
NU~IERICAL ANALYSIS PROJECT

MANUSCRIPT NA-MM5 420 2 1
DECEMBER 1992

On the Error Computation

for Polynomial Based Iteration Methods

bY

B. Fischer
G.H. Golub

NUMERICAL ANALYSIS PROJECT
COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305





On the Error Computation for
Polynomial Based Iteration Methods

BERND FISCHER * and GENE H. GOLUB **

Abstract

In this note we investigate the Chebyshev  iteration and the conjugate
cradient method applied to the system of linear equations Ax = f where0
,4 is a symmetric, positive definite matrix. For both methods we present
algorithms which approximate during the iteration process the kth error
Ek = II x - zk l[A . The algorithms are based on the theory of modified mo-
ments and Gaussian quadrature. The proposed schemes are also applicable
for other polynomial iteration schemes. Several examples, illustrating the
performance of the described methods, axe presented.

1. Introduction

Consider the system of linear equations

where A is a lV x N real symmetric, positive definite matrix and f is a given
vector. Let x0 E IRN be any initial guess for the solution of (l.l), and let ~0 :=
f--.420, &o := x-xc be the associated residual vector and error vector, respectively.
Furthermore, let

RI := (q(t) rao+a1t+-- +GY ] ao,ai,-,%  E R)

denote the set of all real polynomials of degree at most n.
A widely used class of iterative schemes for the solution of (1.1) are the so-called

polynomial iteration methods. These methods generate iterates of the form

X7-h = x0 + qn-&4)ro, w h e r e  qn-1 E Pn-1, n = I,&. . . .
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The corresponding residual vectors and error vectors are given
so-called residual polynomial pn

r, = f - .4x, = p,( A)ro,
where pn(t) E 1 - tqn-

:n = 2 - x -Pnt~~2&00n -

Notice that Ed = A-lr, and consequently

II IIEn ?I := E,TAE, = r,TA-‘r,,.

In this note we are concerned with the approximation of ((~~11~
process goes along.

in terms of the

w . (1 >3.Y

P-3)

as the iteration

In 52 we show that the computation of IlEnllA is equivalent to the evaluation
of a certain integral. This integral will be (approximately) evaluated by means of
Gaussian quadrature. The process is closely related to the computation of certain
orthogonal polynomials. In $2.1 and $2.2 we show how to approximate lie, IlA during
the Chebyshev iteration and the conjugate gradient (CG) method, respectively. It
turns out that the computation of the initial error Il~ollA  is special. 52.3 is devoted
to this problem. Finally, in $3 we report on some numerical experiments.

2. Error computation

In this section we show that the A-norm of the error (1.3) can be expressed in
terms of a certain Riemann-Stieltjes integral. To this end we expand the starting
residual

N

rg =
c ok Vk (2 1).

E=l

into orthonormal eigenvectors vk of A. we denote by xk the eigenvalues corre-
sponding to Vk and obtain, in view of (1.3) and (2.1),

= p;(t)d&(t).
J

The distribution function C(t) in the above defined Riemann - Stieltjes integral is
given by

ii(t) E 2 4
%H’t - xk>, where  H(t)  s { i zhzr?ih (2 3)..

k=l
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The problem of determining the error 11,~ n A is equivalent to the evaluation of an11 ’
integral with distribution function 8(t). A standard tool for computing such an
integral is the Gaussian quadrature . Let us assume (for a moment) that we know
the orthonormal cm) polynomials &, k = 1,2,. . . , n, relative to a(t)

J 4k(t)lC’,(t)dqt) 1 1; ;; : ; mm
in terms of their three-term recurrence coefficients & and &

We associate with 6(t) the tridiagonal matrix

j, =
. . .. . .. .

. . A. .. . Pt-t- 1A
Pn- 1 4-h

Then, it is well known (see, e.g., Wilf [12]) that the Gauss
to (2.2) reads

JP:(t)w) = fro fhdjn)Pn(jn)el,
where el = (l,O, . . . ,O>T denotes the first unit vector and

(2 4).

an quadrature applied

60 = J de(t) = 11~0 II: (2-5)
the zero-order moment, which turns out to be the square of the initial error. Hence,
the evaluation of 11~~  IlA “reduces” to the computation of the so-called Jacobi matrix
j, and the moment 60.

The computation of the orthogonal polynomials relative to 6(t)  seems to be
on the first glance a quite tricky problem. However, as we will see, it is not hard
to compute the orthogonal polynomials

til;+r(z) = ((z: - ak)$‘k(X) - Pk$‘k-l(x), k = &I,. . . ,

with respect to the distribution function (compare (2.3))

a(t) = 2 a$(t  - xk).
kc1

(2.6)

(2 7).

(*I the assumption of orthonormality is moie convenient but not necessary.
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Again (cf. (3.4)). we associate with a(t) a Jacobi matrix Jn. For the CG-method
the &(t) = pk(t) are just the (explicitly known) residual polynomials (see 52.2).
For general polynomial iteration methods the first n polynomials &, k = 1,2,. . . , n,
can be calculated via a modified moment algorithm  (see, e.g., Sack, Donovan [lo]
and Wheeler [ll]). This algorithm requires as input (only) the 2n + 1 modified
moments

9 = J pj(t)dU(t), j = O,l,. . .272. cw

These moments, however, are at hand during the iteration process. More precisely,
we have by (1.2) and (2.1) ( compare Dahlquist, Eisenstat and Golub [3]),

= Pj(t)da(t) = vj.
1

Thus after 272 steps of the polynomial iteration method we can calculate
Th,ti:!,... , &. Obviously, it would be advantageous to have the nth degree or-
thogonal polynomial after only n iteration steps. In $2.2 we will see that this is
precisely the case for the Chebyshev iteration.

Anyway, after having computed the $!‘k, the desired polynomials can be ob-
tained from a “modification algorithm”, by noting that, in view of (2.3) and (2.7),
essentially 6(t) = a(t)/t holds. Such algorithms can be found in Gautschi [6] and
Fischer and Golub [4]. Here, for the computation of the Jacobi matrix j, (cf. (2.4))
of order n, one needs to know beforehand the zero-order moment 2/o (cf. (2.5)) and
the Jacobi matrix Jn.

How to economically compute J,, and fro,  respectively, will be explained in the
next subsections.

2.1 The Chebyshev iteration

The Chebyshev iteration method is a so-called parameter dependent method.
The scheme needs estimates, a and b, for the smallest and largest eigenvalue of A,
respectively,

44 c [a, bl, where 0 < a < X,,,in (A) 5 X,,,(A) 5 b. (2.10)

The actual computation of these bounds will not be discussed in this paper. We
refer the reader to Hageman and Young [9], Golub and Kent [7],  Calvetti and
Reichel [1], and references therein. The residual polynomial (cf. (1.2)) for the
Chebyshev iteration

p @) T- ((a + b - Wl(a - 9)
n

= Tn ((a + b)l(a - b)l
(2.11)



is a suitable scaled and translated Chebyshev polynomial of the first kind. As is
well-known, the Chebyshev polynomials fulfill the following identities

Tzn-l(t) = 2 Tn(t)Tn-l(t) - t,

T&(t) = 2 T;(t) - 1.

This leads together with (2.9) and (2.11) to the modified moments (compare Golub
and Iient [i’] )

C
*2n-1 = T,TTn-1  + (

T
T2n-l(C)  rn ‘n-l - Vl),

a+b
1 T

where c = -
a- b’

V2n = T,Tf, +- r r
Tzn(c)( n n

- uo),

Hence, after n steps of the Chebyshev iteration, the modified moments
VO,V17...7V2n are available. However, the price paid for the computation of the
modified moments are 3 inner products per iteration. The same number of inner
products is needed for one step of the conjugate gradient method.

In the next section we show (compare Dahlquist, Golub, and Nash [2]) how to
compute the error ]]En]]A during the conjugate gradient iteration.

2.2 The conjugate gradient method

For the conjugate gradient method, there is, in contrast to general polynomial
iteration methods, no additional work required for the computation of the orthog-
onal polynomials $k. This is based on the equivalence of the CG method and the
Lanczos algorithm and the fact that the Lanczos process directly computes the
desired three-term recurrence coefficients (see, e.g., Golub and Van Loan [8]).

From the minimization property of the CG method one readily obtains [2]

- 1
IlEn 11: = IlEO 111  - vOeT Jn el l (2.12)

In other words, ]]en]]i is the error obtained by approximating the initial error
Il~oII; = j-de(t) by the n-point Gaussian quadrature rule associated with the dis-
tribution function u(t).

However, the remaining (and main) problem is the computation of the initial
error 11~0  IlA. The next section is devoted to this problem.

2.3. Computing the initial error

An effective scheme for the evaluation of

IIE& = i/o = J d&(t)
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is devised in Gautschi [5]. The scheme is based on the observation that fro has
a (convergent) continued fraction expansion in terms of the three-term recurrence
coefficients of the orthogonal polynomial ‘$k (cf. (2.6)):

where
ck =  (1 +  Pk)&--1  - f’kck-2,

1 k=1,2,... . (2.13)
/‘k+l =

1 - pk(l + pk)/(akak-1)  - ”

-4s it is not surprising, the convergence rate of (2.13) depends on the condition
number of -4, which determines the (relative) distance between the singular point
zero of (2.5) and the interval of integration.

A different approach for the approximation of the initial errror is provided by
applying a Gau&Radau  rule onto (2.5) (for details see [2]). This leads to upper
and lower bounds for IlEnllA which can be used in conjunction with (2.12). As for
the Chebyshev iteration (cf. (2.10)) this scheme requires the knowledge of upper
and lower bounds for the spectrum of A.

3. Examples

In this section we present some numerical examples. The test problems are
obtained by discretizing the Poisson equation

Au = f
on the unit square R = {(x,y)]O 5 x, y 5 0) with Dirichlet boundary conditions
u(x,y> = 0 on 82. We approximate Au by the standard five-point stencil on a
uniform n x n grid. This results in linear system Ax = f of order N := n2, where
the right hand side f is chosen such that the vector x = (1, 1, . . . , l)T solves the
system. In all experiments the initial vector xc is a random vector with elements
uniformly distributed in [-1, 11. All computations were carried out in MATLAB.

A crucial point for the correct error estimation is the convergence of the con-
tinued fraction (cf. (2.13)) to the initial error ]]&O]]A. In the following table we list
the number I< of steps needed for the algorithm (2.13) to converge up to machine
precision EPS (- 2.22 * 10-16), i.e.,

ICK -CK-ll  < EPS
IC I

.
K

(3 1).

In order to set the quantity K into perspective we computed in addition the number
L of iteration steps required to reduce the (relative) A-norm of the error to less
than 10e5,  i.e.,

-s-A < 1(r5.II II .
II II (3 2)

&O A
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In all examples described we chose for the Chebyshev iteration method the best
possible interval [a = Xmin (A), b = X,,,(A)] (cf. (2.10)),  in order to keep the issues
of interest clear. Cond denotes the condition number of the respective systems.

I

CG Cheb
N Cond K L K L 1

400 178 62 62 64 123
900 388 91 89 89 187

2500 1053 141 145 142 309

Table 3.1. Steps needed for the continued fraction algorithm (2.13)
to converge to the initial error Il~ollA

The convergence of algorithm (2.13) is quite rapidly. The next figure shows
the typical convergence behaviour. Here, we ploted subsequent approximations
ck, k = I,2 ,..., 10 (little circles) and the initial error ll~o([A (dotted line) for the
CG method and N = 2500.
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Figure 3.1. Approximation of Il~allA  by the continued fractions ck

Furthermore, it should be mentioned that in all our experiences the algorithm
(2.13) turned out to be very stable.
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(compare (3.2))

max IIE;“t  lb - IhllA
k=1,3,...,L h IIA

In the nest table we compare the estimated error ]]E~~~/]~ with the true error
]IE~I]~ for the various examples and methods. We list the largest observed error

In order to demonstrate the performance of the proposed schemes we first computed
the initial error ]]eo]]A up to machine precision (cf. (3.1)) and then used this value
for the subsequent computations.

Table 3.2. Maximal deviation of the estimated error from the true error

It is apparent that the error estimates for the Chebyshev iteration become
worse with increasing order. This is due to instabilities in the modified moment
algorithm. Note, that the computations for the case N = 2500 involve orthog-
onal polynomials of degree 309. However, in practice the Chebyshev iteration is
implemented as an adaptive scheme, which usually implies a restart after a mod-
erate number of iterations. It should be mentioned that the error-estimation for
the CG scheme may also suffer from instabilities. This is mainly due to the loss of
orthogonality in the CG process and the possibility of cancelation  in (2.12).

Finally, the upper bounds (dashed curve) and lower bounds (dotted curve) for
I]E~ ]]A by Dahlquist, Golub and Nash [2] and ]]ek]] A continuous curve) are graphed(
in the next figure for the CG method and N = 2500. Again, we used the best
possible bounds Xmin (A) and &,(A) for the spectrum of A. Note that, according
to Table 3.2., the curve ( ]]E~“~]]A)  based on the use of continued fractions would not
be distinguishable (for this scaling) from the continuous curve.
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Figure 3.2. Estimates of ]]&&
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