preconditionerM

such that the spectrum ofA and its preconditioned versionM−1A are related by a polynomial
mapping

ϕk(σ(A)) = σ(M−1A),

with

P
σ(A)
kn = P σ(M−1

A)
n ◦ ϕk,

and

‖P σ(A)
kn ‖σ(A) = ‖P σ(M−1

A)
n ◦ ϕk‖σ(A) = ‖P σ(M−1

A)
n ‖σ(M−1A).

These equations together with (3.1) have an important consequence. They indicate, at least
in the absence of roundoff errors, that a minimal residual method converges about k-times
faster for the preconditioned system than for the original system.

Let us now consider linear systems of the form

A =

[

A BT

B 0

]

∈ C
(n+m)×(n+m),(3.2)
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where the n × n matrix A is regular and the m × n, m < n, matrix B has full rank. The
efficient solution of such systems plays an important role in many different applications. For
example, the mixed finite element approximation of the Stokes problem (cf. [5]) leads to a
system of the form (3.2) with symmetric positive definite A, whereas the discretization of the
Oseen problem (cf. [1]) results in a matrix problem with non-symmetric A. Other examples
include linear least squares problems and linear KKT systems.

Given the structure ofA, an obvious choice is to use block preconditioning. Furthermore,
often a fast solver for the top-left block A is available. Therefore, preconditioners of the form

M(F, M) =

[

A F
0 M

]

,(3.3)

where M is nonsingular are quite popular (cf. [1]). To provide an efficient implementation
of the preconditioner, common choices for the top-right block F are F = 0 and F = BT ,
respectively.

In general, there is some flexibility in applying the preconditioner. One may con-
sider a left M−1A, a right AM−1, or a centrally preconditioned coefficient matrix
M−1/2AM−1/2, respectively. For the latter case the matrix M is assumed to be positive
definite. However, it is easy to see, that the three preconditioned matrices share the same
eigenvalues. They are given by the solution of the generalized eigenvalue problem

Av = λMv.(3.4)

The next lemma relates the wanted solutions λ of (3.4) for the specific choices
M(0,±M) and M(BT ,−M) to the generalized eigenvalues µ of the so-called Schur com-
plement

BA−1BT p = µMp.(3.5)

In particular, it shows that the two sets of eigenvalues are related by a polynomial mapping.
The proof is straightforward and might be found in Elman and Silvester [1].

LEMMA 3.1. Let µk, k = 1, 2, . . . , m, denote the solutions of the generalized eigenvalue
problem (3.5).

(i) Let ϕ+
2 (z) = z(z − 1). The solutions of Av = λM(0, M)v are λ0 = 1, of

multiplicity n−m, and

λ±k =
1±√1 + 4µk

2
, i.e., ϕ+

2 (λ±k ) = µk, k = 1, 2, . . . , m.

(ii) Let ϕ−2 (z) = −z(z − 1). The solutions of Av = λM(0,−M)v are λ0 = 1, of
multiplicity n−m, and

λ±k =
1±√1− 4µk

2
, i.e., ϕ−2 (λ±k ) = µk, k = 1, 2, . . . , m.

(iii) The solutions of Av = λM(BT ,−M)v are λ0 = 1, of multiplicity n, and

λk = µk, k = 1, 2, . . . , m.

Let us now investigate the case that the matrices A and M are symmetric and positive
definite. Here, it is easy to see that the corresponding matrix A is symmetric but indef-
inite and that the preconditioner M(0, M) is symmetric and positive definite. It follows
from Lemma 3.1(i) that the preconditioned matrix A+ = M(0, M)−1/2AM(0, M)−1/2
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is indefinite and that its eigenvalues are, apart from λ = 1, symmetric about the point
1/2. On the other hand, the alternative preconditioner M(0,−M) is itself indefinite and
therefore may not be applied centrally. As a consequence, the preconditioned system
A− = M(0,−M)−1A (or A− = AM(0,−M)−1) is no longer symmetric. However,
all its eigenvalues are located in the right-half plane. Lemma 3.1(ii) shows that apart from
λ = 1, all of them are either located on a cross with center 1/2 or on a real interval.

There has been some discussion in the literature (cf. [5]) on whether MINRES applied to
the symmetric indefinite systemA+ or GMRES applied to one of the non-symmetric systems
A− will converge faster. The next theorem shows that at least the convergence rates are
identical. The proof is a direct consequence of (3.1), Lemma 3.1, and Theorem 2.6.

THEOREM 3.2. Let V − denote the eigenvector matrix of A− and let r0 = (0, v)T with
v ∈ Rm. Furthermore, let R = {µj : j = 1, 2, . . .m} denote the generalized eigenvalues
of the Schur complement (3.5) and let S± = σ(A±) \ {1}. Then the 2-norm of the residuals
r+

k = p+
k (A+)r0 and r−k = p−k (A−)r0 may be estimated as follows

‖r+
k ‖2

‖r0‖2
≤ ‖P S+

2n ‖S+ = ‖P R
n ‖R,

‖r−k ‖2
‖r0‖2

≤ κ2(V
−) ‖P S−

2n ‖S− = κ2(V
−) ‖P R

n ‖R,

for k ∈ {2n, 2n + 1}.
Some remarks are in place. The above theorem is essentially a result on polynomial

approximation. It says nothing about the performance of MINRES and GMRES in finite
precision arithmetic. However, all our numerical test runs (cf. also [5]) have shown precisely
the predicted convergence behavior. Apart from the constant factors κ2(V

−) the bounds of
the preceding theorem are the same. Note that κ2(V

+) = 1. Actually, an analysis based on
orthogonal polynomials shows that even the iterates x+

2n+1 = x+
2n = x−2n = x−2n+1 are the

same. Furthermore, the special choice r0 = (0, v)T ensures that no eigendirection associated
with the eigenvalue 1 exists in the initial residual (for details see [5]).
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FIG. 3.1. (ϕ+

2
)−1(E) (left) and (ϕ−

2
)−1(E) (right) for various ellipses E.

The above analysis is based on the fact that the top-left block A in (3.2) is inverted in
exact arithmetic. In practice, however, only an approximation to the inverse is available. Here
the spectra of the preconditioned matrices are contained in regions which do include S±. By
Lemma 3.1 we have S± = (ϕ±2 )−1(R). Figure 3.1 shows, apart from S±, the preimage of



ETNA
Kent State University 
etna@mcs.kent.edu

214 Chebyshev approximation via polynomial mappings

ϕ±2 of ellipses E containing the set R. With the help of Theorem 2.6 it is again possible to
explicitly compute the optimal polynomials with respect to the depicted enlarged versions of
S±.

Finally, we turn our attention to the non-symmetric case. That is, we assume that the
matrix A in (3.2) is non-symmetric. Following Elman and Silvester [1] we investigate the
block diagonal preconditioned system ABD = AM(0, M)−1 and the block triangular pre-
conditoned system ABT = AM(BT ,−M)−1, respectively. We learn from Lemma 3.1 that,
apart from the eigenvalue λ = 1, the eigenvalues λ of ABD and the eigenvalues µ of ABT

are related by the quadratic mapping µ = ϕ2(λ) with ϕ2(z) = z(z − 1).
Actually, for the Oseen operator Elman and Silvester [1] proved that all eigenvalues

of ABT are contained in a rectangular box R in the right half plane. Consequently, the
eigenvalues of ABD are contained in sets S which are the preimages of R. The next figure
displays some typical inclusion sets.
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FIG. 3.2. S (left) and R = ϕ2(S) (right) for different sets R.

Also, Elman and Silvester reported on some numerical test runs with these precondition-
ers. They observed that GMRES applied to ABD took twice as many iterations as GMRES
applied to ABT to reach the same reduction of the initial norm. Moreover, the norm of the
odd iterates stagnates for the diagonal preconditioning.

The next theorem provides an explanation for their observations in terms of the respec-
tive convergence rates. Again, the proof follows directly from (3.1), Lemma 3.1, and Theo-
rem 2.6.

THEOREM 3.3. Let V BD and V BT denote the eigenvector matrix of ABD and ABT ,
respectively and let r0 = (0, v)T with v ∈ Rm. Furthermore, let R = {µj : j = 1, 2, . . .m}
denote the generalized eigenvalues of the Schur complement (3.5) and let SBD = σ(ABD) \
{1}. Then the 2-norm of the residuals rBD

k = pBD
k (ABD)r0 and rBT

k = pBT
k (ABT )r0 may

be estimated as follows

‖rBD
k ‖2
‖r0‖2

≤ κ2(V
BD)‖P SBD

2n ‖SBD = κ2(V
BD)‖P R

n ‖R, k ∈ {2n, 2n + 1},

‖rBT
n ‖2
‖r0‖2

≤ κ2(V
BT )‖P R

n ‖R.
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